
Supplementary Material to "Learning curves of generic features maps for
realistic datasets with a teacher-student model"

A Main result from the replica method

In this appendix we derive the formula for the performance of the Gaussian covariate model from
a heuristic replica analysis. The computation closely follows the recent developments in [14, 43].
We refer to [3, 21, 22] for an introduction to this remarkable heuristic (but seemingly never failing)
approach.

The data: First, let’s recall the definition of our model. Consider synthetic labelled data (v, y) ∈
Rd × R drawn independently from a joint distribution with density:

pθ0(v, y) =

∫
Rp

du P0(y|u>θ0)N (u,v; 0,Σ) (22)

where P0 is a given likelihood on R, θ0 ∈ Rp is a fixed vector of parameters and Σ is a correlation
matrix given by:

Σ =

[
Ψ Φ

Φ> Ω

]
∈ R(p+d)×(p+d) (23)

for symmetric positive semi-definite matrices Ψ and Ω and Φ ∈ Rp×d. In its simplest form, which
we will mostly be using in the applications, we take the likelihood P0(y|x) = δ(y − f0(x)) to be
a deterministic function with f0 : R → R a non-linearity, e.g. f0(x) = sign(x) to generate binary
labels.

The task: In our analysis, we are interested in the training and generalisation performance of a
linear classifier ŷ = fw(v) = f̂

(
w>v

)
trained on n independent samples D = {(vµ, yµ)}nµ=1 from

pθ0 by minimising the regularised empirical risk:

ŵ = arg min
w∈Rd

[
n∑
µ=1

g
(
yµ,w>vµ

)
+
λ

2
||w||22

]
, (24)

where λ > 0 is the regularisation strength. We define the sample complexity α = n/d and the aspect
ratio γ = p/d.

Gibbs minimisation: As it was proven in Theorem 4 of the main manuscript, the asymptotic
performance of the estimator in eq. (24) is fully characterised by the following scalar parameters:

ρ =
1

p
θ>0 Ψθ0, m? =

1√
pd
θ>0 Φŵ, q? =

1

d
ŵ>Ωŵ (25)

The replica method is precisely a heuristic tool allowing us to circumvent the high-dimensional
estimation problem defined in eq. (24) and giving us direct access to (m?, q?).

The starting point is to define the following Gibbs measure over weights w ∈ Rd:

µβ(dw) =
1

Zβ
e
−β
[
n∑
µ=1

g(yµ,w>vµ)+λ
2

d∑
i=1

w2
i

]
dw =

1

Zβ

n∏
µ=1

e−βg(y
µ,w>vµ)

︸ ︷︷ ︸
Pg

d∏
i=1

e−
βλ
2 w

2
i dwi︸ ︷︷ ︸

Pw

(26)

where Zβ , known as the partition function, is a constant normalising the Gibbs measure µβ :

Zβ =

∫
Rd

(
d∏
i=1

dwi

)
e−

βλ
2 w

2
i

n∏
µ=1

e−βg(y
µ,w>vµ) (27)

Note that Pg and Pw can be interpreted as a (unormalised) likelihood and prior distribution respect-
ively. In the limit β → ∞, the measure µβ concentrates around solutions of the minimisation in
eq. (24). The aim in the replica method is to compute the free energy density, defined as:

βfβ = − lim
d→∞

1

d
ED logZβ . (28)
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A.1 Replica computation of the free energy

The average in eq. (28) is not straightforward due to the logarithm term. The replica method consists
of computing it using the following trick to get rid of the logarithm:

logZβ = lim
r→0+

1

r
∂rZrβ (29)

Averaging

Applying the trick above, the computation of the free energy density boils down to the evaluation of
the averaged replicated partition function:

EDZrβ =

n∏
µ=1

E(vµ,yµ)

r∏
a=1

∫
Rd
Pw(dwa)Pg

(
yµ
∣∣∣vµ ·wa

√
d

)

=

n∏
µ=1

∫
R

dyµ
∫
Rp
Pθ0(dθ0)

∫
Rd×r

(
r∏
a=1

Pw(dwa)

)
Euµ,vµ

[
P0

(
yµ|u

µ · θ0√
p

) r∏
a=1

Pg

(
yµ|v

µ ·wa

√
d

)]
︸ ︷︷ ︸

(?)

(30)

Note that in the above we included an average over the parameters θ0 ∈ Rp. The case in which θ0 is
a fixed vector can be recovered by choosing a point mass Pθ0 = δθ0 . Focusing on the average term
in brackets:

(?) = E(u,v)

[
P0

(
yµ
∣∣∣uµ · θ0√

p

) r∏
a=1

Pg

(
yµ
∣∣∣vµ ·wa

√
d

)]

=

∫
R

dνµP0 (y|νµ)

∫
Rr

(
r∏
a=1

dλaµPg(y
µ|λaµ)

)
E(uµ,vµ)

[
δ

(
νµ −

uµ · θ0√
p

) r∏
a=1

δ

(
λaµ −

vµ ·wa

√
d

)]
︸ ︷︷ ︸

P (ν,λ)

Note that the term in brackets defines the joint density over (νµ, λ
a
µ). It is easy to check that these are

Gaussian random variables with zero mean and covariance matrix given by:

Σab =

(
ρ ma

ma Qab

)
. (31)

where the so-called overlap parameters (ρ,ma, Qab) are related to the weights θ0,w:

ρ ≡ E
[
ν2
µ

]
=

1

p
θ0
>Ψθ0, ma ≡ E

[
λaµνµ

]
=

1√
pd
θ>0 Φwa, Qab ≡ E

[
λaµλ

b
µ

]
=

1

d
wa>Ωwb

We can therefore write the averaged replicated partition function as:

EDZrβ =

n∏
µ=1

∫
dyµ

∫
Rp
Pθ0(dθ0)

∫
Rd×r

(
r∏
a=1

Pw(dwa)

)∫
R

dνµP0(yµ|νµ)×

×
∫
Rr

(∏
dλaµPg

(
yµ|λaµ

))
N (νµ, λ

a
µ; 0,Σab) (32)
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Rewriting as a saddle-point problem

The next step is to free the overlap parameters by introducing delta functions:

1 ∝
∫
R

dρ δ
(
pρ− θ0

>Ψθ0

)∫
Rr

r∏
a=1

dma δ
(√

pdma − θ>0 Φwa
)

×
∫
Rr×r

∏
1≤a≤b≤r

dQab δ
(
dQab −wa>Ωwb

)

=

∫
R

dρdρ̂
2π

eiρ̂(pρ−θ0
>Ψθ0)

∫
Rr

r∏
a=1

dmadm̂a

2π
e
i
r∑
a=1

m̂a(
√
pdma−θ>0 Φwa)

×

×
∫
Rr×r

∏
1≤a≤b≤r

dQabdQ̂ab

2π
e
i

∑
1≤a≤b≤r

Q̂ab(dQab−wa>Ωwb)
(33)

Inserting this in eq. (32) allow us to rewrite:

EDZrβ =

∫
R

dρdρ̂
2π

∫
Rr

r∏
a=1

dmadm̂a

2π

∫
Rr×r

∏
1≤a≤b≤r

dQabdQ̂ab

2π
edΦ(r)

(34)

where we have absorbed a −i factor in the integrals (this won’t matter since we will look to the
saddle-point) and defined the potential:

Φ(r) = −γρρ̂−√γ
r∑
a=1

mam̂a −
∑

1≤a≤b≤r

QabQ̂ab + αΨ(r)
y (ρ,ma, Qab) + Ψ(r)

w (ρ̂, m̂a, Q̂ab)

(35)

where we recall that α = n/d, γ = p/d and:

Ψ(r)
w =

1

d
log

∫
Rp
Pθ0 (dθ0)

∫
Rd×r

r∏
a=1

Pw (dwa) e
ρ̂θ0
>Ψθ0+

r∑
a=1

m̂aθ>0 Φwa+
∑

1≤a≤b≤r
Q̂abwa>Ωwb

(36)

Ψ(r)
y = log

∫
R

dy
∫
R

dν P0(y|ν)

∫ r∏
a=1

dλaPg(y|λa) N (ν, λa; 0,Σab) (37)

In the high-dimensional limit where d → ∞ while α = n/d and γ = p/d stay finite, the integral
in eq. (34) concentrate around the values of the overlaps that extremise Φ(r), and therefore we can
write:

βfβ = − lim
r→0+

1

r
extr Φ(r)

(
ρ̂, m̂a, Q̂ab; ρ,ma, Qab

)
(38)

Replica symmetric ansatz

In order to proceed with the r → 0+ limit, we restrict the extremisation above to the following replica
symmetric ansatz:

ma = m, m̂a = m̂, for a = 1, . . . , r

Qaa = r, Q̂aa = −1

2
r̂, for a = 1, . . . , r

Qab = q, Q̂ab = q̂, for 1 ≤ a < b ≤ r (39)

Inserting this ansatz in eq. (35) allows us to explicitly take the r → 0+ limit for each term. The
first three terms are straightforward to obtain. The limit of Ψ

(r)
y is cumbersome, but it common to

many replica computations for the generalised linear likelihood Pg. We refer the curious reader to
Appendix C of [43] or to Appendix IV of [14] for details, and write the final result here:

Ψy ≡ lim
r→0+

1

r
Ψ(r)
w = Eξ∼N (0,1)

[∫
R

dy Z0

(
y,

m
√
q
ξ, ρ− m2

q

)
logZg(y,

√
qξ, V )

]
(40)
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where we have defined V = r − q and:

Zg/0(y, ω, V ) = Ex∼N (ω,V )

[
Pg/0(y|x)

]
. (41)

Note that as in [43], the consistency condition of the zeroth order term in the free energy fix
ρ = Eθ0

[
1
pθ0
>Ψθ0

]
and ρ̂ = 0. On the other hand, the limit of the prior term here is exactly as the

one discussed in Appendix C of [45], and is given by:

Ψw ≡ lim
r→0+

1

r
Ψ(r)
w =

1

d
Eξ,θ0 log

∫
Rd
Pw (dw) e−

V̂
2 w
>Ωw+w>(m̂Φ>θ0+q̂Ω1/2ξ). (42)

Summary

The replica symmetric free energy density is simply given by:

fβ = extr
q,m,q̂,m̂

{
−1

2
rr̂ − 1

2
qq̂ +

√
γ mm̂− αΨy(r,m, q)−Ψw(r̂, m̂, q̂)

}
(43)

where

Ψw = lim
d→∞

1

d
Eξ,θ0 log

∫
Rd
Pw (dw) e−

V̂
2 w
>Ωw+w>(m̂Φ>θ0+q̂Ω1/2ξ)

Ψy = Eξ∼N (0,1)

[∫
R

dy Z0

(
y,

m
√
q
ξ, ρ− m2

q

)
logZg(y,

√
qξ, V )

]
(44)

A.2 Ridge regression and fixed weights

For an `2-regularisation term, we have:

Pw(dw) =
1

(2π)d/2
e−

βλ
2 ||w||

2
2dw (45)

where we have included a convenient constant, and therefore:∫
Rd
Pw(dw)e−

V̂
2 w
>Ωw+w>(m̂Φ>θ0+

√
q̂Ω1/2ξ) =

∫
Rd

dw
(2π)p/2

e−
1
2w
>(βλId+V̂ Ω)w+w>(m̂Φ>θ0+

√
q̂Ω1/2ξ)

=

exp

(
1
2

(
m̂Φ>θ0 +

√
q̂Ω1/2ξ

)> (
βλId + V̂ Ω

)−1 (
m̂Φ>θ0 +

√
q̂Ω1/2ξ

)>)
√

det
(
βλId + V̂ Ω

)
(46)

taking the log and using log det = tr log, up to the limit:

Ψw =
1

2d
Eξ,θ0

[(
m̂Φ>θ0 +

√
q̂Ω1/2ξ

)> (
βλId + V̂ Ω

)−1 (
m̂Φ>θ0 +

√
q̂Ω1/2ξ

)]
− 1

2d
tr log

(
βλId + V̂ Ω

)
(47)

Defining the shorthand A =
(
βλId + V̂ Ω

)−1

, we can now take the averages over ξ explicitly:

Eξ
[(
m̂Φ>θ0 +

√
q̂Ω1/2ξ

)>
A
(
m̂Φ>θ0 + q̂Ω1/2ξ

)]
= m̂2θ0

>ΦAΦ>θ0 + q̂ tr Ω1/2AΩ1/2

(48)

Putting together, up to the limit:

Ψw = − 1

2d
tr log

(
βλId + V̂ Ω

)
+

1

2d
tr
(
m̂2Φ>θ0θ

>
0 Φ + q̂Ω

) (
βλId + V̂ Ω

)−1

(49)

19



A.3 Taking the β →∞ limit

Finally, in order to take the β →∞ limit explicitly, we note that under the rescaling

V → β−1V q → q m→ m

V̂ → βV̂ q̂ → β2q̂ m̂→ βm̂. (50)

The potential Ψw has a trivial limit:

lim
β→∞

1

β
Ψw = − 1

2d
tr log

(
λId + V̂ Ω

)
+

1

2d
tr
(
m̂2Φ>θ0θ

>
0 Φ + q̂Ω

) (
λId + V̂ Ω

)−1

(51)

while Ψy requires more attention. Since Z0 only depends on (q,m), it is invariant under the rescaling.
On the other hand, we have that:

Zg(y,
√
qξ, V ) =

√
β

∫
dx√
2πV

e
−β
[

(x−√qξ)2
2V +g(y,x)

]
=

β→∞
e−βMV g(y,·)(

√
qξ) (52)

whereM is the Moreau envelope associated to the loss g:

Mτg(y,·)(x) = inf
z∈R

[
(z − x)2

2τ
+ g(y, z)

]
(53)

and therefore:

lim
β→∞

1

β
Ψy = −Eξ∼N (0,1)

[∫
dy Z0

(
y,

m
√
q
ξ, ρ− m2

q

)
MV g(y,·) (

√
qξ)

]
(54)

The zero temperature therefore is simply given by:

lim
β→∞

fβ = extr
V,q,m,V̂ ,q̂,m̂

{
−1

2

(
qV̂ − q̂V

)
+
√
γ mm̂+ αEξ∼N (0,1)

[∫
dy Z0MV g(y,·)

]
− 1

2d
tr
(
m̂2Φ>θ0θ

>
0 Φ + q̂Ω

) (
λId + V̂ Ω

)−1
}

(55)

A.4 Saddle-point equations

To solve the extremisation problem defined by eq. (55), we search for vanishing gradient points of
the potential. This lead to a set of self-consistent saddle-point equations:


V̂ = −αEξ

[∫
R dy Z0 ∂ωfg

]
q̂ = αEξ

[∫
R dy Z0f

2
g

]
m̂ = α√

γEξ
[∫

R dy ∂ωZ0 fg
]


V = 1

d tr
(
λId + V̂ Ω

)−1

Ω

q = 1
d tr

[(
q̂Ω + m̂2Φ>θ0θ

>
0 Φ
)

Ω
(
λId + V̂ Ω

)−2
]

m = 1√
γ
m̂
p tr Φ>θ0θ

>
0 Φ

(
λId + V̂ Ω

)−1

(56)

where fg(y, ω, V ) = −∂ωMV g(y,·)(ω), which can also be obtained from the proximal operator

proxV g(y,·)(ω) = arg min
z∈R

[
(z − ω)2

2V
+ g (y, z)

]
(57)

using the envelope theorem M′τf (x) = τ−1
(
x− proxτf (x)

)
. A python implementation of

the saddle-point equations for the losses discussed below is available in https://github.com/
IdePHICS/GCMProject

A.5 Examples

We now discuss a couple of examples in which the equations above simplify.
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Ridge regression: Consider a ridge regression task with f0(x) = f̂(x) = x, loss g(y, x) =
1
2 (y − x)2 and choose ĝ(y, x) = 1

2 (y − x)2. In this case, our model is closely related to the
mismatched models in [12] and [26]. In the first, labels are generated in a higher-dimensional space
which contains the features as a subspace, and can be mapped to our model in the case p > d by
defining the projection of the teacher weights in the student space Φ>θ0 ∈ Rd and its orthogonal
complement (Φ>θ0)⊥ ∈ Rp−d. In the second, the teacher acts on an orthogonal subset of the
features, and can be mapped with a similar construction to our model in the case p < d. These two
cases were studied for specific linear tasks, such as ridge and random features regression, with the
covariances modelling structure in the data. Conceptually, our model differs slightly in the sense
that any additional fixed feature layer, e.g. random projections or a pre-trained feature map, is also
contained in the convariances.

For the linear task, the asymptotic training and generalisation errors read:

E?train. =
ρ+ q? − 2m?

(1 + V ?)2
, E?gen. = ρ+ q? − 2m? (58)

where ρ = 1
pθ
>
0 Ψθ0 and (V ?, q?,m?) are the fixed point of the following set of self-consistent

equations:


V̂ = α

1+V

q̂ = αρ+q−2m
(1+V )2

m̂ = 1√
γ

α
1+V

,


V = 1

d tr
(
λId + V̂ Ω

)−1

Ω

q = 1
d tr

[(
q̂Ω + m̂2Φ>θ0θ

>
0 Φ
)

Ω
(
λId + V̂ Ω

)−2
]

m = 1√
γ
m̂
d tr Φ>θ0θ

>
0 Φ

(
λId + V̂ Ω

)−1

. (59)

Note that quite interestingly we have the following relationship between the training and generalisation
error:

E?train. =
E?gen.

(1 + V ?)2
. (60)

This give us an interesting interpretation of V ? as parametrising the variance gap between the
generalisation and training error1. In particular, note that V ? only depends on the spectrum of the
population covariance, since it is the solution of:

V =

∫
νΩ(dω)

ω

λ+ αω
1+V

(61)

where νΩ is the spectral density of Ω.

Binary classification

For a binary classification task, we tak f0(x) = f̂(x) = sign(x) ∈ {−1, 1}. Our equations generalise
the ones derived [33] in the specific case of d = p and Ψ = Id, θ0 ∼ N (0, Id). For binary
classification, the asymptotic classification error Egen.(ŵ) = P

(
y 6= sign(ŵ>u)

)
can be explicitly

writen is terms of the overlaps as:

E?gen. =
1

π
cos−1

(
m?

√
ρq?

)
. (62)

where again (q?,m?) are solutions of the self-consistent saddle-point equations. The teacher measure
is given by:

Z0(y, ω, V ) =
δy,1 + δy,−1

2

(
1 + erf

(
yω√
2V

))
(63)

The explicit form of the equation depends on the choice of the loss function, three of which are of
particular interest:

1We thank Stéphane d’Ascoli for bringing this relation to our attention.
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Square-loss: As in the ridge case, for g(y, x) = 1
2 (y − x)2 the saddle-point equations simplify

considerably:
V̂ = α

1+V

q̂ = α
1+q−2m

√
2
πρ

(1+V )2

m̂ =
√

2
πρ

α
1+V

,


V = 1

d tr
(
λId + V̂ Ω

)−1

Ω

q = 1
d tr

[(
q̂Ω + m̂2Φ>θ0θ

>
0 Φ
)

Ω
(
λId + V̂ Ω

)−2
]

m = 1√
γ
m̂γ
d tr Φ>θ0θ

>
0 Φ

(
λId + V̂ Ω

)−1

. (64)

Similarly, the asymptotic training error also admits a simple expression:

E?train. =
1

4

1 + q? − 2m?
√

2
πρ

(1 + V ?)2
(65)

Logistic regression: Different from the previous cases, for logistic loss g(y, x) = log (1 + e−yx)

the equations for (V̂ , q̂, m̂) cannot be integrated explicitly, since the proximal operator doesn’t admit
a closed form solution. Instead, fg can be found by solving the following self-consistent equation:

fg =
y

1 + ey(V fg+ω)
. (66)

Soft-margin regression: Another useful case in which the proximal operator has a closed form
solution is for the hinge loss g(y, x) = max(0, 1− yx). In this case:

fg(y, ω, V ) =


y if ωy < 1− V
y−ω
V if 1− V < ωy < 1

0 otherwise
, ∂ωfg(y, ω, V ) =

{
− 1
V if 1− V < ωy < 1

0 otherwise

(67)

Again, the equations cannot be integrated explicitly. Note that in the limit λ→ 0, both the logistic
and soft-margin solutions converge to the max-margin estimator

A.6 Relation to previous models

Random features: The feature map for random features learning can be written as:

ΦF : u ∈ Rp 7→ v = σ

(
1√
k

Fu
)
∈ Rd (68)

where u ∈ Rp is the original data, F ∈ Rd×k is a chosen random projection matrix and σ : R→ R
is a chosen non-linearity acting component-wise in Rd, see [16]. Random features learning has
attracted a lot of interest recently, and has been studied in [11, 33, 35, 43] in the case of Gaussian
data u ∼ N (0, Ip). Our model encompasses all of these works, and in the case of Gaussian data the
covariancec (Ψ,Ω,Φ) can be explicitly related to the projection matrix F:

Ψ = Ip, Φ = κ1F, Ω = κ2
01d1

>
d + κ2

1

FF>

d
+ κ2

?Id (69)

where 1d ∈ Rd is the all-ones vector and the constants (κ0, κ1, κ?) are related to σ as:

κ0 = Ez∼N (0,1) [σ(z)] , κ1 = Ez∼N (0,1) [zσ(z)] , κ? =
√

Ez∼N (0,1) [σ(z)2]− κ2
0 − κ2

1 (70)

These relations hold asymptotically, and rely on the Gaussian equivalence theorem (GET), see [45]
for a proof.

Generative models: In [45], a similar Gaussian covariate model was used to study the performance
of random feature regression on data generated from pre-trained generative models:

v = G(u) ∈ Rd, u ∼ N (0, Ip). (71)
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where G : Rp → Rd is a generative network mapping the latent space Rp to the input space Rd (e.g.
a pre-trained GAN). Labels were generated directly in the latent space Rp using a generalised linear
model on random weights: y = f0

(
θ>0 u

)
with u ∼ N (0, Ip). A Gaussian Equivalence Principle

(GEP) stating that the asymptotic generalisation and training performances of this model are fully
captured by second order statistics was conjectured and shown to hold numerically for different
choices of generative models G. Indeed, this model is a particular case of ours when Ψ = Ip and
θ0 ∼ N (0, Ip). Assuming that the GEP holds, our model therefore can be seen as a generalisation of
[45] to structured teachers. For instance, in Section 3.3 of the main we show several cases in which
the teacher u = G̃(c) for a latent vector c ∼ N (0, Ik) and a pre-trained map G̃ that can include a
generative model and a fixed feature map (e.g. random features, scattering transform, pre-learned
neural network, etc.). Also, it is important to stress that our model also account for the case in which
the teacher weights θ0 ∈ Rp are fixed, and therefore can be also learned.

Kernel methods: Let H be a Kernel Reproducing Hilbert space (RKHS) associated to a given
kernel K and D = {xµ, yµ}nµ=1 be a labelled data set with x ∼ px independently, and set X =
supp(px). In Kernel regression, the aim is to solve:

min
f∈H

[
1

2

n∑
µ=1

(yµ − f(xµ))
2

+
λ

2
||f ||2H

]
(72)

where || · ||H is the norm induced by the scalar product in H. An alternative representation of this
problem is given by the feature decomposition of the kernel given by Mercer’s theorem:

K(x,x′) =

∞∑
i=1

ωiei(x
′)ei(x) (73)

where ωi and ei(x) are the eigenvalues and eigenvectors associated with the kernel:∫
Rk
px(dx′)K(x,x′)ei(x

′) = ωiei(x) (74)

Note that {ei(x)}∞i form an orthonormal basis of the space of square-integrable functions L2 (X )
(with respect to the standard scalar product of L2). It is also convenient to define the feature map
ϕi(x) =

√
ωiei(x), which is an orthonormal basis ofH ⊂ L2(X ) (with respect to the scalar product

induced by K). Therefore, if we assume that the labels yµ = f0(xµ) are generated from a ground
truth target function (not necessarely part ofH), we can expand both f and f0 the feature basis:

f(x) =

∞∑
i=1

wiϕi(x), f0(x) =

∞∑
i=1

θ0iϕi(x) (75)

Note that f ∈ H implies that for this sum to make sense wi needs to decay fast enough with respect
to
√
wi, but in general we can have f0 /∈ H meaning that θi0 decays slower than

√
ωi but still fast

enough such that f0 ∈ L2(X ). If the number of features is finite (ωi = 0 for i ≥ d) or if we introduce
a cut-off d � n, |X |, the representation in the feature basis in eq. (75) allow us to rewrite Kernel
regression problem in eq. (72) simply as ridge regression in feature space:

min
w∈Rd

[
1

2

n∑
µ=1

(
θ>0 ϕ(x)−w>ϕ(x)

)2
+
λ

2
||w||22

]
. (76)

Letting v = ϕ(x) ∈ Rd, this formulation is equivalent to our model with p = d and covariance
matrices given by:

Ψ = Φ = Ω = diag(ωi). (77)

Indeed, inserting this expression equation (59):

{
V̂ = m̂ = α

1+V

q̂ = αρ+q−2m
(1+V )2

,



V = 1
d

d∑
i=1

ωi
λ+V̂ ωi

q = 1
d

d∑
i=1

q̂ω2
i+θ20iω

3
i m̂

2

(λ+V̂ ωi)2

m = m̂
d

d∑
i=1

ω2
i θ

2
0i

λ+V̂ ωi

. (78)
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and making a change of variables q̂ ← q̂ d
2

n , m̂ ← m̂ d
n , V̂ ← q̂ dn , ρ ← dρ, m ← dm, q ← dq,

λ← dλ we recover exactly the self-consistent equations of [32] for the performance of kernel ridge
regression directly from our equations. Moreover, our model allow to generalise this discussion to
more involved kernel tasks such as kernel logistic regression and support vector machines.
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B Rigorous proof of the Main result

This section presents the core technical result of this paper in its full generality, along with the
required assumptions and its complete proof. For technical reasons, variables different than the
ones appearing in the replica calculation are introduced. The proof is nonetheless presented in a
self-contained way and the relation with the replica variables are given in appendix C, eq.(280). We
start by reminding the formulation of the problem. Consider the matrices U ∈ Rn×p of concatenated
vectors u used by the teacher and V ∈ Rn×d the corresponding one for the student. The estimator
may now be defined using potentially non-separable functions:

ŵ = arg min
w∈Rd

[
g

(
1√
d
Vw,y

)
+ r(w)

]
, (79)

where the function g : Rn → R. The training and generalization errors are reminded as:

Etrain(w) ≡ 1

n
E
[
g

(
1√
d
Vw,y

)
+ r (w)

]
(80)

Egen(w) ≡ E
[
ĝ(f̂

(
v>neww), ynew

)]
≡ E

[
ĝ
(
f̂(v>neww),f0(u>newθ0)

)]
. (81)

Intuitively, the variables u>newθ0 and v>neww will play a key role in the analysis. Given an instance of
θ0 and w, the tuple

(
1√
pu>newθ0,

1√
d
v>neww

)
is a bivariate Gaussian with covariance:[

1
pθ
>
0 Ψθ0

1√
dp

(Φ>θ0)>w
1√
dp

(Φ>θ0)>w 1
dw>Ωw

]
. (82)

We thus define the following overlaps, that will play a fundamental role in the analysis:

ρ =
1

p
θ>0 Ψθ0, m =

1√
dp

(Φ>θ0)>w , q =
1

d
w>Ωw, χ =

1

d
θ>0 ΦΩ−1Φ>θ0 . (83)

Note that here, we will not introduce the spectral decomposition 7 as it will not simplify the
expressions as in the l2 case. The representations are mathematically equivalent nonetheless. Our
main result is that the distribution of the estimator ŵ can be exactly computed in the weak sense from
the solution to six scalar fixed point equations with a unique solution.

B.1 Necessary assumptions

We start with a list of the necessary assumptions for the most generic version of the result to hold.
We also briefly discuss how they are relevant in a supervised machine learning context.

(A1) The vector θ0 is pulled from any given distribution pθ0 ∈ Rp (this includes deterministic
vectors with bounded norm), and is independent of the matrices U and V . Additionally, the
signal is non-vanishing and has finite squared norm, i.e. the following holds almost surely:

lim
p→∞

0 < E
[
θ>0 θ0

p

]
< +∞ (84)

(A2) The covariance matrices verify:
(Ψ,Ω) ∈ S++

p × S++
d , Ω− Φ>Ψ−1Φ � 0 (85)

The spectral distributions of the matrices Φ,Ψ and Ω converge to distributions such that the
overlaps defined by equation (83) are well-defined. Additionally, the maximum singular
values of the covariance matrices are bounded with high probability when n, p, d→∞.

(A3) The functions r and g are proper, lower semi-continuous, convex functions. Additionally,
we assume that the cost function r + g is coercive, i.e.:

lim
‖w‖2→+∞

(r + g)(w) = +∞ (86)

and that the following scaling condition holds : for all n, d ∈ N, z ∈ Rn and any constant
c > 0, there exist finite, positive constants C1, C2, C3, such that, for any standard normal
random vectors h ∈ Rd and g ∈ Rn:

‖z‖2 6 c
√
n =⇒ sup

x∈∂g(z)

‖x‖2 6 C1

√
n,

1

d
E [r(h)] < +∞, 1

n
E [g(g)] < +∞

(87)
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(A4) The random elements of the function f0 are independent of the matrices U and V . Addition-
ally the following limit exists and is finite

lim
n→∞

E
[

1

n
f0(Uθ0)>f0(Uθ0)

]
< +∞

(A5) When we send the dimensions n, p, d to infinity, they grow with finite ratios α = n/d,
γ = p/d.

(A6) Additional assumptions for linear finite sample size rates : the teacher vector θ0 has
sub-Gaussian one dimensional marginals. The functions r, g, φ1, φ2 are pseudo-Lipschitz of
finite order. The eigenvalues of the covariance matrices are bounded with probability one.

(A7) Additional assumptions for exponential finite sample size rates: all of the above, and
the loss function g is separable and pseudo-Lipschitz of order 2, the regularisation is either
a ridge or a Lipschitz function, the functions φ1, φ2 are respectively separable, pseudo-
Lipschitz of order 2, and a square or Lipschitz function.

The first assumption (A1) ensures that the teacher distribution is non-vanishing. The positive
definiteness in (A2) means the covariance matrices of the blocks U and V are well-specified. Note
that the cross-correlation matrix Φ can have singular values equal to zero. The assumption about the
limiting spectral distribution is essentially a summability condition which is immediately verified if
the limiting spectral distributions have compact support, a common case. The scaling assumptions
from (A3) are natural as they imply that non-diverging inputs result in non-diverging outputs in the
functions f and g, as well as the sub-differentials. Similar scaling assumptions are encountered in
proofs such as [27]. They also allow to show Gaussian concentration of Moreau envelopes, as we
will see in Lemma 5. The coercivity assumption is verified in most common machine learning setups
: any convex loss with ridge regularisation, or any convex loss that is bounded below with a coercive
regularisation (LASSO, elastic-net,...), see Corollary 11.15 from [68]. Assumption (A4) is a classical
assumption of teacher-student setups, where any correlation between the teacher and the student is
modeled by the covariance matrices and not by the label generating function f0. The summability
condition ensures generalization error is well-defined for squared performance measures. Finally,
(A5) is the typical high-dimensional limit used in statistical physics of learning, random matrix theory
and a large recent body of work in high-dimensional statistical learning.

B.2 Main theorem

First, let’s define quantities and a scalar optimization problem that will be used to state the asymptotic
behaviour of (2-3):
Definition 1. (Scalar potentials/replica free energy) Define the following functions of the scalar
variables τ1 > 0, τ2 > 0, κ > 0, η > 0, ν,m:

Lg(τ1, κ,m, η) =
1

n
E
[
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)]
, (88)

Lr(τ2, η, ν, κ) =
1

d
E
[
M η

τ2
r(Ω−1/2.)

(
η

τ2
(νt + κg)

)]
,

where s,h ∼ N (0, In) and g ∼ N (0, Id) are random vectors independent of the other quantities,
t = Ω−1/2Φ>θ0, y = f0

(√
ρs
)
, andM denotes the Moreau envelope of a target function.

From these quantities define the following potential:

E(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ

− η

2τ2
(ν2χ+ κ2) + αLg(τ1, κ,m, η) + Lr(τ2, η, ν, κ) . (89)

Under Assumption (B.1), the previously defined quantities all admit finite limits when n, p, d→∞.

Proof : This follows directly from Lemma 5.

The next lemma characterizes important properties of the "potential" function E(τ1, τ2, κ, η, ν,m):
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Lemma 1. (Geometry and minimizers of E) The function E(τ1, τ2, κ, η, ν,m) is jointly convex in
(m, η, τ1) and jointly concave in (ν, κ, τ2), and the optimization problem

min
m,η,τ1

max
κ,ν,τ2

E(τ1, τ2, κ, η, ν,m) (90)

has a unique solution (τ∗1 , τ
∗
2 , κ
∗, η∗, ν∗,m∗) on dom(E).

Proof : see Appendix B.5. The optimality condition of problem (90) yields the set of self-consistent
fixed point equations given in Lemma 12 of Appendix B. Finally, define the following variables:

w∗ = Ω−1/2prox η∗
τ∗2
r(Ω−1/2.)

(
η∗

τ∗2
(ν∗t + κ∗g)

)
, z∗ = prox τ∗1

κ∗ g(.,y)

(
m∗
√
ρ
s + η∗h

)
. (91)

where prox denotes the proximal operator. With these definitions, we can now state our main result:

Theorem 4. (Training loss and generalisation error) Under Assumption (B.1), there exist constants
C, c, c′ > 0 such that, for any optimal solution ŵ to (3), the training loss and generalisation error
defined by equation verify, for any 0 < ε < c′:

P (|Etrain(ŵ)− E∗train| > ε) 6
C

ε
e−cnε

2

, (92)

P
(∣∣∣Egen(ŵ)− Eω,ξ

[
ĝ(f0(ω), f̂(ξ))

]∣∣∣ > ε
)
6
C

ε
e−cnε

2

,

where E∗train is defined as follows:

E∗train =
1

n
E [g (z∗,y)] +

1

αd
E [r (w∗)] , (93)

and the random variables (ω, ξ) are jointly Gaussian with covariance

(ω, ξ) ∼ N
(

0,

[
ρ m∗

m∗ q∗

])
, q∗=(η∗)2+

(m∗)2

ρ
. (94)

Proof : see Appendix B.6. Note that the regularisation may be removed to evaluate the training loss.
A more generic result, aiming directly at the estimator ŵ, can also be stated:

Theorem 5. Under Assumption (B.1), for any optimal solution ŵ to (3), denote ẑ = 1√
d
Vŵ. Then,

there exist constants C, c, c′ > 0 such that, for any Lipschitz function φ1 : Rd → R, and separable,
pseudo-Lipschitz function φ2 : Rn → R and any 0 < ε < c′:

P
(∣∣∣∣φ1(

ŵ√
d

)− E
[
φ1

(
w∗√
d

)]∣∣∣∣ > ε

)
6
C

ε2
e−cnε

4

, (95)

P
(∣∣∣∣φ2(

ẑ√
n

)− E
[
φ2

(
z∗√
n

)]∣∣∣∣ > ε

)
6
C

ε2
e−cnε

4

. (96)

Proof : see Appendix B.6. Concentration still holds for a larger class of functions φ1,2, but exponential
rates are lost. This is discussed in Appendix B.1.

B.3 Theoretical toolbox

Here we remind a few known results that are used throughout the proof. We also provide proofs of
useful, straightforward consequences of theses results that do not appear explicitly in the literature
for completeness.

B.3.1 A Gaussian comparison theorem

We start with the Convex Gaussian Min-max Theorem, as presented in [27], which is a tight version
of an inequality initially derived in [20].

Theorem 6. (CGMT) Let G ∈ Rm×n be an i.i.d. standard normal matrix and g ∈ Rm, h ∈ Rn two
i.i.d. standard normal vectors independent of one another. Let Sw,Su be two compact sets such that
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Sw ⊂ Rn and Su ⊂ Rm. Consider the two following optimization problems for any continuous ψ on
Sw × Su :

C(G) := min
w∈Sw

max
u∈Su

u>Gw + ψ(w,u), (97)

C(g,h) := min
w∈Sw

max
u∈Su

‖w‖2g
>u + ‖u‖2h

>w + ψ(w,u) (98)

then the following holds:

1. For all c ∈ R:
P(C(G) < c) 6 2P(C(g,h) 6 c)

2. Further assume that Sw,Su are convex sets and ψ is convex-concave on Sw × Su. Then,
for all c ∈ R,

P(C(G) > c) 6 2P(C(g,h) > c)

In particular, for all µ ∈ R, t > 0,P(|C(G)− µ| > t) 6 2P(|C(g,h)− µ| > t).

Following [27], we will say that any reformulation of a target problem matching the form of (97) is
an acceptable primary optimization problem (PO), and the corresponding form (98) is an acceptable
auxiliary problem (AO). The main idea of this approach is to study the asymptotic properties of the
(PO) by studying the simpler (AO).

B.3.2 Proximal operators and Moreau envelopes : differentials and useful functions

Here we remind the definition and some important properties of Moreau envelopes and proximal
operators, key elements of convex analysis. Other properties will be used throughout the proof but at
less crucial stages, thus we don’t remind them explicitly. Our main reference for these properties will
be [68].
Consider a closed, proper function f such that dom(f)⊂ Rn. Its Moreau envelope and proximal
operator are respectively defined by :

Mτf (x) = min
z∈dom(f)

{f(z) +
1

2τ
‖x− z‖22}, proxτf (x) = arg min

z∈dom(f)

{f(z) +
1

2τ
‖x− z‖22}

(99)

As reminded in [27], the Moreau envelope is jointly convex in (τ,x) and differentiable almost
everywhere, with gradients:

∇xMτf (x) =
1

τ
(x− proxτf (x)) (100)

∂

∂τ
Mτf (x) = − 1

2τ2

∥∥x− proxτf (x)
∥∥2

2
(101)

We remind that proxτf (x) is the unique point which solves the strongly convex optimization problem
defining the Moreau envelope, i.e.:

Mτf (x) = f(proxτf (x)) +
1

2τ

∥∥x− proxτf (x)
∥∥2

2
(102)

We also remind the definition of order k pseudo-Lipschitz function.

Definition 2. Pseudo-Lipschitz function For k ∈ N∗ and any n,m ∈ N∗, a function φ : Rn → Rm
is called a pseudo-Lipschitz of order k if there exists a constant L(k) such that for any x,y ∈ Rn,

‖φ(x)− φ(y)‖2 6 L(k)
(

1 + (‖x‖2)
k−1

+ (‖y‖2)
k−1
)
‖x− y‖2 (103)

We now give some further properties that will be helpful throughout the proof.

Lemma 2. (Moreau envelope of pseudo-Lipschitz function) Consider a proper, lower-semicontinuous,
convex, pseudo-Lipschitz function f : Rn → R of order k. Then its Moreau envelope is also pseudo-
Lipschitz of order k.
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Proof of Lemma 2: For any x,y in dom(f), we have, using the pseudo-Lipschitz property:∣∣f(proxτf (x))− f(proxτf (y))
∣∣ 6 L(k)

(
1 +

(∥∥proxτf (x)
∥∥

2

)k−1

+
(∥∥proxτf (y)

∥∥
2

)k−1
)

∥∥proxτf (x)− proxτf (y)
∥∥

2

6 L(k)
(

1 + (‖x‖2)
k−1

+ (‖y‖2)
k−1
)
‖x− y‖2 (104)

where the second line follows immediately with the same constant L(k) owing to the firm-
nonexpansiveness of the proximal operator. Furthermore∥∥x− proxτf (x)

∥∥2

2
−
∥∥y − proxτf (y)

∥∥2

2
=

τ
∣∣∂f(proxτf (x)) + ∂f(proxτf (y))

∣∣∣∣(x− proxτf (x)− y + proxτf (y)
)∣∣

6 τ
∥∥∂f(proxτf (x)) + ∂f(proxτf (y))

∥∥
2

∥∥(x− proxτf (x)− y + proxτf (y)
)∥∥

2
(105)

due to the pseudo-Lipschitz property, one has

∂f(proxτf (x)) 6 L(k)
(

1 + 2
∥∥proxτf (x)

∥∥k−1

2

)
(106)

This, along with the firm-nonexpansiveness of Id− prox, concludes the proof.

Lemma 3. (Useful functions) For any x ∈ Rn, τ > 0, θ ∈ R and any proper, convex lower
semi-continuous function f , define the following functions:

h1 : R→ R
θ 7→ xT proxτf(.)(θx) (107)

h2 : R→ R

τ 7→ 1

2τ2

∥∥∥x− proxτf(.)(x)
∥∥∥2

2
(108)

h3 : R→ R

τ 7→
∥∥∥prox f

τ (.)(
x

τ
)
∥∥∥2

2
(109)

h4 : R→ R

τ 7→
∥∥x− proxτf (x)

∥∥2

2
(110)

h1 is nondecreasing, and h2, h3, h4 are nonincreasing.

Proof of Lemma 3: For any θ, θ̃ ∈ R:

(θ − θ̃)(h1(θ)− h1(θ̃)) = (θx− θ̃x)>
(

proxτf(.)(θx)− proxτf(.)(θ̃x)
)

>
∥∥∥proxτf(.)(θx)− proxτf(.)(θ̃x)

∥∥∥2

2

> 0 (111)

where the inequality comes from the firm non-expansiveness of the proximal operator. Thus h1 is
nondecreasing.
Since the Moreau envelopeMτf (x) is convex in τ , we have, for any τ, τ̃ in R++

(τ − τ̃)

(
∂

∂τ
Mτf (x)− ∂

∂τ̃
Mτ̃f (x)

)
> 0, ⇐⇒ (τ − τ̃) (h2(τ̃)− h2(τ)) > 0 (112)

which implies that h2 is non-increasing.
Using the Moreau decomposition, see e.g. [68], we have:

h2(τ) =
1

2τ2

∥∥∥x− (x− τprox f∗
τ

(x

τ

))∥∥∥2

2
=
∥∥∥prox f∗

τ

(x

τ

)∥∥∥2

2
(113)
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which is a nonincreasing function of τ . Since f is convex, we can restart this short process with the
conjugate of f to obtain the desired result. Thus h3 is nonincreasing and (τ− τ̃)(h3(τ)−h3(τ̃)) 6 0.
Moving to h4, proving that it is nonincreasing is equivalent to proving that the following function is
increasing

h5(τ) = proxτf (x)>
(
2x− proxτf (x)

)
(114)

using the Moreau decomposition again

h5(τ) =
(
x− τprox f∗

τ

(x

τ

))> (
x + τprox f∗

τ

(x

τ

))
(115)

then, for any τ, τ̃ in R++:

(τ − τ̃)(h5(τ)− h5(τ̃)) = (τ − τ̃)

(
τ̃2
∥∥∥prox f∗

τ̃

(x

τ̃

)∥∥∥2

2
− τ2

∥∥∥prox f∗
τ

(x

τ

)∥∥∥2

2

)
(116)

separating the cases τ 6 τ̃ and τ > τ̃ , and using the result on h3 then gives the desired result.
The following inequality is similar to one that appeared in one-dimensional form in [27].
Lemma 4. (A useful inequality) For any proper, lower semi-continuous convex function f , any x, x̃
in dom(f), and any γ, γ̃ ∈ R++, the following holds:(

proxγ̃f (x̃)− proxγf (x)
)>( x̃

γ̃
− x

γ
− 1

2

(
1

γ̃
− 1

γ

)(
proxγ̃f (x̃) + proxγf (x)

))
>

(
1

2γ̃
+

1

2γ

)∥∥(proxγ̃f (x̃)− proxγf (x)
)∥∥2

2
(117)

Proof of Lemma 4 : the subdifferential of a proper convex function is a monotone operator, thus:(
proxγ̃f (x̃)− proxγf (x)

)> (
∂f(proxγ̃f (x̃))− ∂f(proxγf (x))

)
> 0 (118)

additionally, proxγf (x) = (Id + γ∂f)
−1

(x), hence:

∂f(proxγ̃f (x̃))− ∂f(proxγf (x)) =

(
x̃

γ̃
− x

γ
− 1

γ̃
proxγ̃(x̃) +

1

γ
proxγf (x)

)
=

x̃

γ̃
− x

γ
− 1

γ̃
proxγ̃(x̃) +

1

γ
proxγf (x)− 1

2

(
1

γ̃
− 1

γ

)(
proxγ̃f (x̃) + proxγf (x)

)
+

1

2

(
1

γ̃
− 1

γ

)(
proxγ̃f (x̃) + proxγf (x)

)
=

(
x̃

γ̃
− x

γ
− 1

2

(
1

γ̃
− 1

γ

)(
proxγ̃f (x̃) + proxγf (x)

))
−
(

1

2γ̃
+

1

2γ

)(
proxγ̃f (x̃)− proxγf (x)

)
(119)

which gives the desired inequality.

B.3.3 Useful concentration of measure elements

We begin by reminding the Gaussian-Poincaré inequality, see e.g. [69].
Proposition 1. (Gaussian Poincaré inequality)
Let g ∈ Rn be a N (0, In) random vector. Then for any continuous, weakly differentiable ϕ, there
exists a constant c such that:

Var[ϕ(g)] 6 c E
[
‖∇ϕ(g)‖22

]
(120)

We now use this previous result to show Gaussian concentration of Moreau envelopes of appropriately
scaled convex functions.
Lemma 5. (Gaussian concentration of Moreau envelopes)
Consider a proper, convex function f : Rn → R verifying the scaling conditions of Assumptions B.1

and let g ∈ Rn be a standard normal random vector. Then, for any parameter τ > 0 and any ε > 0,
there exists a constant c such that the following holds:

P
(∣∣∣∣ 1nMτf(.)(g)− E

[
1

n
Mτf(.)(g)

]∣∣∣∣ > ε

)
6

c

nτ2ε2
(121)
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Proof of Lemma 5:

We start by showing that the Moreau envelope of a proper, convex function f : Rn → R
verifying the scaling conditions of Assumptions B.1 is integrable with respect to the Gaussian
measure. Using the convexity of the optimization problem defining the Moreau envelope, and the
fact that f is proper, there exists z0 ∈ Rn and a finite constant K such that :

1

n
Mτf(.)(g) 6

1

n
f(z0) +

1

2nτ
‖z0 − g‖22

6 K +
1

2nτ
‖z0 − g‖22 (122)

where the second line is integrable under a multivariate Gaussian measure. Then, using Proposition 1,
we get:

Var
[

1

n
Mτf(.)(g)

]
6

c

n2
E
[∥∥∇zMτf(.)(g)

∥∥2

2

]
(123)

=
c

n2
E

[∥∥∥∥1

τ

(
z− proxτf (g)

)∥∥∥∥2

2

]
(124)

Using Proposition 12.27 and Corollary 4.3 from [68], g→ z− proxτf (g) is firmly non-expansive
and: ∥∥g − proxτf (g)

∥∥2

2
6 〈g|g − proxτf (g)〉 which implies (125)∥∥g − proxτf (g)

∥∥2

2
6 ‖g‖22 using the Cauchy-Schwarz inequality (126)

then

Var
[

1

n
Mτf(.)(g)

]
6

c

n2τ2
E
[
‖g‖22

]
=

c

nτ2
(127)

Chebyshev’s inequality then gives, for any ε > 0:

P
(∣∣∣∣ 1nMτf(.)(g)− E

[
1

n
Mτf(.)(g)

]∣∣∣∣ > ε

)
6

c

nτ2ε2
(128)

Gaussian concentration of pseudo-Lipschitz functions of finite order can also be proven using the
Gaussian Poincaré inequality to yield a bound similar to the one obtained for Moreau envelopes. We
thus give the result without proof:

Lemma 6. (Concentration of pseudo-Lipschitz functions) Consider a pseudo-Lipschitz function of
finite order k, f : Rn → R. Then for any vector g ∼ N (0, In) and any ε > 0, there exists a constant
C(k) > 0 such that

P
(∣∣∣∣f(

g√
n

)− E
[
f(

g√
n

)

]∣∣∣∣ > ε

)
6
L2(k)C(k)

nε2
(129)

We now cite an exponential concentration lemma for separable, pseudo-Lipschitz functions of order
2, taken from [70].

Lemma 7. (Lemma B.5 from [70]) Consider a separable, pseudo-Lipschitz function of order 2,
f : Rn → R. Then for any vector g ∼ N (0, In) and any ε > 0, there exists constants C, c, c′ > 0
such that

P
(∣∣∣∣ 1nf(g)− E

[
1

n
f(g)

]∣∣∣∣ > c′ε

)
6 Ce−cnε

2

(130)

where it is understood that f(g) =
∑n
i=1 f(gi).
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B.4 Determining a candidate primary problem, auxiliary problem and its solution.

We start with a reformulation of the problem (2-3) in order to obtain an acceptable primary problem
in the framework of Theorem 6. Partitioning the Gaussian distribution, we can rewrite the matrices U
and V in the following way, introducing the standard normal vector:[

a
b

]
∈ Rp+d ∼ N (0, Ip+d) (131)

We can then rewrite the vectors u,v and matrices U,V as:

u = Ψ1/2a, U = AΨ1/2 (132)

v = Φ>Ψ−1/2a +
(
Ω− Φ>Ψ−1Φ

)1/2
b, V = AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
(133)

where the matrices A and B have independent standard normal entries and are independent of θ0.
The learning problem then becomes equivalent to :

Generate labels according to : y = f0

(
1
√
p
AΨ1/2θ0

)
(134)

Learn according to : arg min
w

g

(
1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w,y

)
+ r(w)

(135)

We are then interested in the optimal cost of the following problem

min
w

1

d

[
g

(
1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w,y

)
+ r(w)

]
(136)

Introducing the auxiliary variable z:

min
w

g

(
1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w,y

)
+ r(w) (137)

⇐⇒ min
w,z

g (z,y) + r(w)

s.t. z =
1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w (138)

Introducing the corresponding Lagrange multiplier λ ∈ Rn and using strong duality, the problem is
equivalent to :

min
w,z

max
λ
λ>

1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w − λ>z + g(z,y) + r(w) (139)

In the remainder of the proof, the preceding cost function will be denoted

C(w, z) = max
λ
λ>

1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w−λ>z + g(z,y) + r(w) (140)

such that the problem reads minw,z C(w, z). Theorem 6 requires working with compact feasib-
ility sets. Adopting similar approaches to the ones from [27, 35], the next lemma shows that the
optimization problem (139) can be equivalently recast as one over compact sets.
Lemma 8. (Compactness of feasibility set) Let w∗, z∗,λ∗ be optimal in (139). Then there exists
positive constants Cw, Cz and Cλ such that

P
(
‖w∗‖2 6 Cw

√
d
)

P−−−→
d→∞

1, P
(
‖z∗‖2 6 Cz

√
n
) P−−−−→
n→∞

1, P
(
‖λ∗‖2 6 Cλ

√
n
) P−−−−→
n→∞

1

(141)

Proof of Lemma 8: consider the initial minimisation problem:

ŵ = arg min
w∈Rd

g

(
1√
d
Vw,y

)
+ r(w) (142)
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From assumption (A3), the cost function g+r is coercive, proper and lower semi-continuous. Since it
is proper, there exists w0 ∈ Rd such that g

(
1√
d
Vw,y

)
+r(w) ∈ R. The coercivity implies that there

exists η ∈]0,+∞[ such that, for every w ∈ Rd satisfying ‖w −w0‖ > η, g
(

1√
d
Vw,y

)
+ r(w) >

g
(

1√
d
Vw0,y

)
+ r(w0). Let S = {w ∈ Rd|‖w −w0‖ 6 η}. Then S ∩ Rd 6= ∅ and S is compact.

Then, there exists w∗ ∈ S such that g
(

1√
d
Vw∗,y

)
+ r(w∗) = infw∈S g

(
1√
d
Vw,y

)
+ r(w) 6

g
(

1√
d
Vw0,y

)
+ f(w0). Thus g

(
1√
d
Vw∗,y

)
+ r(w∗) ∈ infw∈Rd g

(
1√
d
Vw,y

)
+ r(w) and

the set of minimisers is bounded. Closure is immediately checked by considering a sequence of
minimisers converging to w∗.
We conclude that the set of minimisers of problem (142) is a non-empy compact set. Then there
exists a constant Cw independent of the dimension d, such that:

‖w‖2 6 Cw

√
d (143)

Now consider the equivalent formulation of problem (142):

min
w,z

max
λ
λ>

1√
d
Vw − λ>z + g(z,y) + r(w) (144)

Its optimality condition reads :

∇λ :
1√
d
Vw = z, ∇z : λ ∈ ∂g(z,y), ∇w :

1√
d
V>λ ∈ ∂r(w) (145)

The optimality condition in λ gives:

‖z‖2 6

∥∥∥∥ 1√
d
V
∥∥∥∥
op

‖w‖2

6

∥∥∥∥ 1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)∥∥∥∥
op

‖w‖2

6

[∥∥∥Ψ−1/2Φ
∥∥∥
op

∥∥∥∥ 1√
d
A

∥∥∥∥
op

+
∥∥∥(Ω− Φ>Ψ−1Φ

)1/2∥∥∥
op

∥∥∥∥ 1√
d
B

∥∥∥∥
op

]
‖w‖2 (146)

According to assumption (A2), the operator norms of the matrices involving the covariance matrices
are bounded with high probability and using known results on random matrices, see e.g. [71], the
operator norms of 1√

d
A and 1√

d
B are bounded by finite constants with high probability when the

dimensions go to infinity. Thus there exists a constant Cz also independent of d such that:

P
(
‖z‖2 6 CZ

√
n
) P−−−−→
n→∞

1 (147)

Finally, the scaling condition from assumption (A3) directly shows that there exists a constant Cλ
such that

P
(
‖λ‖2 6 Cλ

√
n
) P−−−−→
n→∞

1 (148)

This concludes the proof of Lemma 8.

Defining the sets Sw = {w ∈ Rd|‖w‖2 6 Cw

√
d},Sz = {z ∈ Rn|‖z‖2 6 Cz

√
n} and

Sλ = {λ ∈ Rn|‖λ‖2 6 Cλ
√
n}, the optimization problem can now be reduced to:

min
w∈Sw,z∈Sz

max
λ∈Sλ

λ>
1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w − λ>z + g(z,y) + r(w)

(149)

The rest of this section can then be summarized by the following lemma, the proof of which shows
how to find an acceptable (PO) for problem (149), the corresponding (AO) and how to reduce the (AO)
to a scalar optimization problem. At this point we will assume the teacher vector θ0 is deterministic,
and relax this assumption in paragraph B.7. For this reason we do not add it to the initial list of
assumptions in section B.1.
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Lemma 9. (Scalar equivalent problem) In the framework of Theorem 6, acceptable (AO)s of problem
(149) can be reduced to the following scalar optimization problems

For θ0 /∈ Ker(Φ>) : max
κ,ν,τ2

min
m,η,τ1

En(τ1, τ2, κ, η, ν,m) (150)

For θ0 ∈ Ker(Φ>) : max
κ,τ2

min
η,τ1
E0
n(τ1, τ2, κ, η) (151)

where

En(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ

− η

2τ2d
(νv + κΩ1/2g)>Ω−1(νv + κΩ1/2g)− κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

v

+
1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
M η

τ2
r(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
, (152)

E0
n(τ1, τ2, κ, ν) = −ητ2

2
+
κτ1
2

+
1

d
M τ1

κ g(.,y)(ηh) +
1

d
M η

τ2
f(Ω−1/2.)(

η

τ2
κg)− η

2τ2d
κ2g>g

(153)

and

Σ = Ω− ṽṽT

ρp
ṽ = ΦTθ0 ρ =

1

p
θ>0 Ψθ0 (154)

Proof of Lemma 9: We need to find an i.i.d. Gaussian matrix independent from the rest of the
problem in order to use Theorem 6. We thus decompose the mixing matrix A by taking conditional
expectations w.r.t. y, which amounts to conditioning on a linear subset of the Gaussian space
generated by A. Dropping the feasibility sets for confort of notation in the following lines:

min
w,z

max
λ
λ>

1√
d

(
(E [A|y] +A− E [A|y]) Ψ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w

− λ>z + g(z,y) + r(w) (155)

⇐⇒ min
w,z

max
λ
λ>

1√
d

((
E
[
A|AΨ1/2θ0

]
+A− E

[
A|AΨ1/2θ0

])
Ψ−1/2Φ

+B
(
Ω− Φ>Ψ−1Φ

)1/2)
w − λ>z + g(z,y) + r(w) (156)

Conditioning in Gaussian spaces amounts to doing orthogonal projections. Denoting θ̃0 = Ψ1/2θ0

and Ã a copy of A independent of y, the minimisation problem then becomes:

min
w,z

max
λ
λ>

1√
d

((
APθ̃0 + ÃP⊥

θ̃0

)
Ψ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w − λ>z + g(z,y) + r(w)

(157)

⇐⇒ min
w,z

max
λ
λ>

1√
d
APθ̃0Ψ−1/2Φw + λ>

1√
d
ÃP⊥

θ̃0
Ψ−1/2Φw + λ>

1√
d
B
(
Ω− Φ>Ψ−1Φ

)1/2
w

− λ>z + g(z,y) + r(w) (158)

⇐⇒ min
w,z

max
λ
λ>

1√
d

s
θ̃>0∥∥∥θ̃0

∥∥∥
2

Ψ−1/2Φw + λ>
1√
d
ÃP⊥

θ̃0
Ψ−1/2Φw + λ>

1√
d
B
(
Ω− Φ>Ψ−1Φ

)1/2
w

− λ>z + g(z,y) + r(w) (159)

where we used Pθ̃0 =
θ̃0θ̃
>
0

‖θ̃0‖2
2

and s = A θ̃0
‖θ̃0‖

2

. Knowing that Ã, B are independent standard

Gaussian matrices, and independent from A,y, f0, we can rewrite the problem as :

min
w,z

max
λ
λ>

1√
d

s
θ>0∥∥Ψ1/2θ0

∥∥Φw + λ>
1√
d
ZΣ1/2w − λ>z + g(z,y) + r(w) (160)
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where Σ = Φ>Ψ−1/2P⊥
θ̃0

Ψ−1/2Φ+Ω−Φ>Ψ−1Φ = Ω−Φ>Ψ−1/2Pθ̃0
Ψ−1/2Φ, andZ is a standard

Gaussian matrix independent of A,y, f0. Recall ρ = 1
pθ
>
0 Ψθ0 from the main text. Replacing with

the expression of θ̃0 and letting ṽ = Φ>θ0, we have

Σ = Ω− φ>Ψ−1/2θ̃0θ̃0
>

Ψ−1/2Φ
1∥∥∥θ̃0

∥∥∥2

2

= Ω− φ>θ0θ
>
0 Φ

θ>0 Ψθ0
(161)

= Ω− ṽṽ>

pρ
(162)

The problem then becomes

min
w,z

max
λ
λ>

1√
dp

s
ṽ>
√
ρ
w + λ>

1√
d
ZΣ1/2w − λ>z + g(z,y) + r(w) (163)

Two cases must now be considered, θ0 /∈ Ker(φ>) and θ0 ∈ Ker(φ>). Another possible case is
Φ = 0p×d, however it leads to the same steps as the case θ0 ∈ Ker(Φ>).

Case 1: θ0 /∈ Ker(Φ>)

It is tempting to invert the matrix Σ1/2 to make the change of variable w⊥ = Σ1/2w and
continue the calculation. However there is no guarantee that Σ is invertible : it is only semi-positive
definite. Taking identities everywhere gives for examples P⊥

θ̃0
which is non-invertible. We thus

introduce an additional variable:

min
w,z,p

max
λ,µ

λ>
1√
dp

s
ṽ>
√
ρ
w + λ>

1√
d
Zp− λ>z + g(z,y) + r(w) + µ>

(
Σ1/2w − p

)
(164)

Here the minimisation on f and g is linked by the bilinear form λ>sṽ>w. We wish to separate them
in order for the Moreau envelopes to appear later on in simple fashion. To do so, we introduce the
orthogonal decomposition of w on the direction of ṽ:

w =
(
Pṽ + P⊥ṽ

)
w =

ṽ>w

‖ṽ‖22
ṽ + P⊥ṽ w

=
ṽ>w

‖ṽ‖22
ṽ + w⊥ where w⊥ ⊥ ṽ

=
m
√
dp

‖ṽ‖22
ṽ + w⊥ where m = 1√

dp
ṽ>w (165)

where the parameter m corresponds to the one defined in (83). This gives the following, after
introducing the scalar Lagrange multiplier ν ∈ R to enforce the constraint w⊥ ⊥ ṽ. Note that several
methods can be used to express the orthogonality constraint, as in e.g. [35], but the one chosen here
allows to complete the proof and match the replica prediction. Reintroducing the normalization, we
then have the equivalent form for (136):

min
m,w⊥,z,p

max
λ,µ,ν

1

d

[
λ>

m
√
ρ
s + λ>

1√
d
Zm− λ>z + g(z,y) + r

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)

+ µ>

(
Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− p

)
− νṽ>w⊥

]
(166)

A follow-up of the previous equations shows that the feasibility set now reads :

Sm,w⊥,z,p,λ,µ,ν =

{
m ∈ R,w⊥ ∈ Rd−1, z ∈ Rn,p ∈ Rd,λ ∈ Rn,µ ∈ Rd, ν ∈ R |√
m2 +

‖w⊥‖22
d

6 Cw, ‖z‖2 6 Cz

√
n, ‖p‖2 6 σmax(Σ1/2)Cw

√
d, ‖λ‖2 6 Cλ

√
n

}
(167)
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where the boundedness of ‖p‖2 follows immediately from the assumptions on the covariance matrices
and Lemma 8. We denote Sp = {p ∈ Rd|‖p‖2 6 Cp} for some constant Cp > σmax(Σ1/2)Cw.

The set Sp × Sλ is compact and the matrix Z is independent of all other random quantities
of the problem, thus problem (166) is an acceptable (PO). We can now write the auxiliary
optimization problem (AO) corresponding to the primary one (166), dropping the feasibility sets
again for convenience:

min
m,w⊥,z,p

max
λ,µ,ν

1

d

[
λ>

m
√
ρ
s +

1√
d
‖λ‖2g

>p +
1√
d
‖p‖2h

>λ− λ>z + g(z,y) + r

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)

+ µ>

(
Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− p

)
− νṽ>w⊥

]
(168)

We now turn to the simplification of this problem.

The variable λ only appears in linear terms, we can thus directly optimize over its direc-
tion, introducing the positive scalar variable κ = ‖λ‖2/

√
d:

min
m,w⊥,z,p

max
κ,µ,ν

1

d

[
κg>p + κ

∥∥∥∥ m√ρ√ds + ‖p‖2h−
√
dz

∥∥∥∥
2

+ g(z,y) + r

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)

+ µ>

(
Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− p

)
− νṽ>w⊥

]
(169)

The previous expression may not be convex-concave because of the term ‖p‖2h. However, it was
shown in [27] that the order of the min and max can still be inverted in this case, because of the
convexity of the original problem. As the proof would be very similar, we do not reproduce it.
Inverting the max-min order and performing the linear optimization on p with η = ‖p‖2/

√
d:

max
κ,µ,ν

min
m,w⊥,z,η

{
− η√

d
‖µ+ κg‖2 +

κ√
d

∥∥∥∥ m√ρs + ηh− z

∥∥∥∥
2

+

+
1

d

[
g(z,y) + r

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− νṽ>w⊥

]}
(170)

using the following representation of the norm, as in [27], for any vector t, ‖t‖2 = minτ>0
τ
2 +

‖t‖22
2τ :

max
κ,µ,ν,τ2

min
m,w⊥,z,η,τ1

{
κτ1
2
− ητ2

2
− η

2τ2d
‖µ+ κg‖22 +

κ

2τ1d

∥∥∥∥ m√ρs + ηh− z

∥∥∥∥2

2

+
1

d

[
g(z,y) + r

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− νṽ>w⊥

]}
(171)

performing the minimisation over z and recognizing the Moreau envelope of g(.,y):

max
κ,µ,ν,τ2

min
m,w⊥,η,τ1

{
κτ1
2
− ητ2

2
+

1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + βh

)
− η

2τ2d
‖µ+ κg‖22

+
1

d

[
r

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− νṽ>w⊥

]}
(172)

At this point we have a convex-concave problem. Inverting the min-max order, µ appears in a well
defined strictly convex least-square problem.

max
κ,ν,τ2

min
m,w⊥,η,τ1

κτ1
2
− ητ2

2
+

1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
− ν

d
ṽ>w⊥ +

1

d
r

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)

+
1

d
max
µ

{
− η

2τ2
‖µ+ κg‖22 + µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)}
(173)
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Solving it:

max
µ

{
− η

2τ2
‖µ+ κg‖22 + µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)}

µ∗ =
τ2
η

Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− κg

with optimal cost
τ2
2η

∥∥∥∥∥Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2

− κg>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
(174)

remembering that Σ = Ω− ṽṽ>/(pρ) and w⊥ ⊥ ṽ, the optimal cost of this least-square problem
simplifies to:

c∗ =
τ2
2η

∥∥∥∥∥Ω1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2

− m2

ρ
d

− κg>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
(175)

The (AO) then reads :

max
κ,ν,τ2

min
m,w⊥,η,τ1

{
κτ1
2
− ητ2

2
+

1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
− τ2

2η

m2

ρ
− ν

d
ṽ>w⊥

+
1

d
r

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+

τ2
2ηd

∥∥∥∥∥Ω1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2

− κ

d
g>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)}
(176)

We now need to solve in w⊥. To do so, we can replace r with its convex conjugate and solve the
least-square problem in w⊥. This will lead to a Moreau envelope of r∗ in the introduced dual variable,
which can be linked to the Moreau envelope of r by Moreau decomposition. Intuitively, it is natural
to think that the corresponding primal variable will be m

√
dp

‖ṽ‖22
ṽ + w⊥ = w for any feasible m,w⊥.

However, we would like to have an explicit follow-up of the variables we optimize on, as we had
for the Moreau envelpe of g which is defined with z, so we prefer to introduce a slack variable
w′ = m

√
dp

‖ṽ‖22
ṽ + w⊥ with corresponding dual parameter η to show that the (AO) can be reformulated

in terms of the original variable w. Note that the feasibility set on w′ is almost surely compact.

max
κ,ν,τ2,η

min
m,w⊥,w′,η,τ1

κτ1
2
− ητ2

2
+

1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
r(w′)− 1

d
ηTw′ − τ2

2η

m2

ρ

− ν

d
ṽ>w⊥ +

τ2
2ηd

∥∥∥∥∥Ω1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2

− κ

d
g>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+

1

d
η>

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
(177)

Isolating the terms depending on w⊥, we get a strictly convex least-square problem, remembering
that Ω ∈ S++

d :

max
κ,ν,τ2,η

min
m,w⊥,w′,η,τ1

κτ1
2
− ητ2

2
+

1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
r(w′)− 1

d
ηTw′ − τ2

2η

m2

ρ
+ η>

m
√
κ2

‖ṽ‖22
ṽ

− κg>Σ1/2m
√
γ

‖ṽ‖22
ṽ − ν

d
ṽ>w⊥ +

τ2
2ηd

∥∥∥∥∥Ω1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2

− κ

d
g>Σ1/2w⊥ +

1

d
η>w⊥

(178)

max
κ,ν,τ2,η

min
m,w′,η,τ1

κτ1
2
− ητ2

2
+

1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
r(w′)− 1

d
ηTw′ − τ2

2η

m2

ρ
+ η>

m
√
κ2

‖ṽ‖22
ṽ

− κg>Σ1/2m
√
γ

‖ṽ‖22
ṽ +

1

d

[
min
w⊥

τ2
2η

∥∥∥∥∥Ω1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2

−w>⊥

(
κΣ1/2g − η + νṽ

)]
(179)
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The quantity g>Σ1/2w⊥ is a Gaussian random variable with variance
∥∥Σ1/2w⊥

∥∥2

2
= w>⊥(Ω −

ṽṽ>/(pρ))w⊥ = w⊥Ωw⊥ =
∥∥Ω1/2w⊥

∥∥2

2
using the expression of Σ and the orthogonality of

w⊥ with respect to ṽ. We can thus change Σ1/2 for Ω1/2 in front of w⊥ combined with g. The
least-square problem, its solution and optimal cost then read:

min
w⊥

τ2
2η

∥∥∥∥∥Ω1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2

−w>⊥

(
κΩ1/2g − η + νṽ

)
(180)

w∗⊥ =
η

τ2
Ω−1

(
κΩ1/2g − η + νv

)
− m
√
dp

‖ṽ‖22
ṽ (181)

with optimal cost − η

2τ2

(
κΩ1/2g − η + νṽ

)>
Ω−1

(
κΩ1/2g − η + νṽ

)
+
m
√
dp

‖ṽ‖22
ṽ>
(
κΩ1/2g − η + νṽ

)
(182)

replacing in the (AO) and simplifying :

⇐⇒ max
κ,ν,τ2,η

min
m,w′,η,τ1

κτ1
2
− ητ2

2
+

1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
r(w′)− 1

d
ηTw′ − τ2

2η

m2

ρ

− κg>
(

Σ1/2 − Ω1/2
) m√γ
‖ṽ‖22

ṽ − η

2τ2d

(
κΩ1/2g − η + νṽ

)>
Ω−1

(
κΩ1/2g − η + νṽ

)
+mν

√
γ

(183)

Another strictly convex least-square problem appears on η, the solution and optimal value of which
read

η∗ = −τ2
η

Ωw′ + (κΩ1/2g + νṽ) (184)

with optimal cost
τ2

2ηd
w′>Ωw′ −w′>(κΩ1/2g + νṽ) (185)

At this point we have expressed feasible solutions of η,w⊥ as functions of the remaining variables.
For any feasible solution in those variables, w and w′ are the same. Replacing in the (AO) and a
completion of squares leads to

max
κ,ν,τ2

min
m,η,τ1

κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
− η

2τ2d
(νṽ + κΩ1/2g)>Ω−1(νṽ + κΩ1/2g)

− κg>
(

Σ1/2 − Ω1/2
) m√γ
‖ṽ‖22

ṽ + min
w′

{
r(w′) +

τ2
2η

∥∥∥∥Ω1/2w′ − η

τ2
(νΩ−1/2ṽ + κg))

∥∥∥∥2

2

}
(186)

Recognizing the Moreau envelope of f and introducing the variable w̃ = Ω1/2w′ = Ω1/2w, it
follows:

max
κ,ν,τ2

min
m,η,τ1

κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
− η

2τ2d
(νṽ + κΩ1/2g)>Ω−1(νṽ + κΩ1/2g)

− κg>
(

Σ1/2 − Ω1/2
) m√γ
‖ṽ‖22

ṽ +
1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
M η

τ2
r(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
(187)

where the Moreau envelopes of f and g are respectively defined w.r.t. the variables w′′ and z. At this
point we have reduced the initial high-dimensional minimisation problem (168) to a scalar problem
over six parameters. Another follow-up of the feasibility set shows that there exist positive constants
Cm, Cκ, Cη independent of n, p, d such that 0 6 κ 6 Cκ, 0 6 η 6 Cη and 0 6 m 6 Cm.

Case 2: θ0 ∈ Ker(Φ>) In this case, the min-max problem (163) becomes:

min
w,z

max
λ
λ>

1√
d
ZΩ1/2w − λ>z + g(z,y) + f(w) (188)
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Since Ω is positive definite, we can define w̃ = Ω1/2w and write the equivalent problem:

min
w̃,z

max
λ
λ>

1√
d
Zw̃ − λ>z + g(z,y) + f(Ω−1/2w̃) (189)

where the compactness of the feasibility set is preserved almost surely from the almost sure bounded-
ness of the eigenvalues of Ω. We can thus write the corresponding auxiliary optimization problem,
reintroducing the normalization by d:

min
w̃,z

max
λ

1

d

[
‖λ‖2

1√
d

g>w̃ + ‖w̃‖2
1√
d

h>λ− λ>z + g(z,y) + f(Ω−1/2w̃)

]
(190)

introducing the convex conjugate of f with dual parameter η:

min
w̃,z

max
λ,η

1

d

[
‖λ‖2

1√
d

g>w̃ + ‖w⊥‖2
1√
d

h>λ− λ>z + g(z,y) + η>Ω−1/2w̃ − f∗(η)

]
(191)

We then define the scalar quantities κ =
‖λ‖2√
d

and η =
‖w̃‖2√
d

and perform the linear optimization on
λ, w̃, giving the equivalent:

min
z,η>0

max
η,κ>0

− η√
d

∥∥∥κg − Ω−1/2η
∥∥∥

2
+

κ√
d
‖ηh− z‖2 +

1

d
g(z,y)− 1

d
f∗(η) (192)

Using the square root trick with parameters τ1, τ2:

min
τ1>0,z,η>0

max
τ2>0,η,κ>0

−ητ2
2
− η

2τ2d

∥∥∥κg − Ω−1/2η
∥∥∥2

2
+
κτ1
2

+
κ

2τ1d
‖ηh− z‖22 +

1

d
g(z,y)− 1

d
f∗(η)

(193)

performing the optimizations on z,η and recognizing the Moreau envelopes, the problem becomes:

min
τ1>0,η>0

max
τ2>0,κ>0

−ητ2
2

+
κτ1
2

+
1

d
M τ1

κ g(.,y)(ηh)− 1

d
M τ2

η f
∗(Ω1/2.)(κg) (194)

⇐⇒ min
τ1>0,η>0

max
τ2>0,κ>0

−ητ2
2

+
κτ1
2

+
1

d
M τ1

κ g(.,y)(ηh) +
1

d
M η

τ2
f(Ω−1/2.)(

η

τ2
κg)− η

2τ2d
κ2g>g

(195)

This concludes the proof of Lemma 9.

B.5 Study of the scalar equivalent problem : geometry and asymptotics.

Here we study the geometry, solutions and asymptotics of the scalar optimization problem (187). We
will focus on the case θ0 /∈ Ker(Φ>) as the other case simply shows that no learning is performed
(see the remark at the end of this section). The following lemma characterizes the continuity and
geometry of the cost function En.
Lemma 10. (Geometry of En) Recall the function:

En(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
− η

2τ2d
(νṽ + κΩ1/2g)>Ω−1(νṽ + κΩ1/2g)

− κg>
(

Σ1/2 − Ω1/2
) m√γ
‖ṽ‖22

ṽ +
1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
M η

τ2
r(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
(196)

Then En(τ1, τ2, κ, η, ν,m) is continuous on its domain, jointly convex in (m, η, τ1) and jointly
concave in (κ, ν, τ2).

Proof of Lemma 10 : En(τ1, τ2, κ, η, ν,m) is a linear combination of linear and quadratic terms with
Moreau envelopes, which are all continuous on their domain. Remembering the formulation

En(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
− κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ

+
1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
− 1

d
M τ2

η f
∗(Ω1/2.)

(
Ω−1/2

(
νṽ + κΩ1/2g

))
(197)

39



and using the properties of Moreau envelopes, M τ1
κ g(.,y)

(
m√
ρs + ηh

)
is jointly convex in

(κ, τ1,m, η) as a composition of convex functions of those arguments. The same applies for
M τ2

η f
∗(Ω1/2.)

(
Ω−1/2

(
νṽ + κΩ1/2g

))
, jointly convex in (τ2, η, ν, κ), and its opposite is jointly

concave in those parameters. The remaining terms being linear in τ1, τ2, ν, we conclude that
En(τ1, τ2, κ, η, ν,m) is jointly concave in (ν, τ2) and convex in τ1 whatever the values of (κ, η,m).
Going back to equation (171), we can write

En(τ1, τ2, κ, η, ν,m) = max
µ

min
z,w⊥

κτ1
2
− ητ2

2
− η

2τ2d
‖µ+ κg‖22 +

κ

2τ1d

∥∥∥∥ m√ρs + ηh− z

∥∥∥∥2

2

+
1

d

[
g(z,y) + f

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− νṽ>w⊥

]
(198)

The squared term in m, η, z can be written as

κ

2τ1d

∥∥∥∥ m√ρs + ηh− z

∥∥∥∥2

2

= τ1
κ

2d

∥∥∥∥ m

τ1
√
ρ
s +

η

τ1
h− z

τ1

∥∥∥∥2

2

(199)

which is the perspective function with parameter τ1 of a function jointly convex in (z,m, η). Thus
it is jointly convex in (τ1, z,m, η). Furthermore, the term f

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
is a composition of

a convex function with a linear one, thus it is jointly convex in (m,w⊥). The remaining terms in
τ1, η,m are linear. Since minimisation on convex sets preserves convexity, minimizing with respect
to z,w⊥ will lead to a jointly convex function in (τ1, η,m). Similarly, the term − η

2τ2d
‖µ+ κg‖22

is jointly concave in τ2, κ,µ, and maximizing over µ will result in a jointly concave function in
(τ2, ν, κ). We conclude that En(τ1, τ2, κ, η, ν,m) is jointly convex in (τ1,m, η) and jointly concave
in (κ, ν, τ2).

The next lemma then characterizes the infinite dimensional limit of the scalar optimization
problem (187), along with the consistency of its optimal value.
Lemma 11. (Asymptotics of En) Recall the following quantities:

Lg(τ1, κ,m, η) =
1

n
E
[
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)]
where y = f0(

√
ρps), s ∼ N (0, In) (200)

Lr(τ2, η, ν, κ) =
1

d
E
[
M η

τ2
r(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]
where ṽ = Φ>θ0 (201)

χ =
1

d
θ>0 ΦΩ−1Φ>θ0 (202)

ρ =
1

p
θ>0 Ψθ0 (203)

and the potential:

E(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
− η

2τ2
(ν2χ+ κ2) + αLg(τ1, κ,m, η) + Lr(τ2, η, ν, κ)

(204)

Then:
max
κ,ν,τ2

min
m,η,τ1

En(τ1, τ2, κ, η, ν,m)
P−−−−−−→

n,p,d→∞
max
κ,ν,τ2

min
m,η,τ1

E(τ1, τ2, κ, η, ν,m) (205)

and E(τ1, τ2, κ, η, ν,m) is continuously differentiable on its domain, jointly convex in (m, η, τ1) and
jointly concave in (κ, ν, τ2).

Proof of Lemma 11: The strong law of large numbers, see e.g. [72] gives 1
dg>g

a.s.−−−→
d→∞

1. Addition-

ally, using assumption (A2) on the summability of θ0 and (A3) on the boundedness of the spectrum
of the covariance matrices, the quantity χ = limd→∞

1
dθ
>
0 ΦΩ−1Φ>θ0 exists and is finite. Since

θ0 /∈ Ker(Φ>) and using the non-vanishing signal hypothesis, the quantity ρṽ = limd→∞
1
d ṽ>ṽ
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exists, is finite and strictly positive. Then κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

v is a centered Gaussian random
variable with variance verifying:

Var

[
κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ

]
6 κ2σ2

max

(
Σ1/2 − Ω1/2

) m2γ

‖ṽ‖22

= κ2σ2
max

(
Σ1/2 − Ω1/2

) m2γ

dρṽ
(206)

Using lemma 8, κ and m are finitely bounded independently of the dimension d.
γ, σmax

(
Σ1/2 − Ω1/2

)
are finite. Thus there exists a finite constant C such that the standard

deviation of κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ is smaller than
√
C/
√
d. Then, for any ε > 0:

P

(∣∣∣∣∣κg>
(

Σ1/2 − Ω1/2
) m√γ
‖ṽ‖22

ṽ

∣∣∣∣∣ > ε

)
6 P

(
|N (0, 1)| > ε

√
d/
√
C
)

6

√
C

ε
√
d

1√
2π

exp

(
−1

2

ε2d

C

)
(207)

using the Gaussian tail. The Borel-Cantelli lemma and summability of this tail gives

κg>
(

Σ1/2 − Ω1/2
) m√γ
‖ṽ‖22

ṽ
a.s.−−−→
d→∞

0 (208)

Concentration of the Moreau envelopes of both f and g follows directly from lemma 5.
We thus have the pointwise convergence:

En(τ1, τ2, κ, η, ν,m)
P−−−−−−→

n,p,d→∞
E(τ1, τ2, κ, η, ν,m) (209)

Since pointwise convergence preserves convexity, E(τ1, τ2, κ, η, ν,m) is jointly convex in (m, η, τ1)
and jointly concave in (κ, ν, τ2).
Now recall the expression of E

E(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
− η

2τ2
(ν2χ+ κ2) + αLg(τ1, κ,m, η) + Lf (τ2, η, ν, κ)

(210)

The feasibility sets of κ, η,m are compact from Lemma 8 and the subsequent follow-up of the
feasibility sets. Then, using Proposition 12.32 from [68], for fixed (τ2, κ, η, ν,m), we have:

lim
τ1→+∞

1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
=

1

d
inf

z∈Rn
g(z,y) (211)

which is a finite quantity since g(.,y) is a proper, convex function verifying the scaling assumptions
B.1. Then, since κ > 0, we have:

lim
τ1→+∞

En(τ1, τ2, κ, η, ν,m) = +∞ (212)

Similarly, for fixed (τ1, κ, η, ν,m) and noting that composing f with the positive definite matrix
Ω−1/2 does not change its convexity, or it being proper and lower semi-continuous, we get:

lim
τ2→+∞

1

d
M η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
=

1

d
f(0d) (213)

which is also a bounded quantity from the scaling assumptions made on f . Since β > 0, we then
have:

lim
τ2→+∞

En(τ1, τ2, κ, η, ν,m) = −∞ (214)

Finally, the limit limν→+∞ En(τ1, τ2, κ, η, ν,m) needs to be checked for both +∞ and −∞ since
there is no restriction on the sign of ν. From the definition of the Moreau envelope, we can write:

1

d
M η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
6

1

d
f(0d) +

τ2
2η

∥∥∥∥ η

dτ2

(
νΩ−1/2ṽ + κg

)∥∥∥∥2

2

(215)
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Thus, for any fixed (τ1, τ2,m, κ, η):

En(τ1, τ2, κ, η, ν,m) 6
κτ1
2
− ητ2

2
+mν

√
γ − κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

v +
1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
f(0d)

(216)

which immediately gives limν→−∞ En = −∞. Turning to the other limit, remembering that En is
continuously differentiable on its domain, we have:

∂En
∂ν

(τ1, τ2, κ, η, ν,m) = m
√
γ − 1

d
ṽ>Ω−1/2prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
(217)

Thus limν→+∞
∂En(τ1,τ2,κ,η,ν,m)

∂ν → −∞. Since En is continuously differentiable in ν on [0,+∞[,
and from the short argument led above, we have shown

lim
|ν|→+∞

En(τ1, τ2, κ, η, ν,m) = −∞ (218)

Using similar arguments as in the proof of Lemma 8, we can now reduce the feasibility set of τ1, τ2, ν
to a compact one. Then, using the fact that convergence of convex functions on compact sets implies
uniform convergence [73], we obtain

max
κ,ν,τ2

min
m,η,τ1

En(τ1, τ2, κ, η, ν,m)
P−−−−−−−→

n,p,d→+∞
max
κ,ν,τ2

min
m,η,τ1

E(τ1, τ2, κ, η, ν,m) (219)

which is the desired result.

At this point, it is necessary to characterize the set of solutions of the asymptotic minimisa-
tion problem (90). We start with the explicit form of the optimality condition associated to any
solution.
Lemma 12. (Fixed point equations) The zero-gradient condition of the optimization problem (90)
prescribes the following set of fixed point equations for any feasible solution:

∂κ : τ1 =
1

d
E
[
g>prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]
(220)

∂ν : m
√
γ =

1

d
E
[
ṽ>Ω−1/2prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]
(221)

∂η : τ2 = α
κ

τ1
η − κα

τ1n
E
[
h>prox τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)]
(222)

∂τ2 :
1

2d

τ2
η
E

[∥∥∥∥ ητ2 (νΩ−1/2ṽ + κg)− prox η
τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))∥∥∥∥2

2

]
=

η

2τ2
(ν2χ+ κ2)−mν√γ − κτ1 +

ητ2
2

+
τ2
2η

m2

ρ
(223)

∂m : ν
√
γ = α

κ

nτ1
E
[
(
m

ηρ
h− s
√
ρ

)>prox τ1
κ g(.,y)

(
m
√
ρ
s + ηh

)]
(224)

∂τ1 :
τ2
1

2
=

1

2
α

1

n
E

[∥∥∥∥ m√ρs + ηh− prox τ1
κ g(.,y)

(
m
√
ρ
s + ηh

)∥∥∥∥2

2

]
(225)

This set of equations can be converted to the replica notations using the table (280).

Proof of Lemma 12: Using arguments similar to the ones in the proof of Lemma 5, Moreau
envelopes and their derivatives verify the necessary conditions of the dominated convergence theorem.
Additionally, uniform convergence of the sequence of derivatives can be verified in a straightforward
manner as all involved functions are firmly non-expansive and integrated w.r.t. Gaussian measures.
We can therefore invert the limits and derivatives, and invert expectations and derivatives. We can
now write explicitly the optimality condition for the scalar problem (204), using the expressions for
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derivatives of Moreau envelopes from Appendix B.3. Some algebra and replacing with prescriptions
obtained from each partial derivative leads to the set of equations above.

Remark : Here we see that the potential function (204) can be further studied using the
fixed point equations (12) and the relation (102). For any optimal (τ1, τ2, κ, η, ν,m), it holds that

E(τ1, τ2, κ, η, ν,m)

= α
1

n
E
[
g

(
prox τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
,y

)]
+

1

d
E
[
f

(
Ω−1/2prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

)))]
(226)

Finally, we give a strict-convexity and strict-concavity property of the asymptotic potential E which
will be helpful to prove Lemma 1.
Lemma 13. (Strict convexity and strict concavity near minimisers) Consider the asymptotic potential
function E(τ1, τ2, κ, η, ν,m). Then for any fixed (η,m, τ1) in their feasibility sets, the function

τ2, κ, ν → E(τ1, τ2, κ, η, ν,m) (227)

is jointly strictly concave in (τ2, κ, ν).
Additionally, consider the set S∂ν,τ2 defined by:

S∂ν,τ2 =

{
τ1, τ2, κ, η, ν,m | m

√
γ =

1

d
E
[
ṽTΩ−1/2prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]
,

1

2d

1

η
E

[∥∥∥∥prox η
τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))∥∥∥∥2

2

]
=
η

2
+

1

2η

m2

ρ

}
(228)

then for any fixed τ2, κ, ν in S∂ν,τ2 , the function (η,m, τ1)→ E(τ1, τ2, κ, η, ν,m) is jointly strictly
convex in (η,m, τ1) on S∂ν,τ2
Proof of Lemma 13: We will use the following first order characterization of strictly convex functions:
f is strictly convex ⇐⇒ 〈x− y|∇f(x)−∇f(y)〉 > 0 ∀x 6= y ∈ dom(f). To simplify notations,
we will write, for any fixed (m, η, τ1)

(∇κ,ν,τ2E) = ((∂κE , ∂νE , ∂τ2E) (τ1, τ2, κ, η, ν,m))i (229)

as the i-th component of the gradient of E(τ1, τ2, κ, η, ν,m) with respect to (κ, ν, τ2) for any fixed
(m, η, τ1) in the feasibility set. Then for any distinct triplets (κ, ν, τ2), (κ̃, ν̃, τ̃2) and fixed (η,m, τ1)
in the feasibility set, determining the partial derivatives of E in similar fashion as is implied in the
proof of Lemma 12, we have:

((κ, ν, τ2)− (κ̃, ν̃, τ̃2))
>

(∇Eκ,ν,τ2 −∇Eκ̃,ν̃,τ̃2)

= (κ− κ̃)α
1

2τ1

1

n

(
E
[∥∥∥r1 − prox τ1

κ g(.,y) (r1)
∥∥∥2

2
−
∥∥∥r1 − prox τ1

κ̃ g(.,y) (r1)
∥∥∥2

2

])
+

(
prox η

τ2
f(Ω−1/2.)

(
η

τ2
r2

)
− prox η

τ̃2
f(Ω−1/2.)

(
η

τ̃2
r̃2

))>(
r̃2 − r2

+
τ2 − τ̃2

2ηd

(
prox η

τ2
f(Ω−1/2.)

(
η

τ2
r2

)
+ prox η

τ̃2
f(Ω−1/2.)

(
η

τ̃2
r̃2

)))
6 (κ− κ̃)α

1

2τ1

1

n

(
E
[∥∥∥r1 − prox τ1

κ g(.,y) (r1)
∥∥∥2

2
−
∥∥∥r1 − prox τ1

κ̃ g(.,y) (r1)
∥∥∥2

2

])
+

(
(τ2 + τ̃2)

2ηd
E

[
−
∥∥∥∥prox η

τ2
f(Ω−1/2.)

(
η

τ2
r2

)
− prox η

τ̃2
f(Ω−1/2.)

(
η

τ̃2
r̃2

)∥∥∥∥2

2

])
(230)

where the last line follows from the inequality in Lemma 4, and we defined the shorthands,
r1 = m√

ρs + ηh, r2 = νΩ−1/2ṽ + κg, r̃2 = ν̃Ω−1/2v + κ̃g. Using Lemma 3, the first term of the
r.h.s of the last inequality is also negative as an increment of a nonincreasing function. Thus, both
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expectations are taken on negative functions. If those functions are not zero almost everywhere
with respect to the Lebesgue measure, then the result will be strictly negative. Moreover, the
functional taking each operator T to its resolvent (Id + T)−1 is a bijection on the set of non-trivial,
maximally monotone operators, see e.g. [68] Proposition 23.21 and the subsequent discussion. The
subdifferential of a proper, closed, convex function being maximally monotone, for two different
parameters the corresponding proximal operator cannot be equal almost everywhere. The previously
studied increment ((κ, ν, τ2)− (κ̃, ν̃, τ̃2))

>
(∇Eκ,ν,τ2 −∇Eκ̃,ν̃,τ̃2) is therefore strictly negative,

giving the desired strict concavity in (κ, ν, τ2). Restricting ourselves to the set S∂ν,τ2 , the increment
in (m, η, τ1) can be written similarly. Note that Id− prox will appear in the expressions instead of
prox. The appropriate terms can then be brought to the form of the inequality from Lemma 4 using
Moreau’s decomposition. Using the definitions of the set S∂ν,τ2 and the increments from Lemma 3, a
similar argument as the previous one can be carried out. The lemma is proved.

What is now left to do is link the properties of the scalar optimization problem (90) to the
original learning problem (3) using the tight inequalities from Theorem 6.

Remark: in the case θ0 ∈ Ker(ΦT ), the cost function E0
n will uniformly converge to the

following potential:

−ητ2
2

+
κτ1
2
− η

2τ2
κ2 +

α

n
E
[
M τ1

κ g(.,y)(ηh)
]

+
1

d
E
[
M η

τ2
f(Ω−1/2.)(

η

τ2
κg)

]
(231)

As we will see in the next section, this will lead to estimators solely based on noise.

B.6 Back to the original problem : proof of Theorem 4 and 5

We begin this part by considering that the "necessary assumptions for exponential rates" from the set
of assumptions B.1 are verified. In the end we will discuss how relaxing these assumptions modifies
the convergence speed. We closely follow the analysis introduced in [51] and further developed
in [29]. The main difference resides in checking the concentration properties of generic Moreau
envelopes depending on the regularity of the target function instead of specific instances such as the
LASSO. Since the dimensions n, p, d are linked by multiplicative constants, we can express the rates
with any of the three. Recall the original reformulation of the problem defining the student.

max
λ

min
w,z

g(z,y) + f(w) + λ>
(

1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
w − z

)
(232)

Introducing the variable w̃ = Ω1/2w it can be equivalently written, since Ω is almost surely invertible
and the problem is convex concave with a closed convex feasibility set on w̃, z.

min
w̃,z

max
λ

g(z,y) + f(Ω−1/2w̃) + λ>
(

1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2)
Ω−1/2w̃ − z

)
(233)

Recall the equivalent scalar auxiliary problem at finite dimension En and its asymptotic counterpart E
both defined on the same variables as the original problem w̃, z through the Moreau envelopes of g
and r:

E(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
− η

2τ2
(ν2χ+ κ2) + αLg(τ1, κ,m, η) + Lf (τ2, η, ν, κ)

(234)

En(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
− η

2τ2d
(νṽ + κΩ1/2g)>Ω−1(νv + κΩ1/2g)

− κg>
(

Σ1/2 − Ω1/2
) m√γ
‖ṽ‖22

v +
1

d
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
+

1

d
M η

τ2
r(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
(235)

Recall the variables:

w̃∗ = prox η∗
τ∗2
f(Ω−1/2.)

(
η∗

τ∗2
(ν∗t + κ∗g)), z∗ = prox τ∗1

κ∗ g(.,y)

(
m∗
√
ρ
s + η∗h

)
(236)
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Denote (τ∗1 , τ
∗
2 , κ
∗, η∗, ν∗,m∗) the unique solution to the optimization problem (90) and E∗ the

corresponding optimal cost. E∗ defines a strongly convex optimization problem (due to the Moreau
envelopes) on w̃, z whose solution is given by Eq.(236). Similarly, denote (τ∗1,n, τ

∗
2,n, κ

∗
n, η
∗
n, ν
∗
n,m

∗
n)

any solution to the optimization problem on En and E∗n the corresponding optimal value. Finally, we
write En(w̃, z) the cost function of the optimization problem on w̃, z defined by E∗n for any optimal
solution (τ∗1,n, τ

∗
2,n, κ

∗
n, η
∗
n, ν
∗
n,m

∗
n), such that:

E∗n = min
w̃,z

En(w̃, z) (237)

By the definition of Moreau envelopes, we have that En(w̃, z) is κ∗n
2dτ∗1,n

strongly convex in z and
τ∗2,n
2dη∗n

strongly convex in w̃. The following lemma ensures that these strong convexity constants are
non-zero for any finite n.
Lemma 14. Consider the finite size scalar optimization problem

max
κ,ν,τ2

min
m,η,τ1

En(τ1, τ2, κ, η, ν,m) (238)

where the feasibility set of (τ1, τ2, κ, η, ν,m) is compact and τ1 > 0, τ2 > 0. Then any optimal
values κ∗, τ∗2 verify:

κ∗ 6= 0 τ∗2 9 0 (239)

Proof of Lemma 14: from the analysis carried out in the proof of Lemma 11, the feasibility set of
the optimization problem is compact. Suppose κ∗ = 0. Then the value of m minimizing the cost
function is −∞, which contradicts the compactness of the feasibility set. A similar argument holds
for τ2.

The next lemma characterizes the speed of convergence of the optimal value of the finite
dimensional scalar optimization problem to its asymptotic counterpart, which has a unique solution
in τ1, τ2, κ, η, ν,m. The intuition is that, using the strong convexity of the auxiliary problems, we
can show that the solution in w̃, z̃ to the finite size problem E∗n converges to the solution w̃∗, z̃∗ of
the asymptotic problem E∗, with convergence rates governed by those of the finite size cost towards
its asymptotic counterpart.
Lemma 15. For any ε > 0, there exist constants C, c, γ such that:

P (|E∗n − E∗| > γε) 6
C

ε
exp−cnε

2

(240)

which is equivalent to

P
(∣∣∣∣min

w̃,z
En(w̃, z)− E∗

∣∣∣∣ > γε

)
6
C

ε
exp−cnε

2

(241)

Proof of Lemma 15: for any fixed (τ1, τ2, κ, ν, η,m), we can determine the rates of convergence of all
the random quantities in En. The linear terms involving 1

dgTv are sub-Gaussian with sub-Gaussian
norm bounded by C/d for some constant C > 0. Thus we can find constants, C, c > 0 such that, for
any ε > 0 :

P
(∣∣∣∣1dgT ṽ

∣∣∣∣ > ε

)
6 Ce−cnε

2

(242)

The term involving vTΩv is deterministic in this setting. We will see in section B.7 how a random
θ0 affects the convergence rates. The term involving 1

dgTg is a weighted sum of sub-exponential
random variables, the tail of which can be determined using Bernstein’s inequality, see e.g. [74]
Corollary 2.8.3, which gives a sub-Gaussian tail for small deviations and a sub-exponential tail for
large deviations. Parametrizing the deviation ε with a scalar variable c′, we thus get the following
bound : for any ε > 0, there exists constants C, c, c′ > 0 such that:

P
(∣∣∣∣1dgTg − 1

∣∣∣∣ > c′ε

)
6 Ce−cnε

2

(243)

Since, in this case, we assume that the eigenvalues of the covariance matrices are bounded with
probability one, multiplications by these matrices do not change these two previous rates. The
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remaining convergence rates that need to be determined are those of the Moreau envelopes. By
assumption, the function g is separable, and pseudo-Lipschitz of order two. Moreover, the argu-
ment m√

ρs + ηh is an i.i.d. Gaussian random vector with finite variance. The Moreau envelope
1
dM η

τ2
r(Ω−1/2.)

(
η
τ2

(
νΩ−1/2ṽ + κg

))
is therefore a sum of pseudo-Lipschitz functions of order

2 of scalar Gaussian random variables. Using the concentration Lemma 7, we can find constants
C, c, γ > 0 such that, for any ε > 0, the following holds:

P
(∣∣∣∣α 1

n
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)
− E

[
α

1

n
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)]∣∣∣∣ > γε

)
6 Ce−cnε

2

(244)
For the second Moreau envelope, the argument η

τ2

(
νΩ−1/2ṽ + κg

)
is not separable. If the regular-

ization is a square, it is the concentration will reduce to that of the terms 1
dgTv and 1

dgTg. If the
regularization is a Lipschitz function, then the Moreau envelope is also Lipschitz from Lemma 2.
Furthermore, since the eigenvalues of the covariance matrix Ω are bounded with probability one, the
composition with the deterministic term νΩ1/2v does not change the Lipschitz property. Gaussian
concentration of Lipschitz functions then gives an exponential decay indepedent of the magnitude of
the deviation. Taking the loosest bound, which is the one obtained with the square penalty, we obtain
that, for any ε > 0, there exist constants C, c, γ > 0 such that the event{∣∣∣∣1dM η

τ2
r(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
− E

[
1

d
M η

τ2
r(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]∣∣∣∣ > γε

}
(245)

has probability at most Ce−cnε
2

. Combining these bounds gives the exponential rate for the
convergence of En to E for any fixed (τ1, τ2, κ, ν, η,m). An ε-net argument can then be used to
obtain the bound on the minmax values.

The next lemma shows that the function En evaluated at w̃∗, z∗ is close to the optimal
value E∗.
Lemma 16. For any ε > 0, there exist constants C, c, γ such that:

P (|En(w̃∗, z∗)− E∗| > γε) 6 Ce−cnε
2

(246)

Proof of Lemma 16: this Lemma can be proved in similar fashion to [51] Theorem B.1. using the
strong convexity in w̃ and z of En(w̃, z) along with Gordon’s Lemma. We leave the detail of this
part to a longer version of this paper.

Lemma 17. For any ε > 0, there exists constants γ, c, C > 0 such that the event

∃(w̃, z) ∈ Rn+d,
1

d
min(

κ∗n
2τ∗1,n

,
τ∗2,n
2η∗n

)‖(w̃, z)− (w̃∗, z∗)‖22 > ε and min
w̃,z

En(w̃, z) 6 En(w̃∗, z∗) + γε

(247)

has probability at most Cε e
−cnε2 .

This lemma can be proven using the same arguments as in [51] Appendix B, Theorem B.1. Intuitively,
if two values of a strongly convex function are arbitrarily close, then the corresponding points are
arbitrarily close. Note that we are normalizing the norm of a vector of size (n+ d) with d, which are
proportional. This shows that any solution outside the ball centered around w̃∗, z∗ is sub-optimal.
Now define the set:

Dw̃,z,ε =

{
w̃ ∈ Rd, z ∈ Rn :

∣∣∣∣φ1(
w̃√
d

)− E
[
φ1

(
w̃∗√
d

)]∣∣∣∣ > ε,

∣∣∣∣φ2(
z√
n

)− E
[
φ2

(
z∗√
n

)]∣∣∣∣ > ε

}
(248)

where φ1 is either a square or a Lipschitz function, and φ2 is a separable, pseudo-Lipschitz function
of order 2. Using the same arguments as in the proof of Lemma 16 and the assumptions on φ1, φ2,
Gaussian concentration will give sub-exponential rates for the event (w̃∗, z∗) ∈ Dw̃,z,ε. A similar
argument to the proof of Lemma B.3 from [29] then shows that a distance of ε in Dw̃,z,ε results in a
distance of ε2 in the event (249), leading to the following result:
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Lemma 18. For any ε > 0, there exists constants γ, c, C > 0 such that the event

∃(w̃, z) ∈ Rn+d, (w̃∗, z∗) ∈ Dw̃,z,ε and min
w̃,z

En(w̃, z) 6 En(w̃∗, z∗) + γε2 (249)

has probability at most Cε2 e
−cnε4 .

which proves Theorem 5 using the fact that ŵ, ẑ are minimizers of the initial cost function. Theorem
4 is a consequence of Theorem 5.

If the restriction on f, g, φ1, φ2 are relaxed to any pseudo-Lipschitz functions of finite orders, the
exponential rates involving them are lost and become linear following Lemma 5.

B.7 Relaxing the deterministic teacher assumption

The entirety of the previous proof has been done with a deterministic vector θ0. Now, if θ0 is
assumed to be a random vector independent of all other quantities, as prescribed in the set of
assumptions B.1, we can "freeze" the variable θ0 by conditioning on it. The whole proof can then
be understood as studying the value of the cost conditioned on the value of θ0. Note that, in the
Gaussian case, correlations between the teacher and student are expressed through the covariance
matrices, thus leaving the possibility to parametrise the teacher with a vector θ0 indeed independent
of all the rest. To lift the conditioning in the end, one only needs to average out on the distribution
of θ0, the summability conditions of which are prescribed in the set of assumptions B.1. Thus,
random teacher vectors can be treated simply by taking an additional expectation in the expressions
of Theorem 5, provided θ0 is independent of the matrices A,B and the randomness in f0.

As mentioned at the end of the previous section, the finite size rates will be determined by
the assumptions made on the teacher vector and decay of the eigenvalues of the covariance matrices.
We do not investigate in detail the limiting assumptions under which exponential rates still hold
regarding the randomness of the teacher or tails of the eigenvalue distributions of covariance matrices.

B.8 The ’vanilla’ teacher-student scenario

In this section, we give the explicit forms of the fixed points equations and optimal asymptotic
estimators in the case where the teacher and the student are sampled from the same distribution, i.e.
Ω = Φ = Ψ = Σ where Σ is a positive definite matrix with sub-Gaussian eigenvalue decay. This
setup was rigorously studied in [29] for the LASSO and heuristically in [33] for the ridge regularized
logistic regression. In this case, the fixed point equations become

τ1 =
1

d
E
[
g>prox η

τ2
f(Σ−1/2.)

(
η

τ2

(
νΣ1/2θ0 + κg

))]
(250)

m
√
γ =

1

d
E
[
v>Σ−1/2prox η

τ2
f(Σ−1/2.)

(
η

τ2

(
νΣ1/2θ0 + κg

))]
(251)

τ2 = α
κ

τ1
η − κα

τ1n
E
[
h>prox τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)]
(252)

η2 +
m2

ρ
=

1

d
E

[∥∥∥∥prox η
τ2
f(Σ−1/2.)

(
η

τ2

(
νΣ1/2θ0 + κg

))∥∥∥∥2

2

]
(253)

ν
√
γ = α

κ

nτ1
E
[
(
m

ηρ
h− s
√
ρ

)>prox τ1
κ g(.,y)

(
m
√
ρ
s + ηh

)]
(254)

τ2
1 =

α

n
E

[∥∥∥∥ m√ρs + ηh− prox τ1
κ g(.,y)

(
m
√
ρ
s + ηh

)∥∥∥∥2

2

]
(255)

and the asymptotic optimal estimators read:

w∗ = Σ−1/2prox η∗
τ∗2
f(Σ−1/2.)

(
η∗

τ∗2
(ν∗Σ1/2θ0 + κ∗g)), z∗ = prox τ∗1

κ∗ g(.,y)

(
m∗
√
ρ
s + η∗h

)
(256)
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C Equivalence replica-Gordon

In this Appendix, we show that the rigorous result of Theorem 5 can be used to prove the replica
prediction in the case of a separable loss, a ridge penalty. For simplicity, we restrict ourselves to
the case of random teacher weights with θ0 ∼ N (0, Ip). We provide an exact analytical matching
between the replica prediction and the one obtained with Gordon’s theorem. We start by an explicit
derivation of the form presented in Corollary 1 from the main result (89).

C.1 Solution for separable loss and ridge regularization

Replacing r with a ridge penalty, we can go back to step (176) of the main proof and finish the
calculation without inverting the matrix Ω. The assumption on the invertibility of Ω can thus be

dropped in the case of `2 regularization. Letting G =
(
τ2
η Ω + λ2Id

)−1

, we get

E(τ1, τ2, κ, η, ν,m) =
κτ1
2
− ητ2

2
+mν

√
γ − τ2

2η

m2

ρ
+ α

1

n
E
[
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)]
− 1

2d
ν2θ>0 ΦGΦ>θ0 −

1

2d
κ2Tr

(
Ω1/2GΩ1/2

)
(257)

using Lemma 5 with a separable function, the expectation over the Moreau envelope converges to:

1

n
E
[
M τ1

κ g(.,y)

(
m
√
ρ
s + ηh

)]
= E

[
M τ1

κ g(.,y)

(
m
√
ρ
s+ ηh

)]
(258)

where s and h are standard normal random variables and y = f0(
√
ρs). The corresponding optimality

conditions then reads:
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∂κ
:
τ1
2

+
1

2τ1
αE

[(
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))2
]
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d
Tr
(
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)
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(259)
∂

∂ν
: m
√
γ − 1

d
νθ0Φ>GΦ>θ0 = 0 (260)
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η
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∂m
: ν
√
γ − τ2

ρη
m+ αE

[
κ

τ1

s
√
ρ

(
m
√
ρ
s+ ηh− prox τ1

κ g(.,y)

(
m
√
ρ
s+ ηh

)
)

]
= 0 (262)
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simplifying these equations using Stein’s lemma, we get:

∂

∂κ
:
τ1
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d
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(
τ2
η

Ω + λ2Id
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∂
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∂

∂τ1
: κ2 =

(
κ

τ1

)2

αE

[(
m
√
ρ
s+ ηh− prox τ1

κ g(.,f0(
√
ρs))

(
m
√
ρ
s+ ηh

))2
]

(270)

C.2 Matching with Replica equations

In this section, we show that the fixed point equations obtained from the asymptotic optimality
condition of the scalar minimization problem 1 match the ones obtained using the replica method. In
what follows we will use the same notations as in [43], and an explicit, clear match with the notations
from the proof of the main theorem will be shown. The replica computation, similar to the one from
[43], leads to the following fixed point equations, in the replica notations:

V =
1

p
Tr
(
λV̂ Ip + Ω

)−1

Ω (271)

q =
1

p
Tr
[
(q̂Ω + m̂2Φ>Φ)Ω

(
λV̂ Ip + Ω

)−2
]

(272)

m =
1
√
γ

m̂

p
Tr
[
Φ>Φ

(
λV̂ Ip + Ω

)−1
]

(273)

V̂ = αEξ
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R
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y
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m
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q

)
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√
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]
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q̂ = αEξ
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m
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m
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q
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q
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fg(y,

√
qξ, V )

]
(276)

where fg(y, ω, V ) = −∂ωMV g(y,·)(ω) and Z0 is given by:

Z0 (y, ω, V ) =

∫
dx√
2πV

e−
1

2V (x−ω)2δ(y − f0(x)). (277)

In particular we have:

∂ωZ0 (y, ω, V ) =

∫
dx√
2πV

e−
1

2V (x−ω)2
(
x− ω
V

)
δ(y − f0(x)) (278)
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To be explicit with the notation, let’s open the equations up. Take for instance the one for m̂. Opening
all the integrals:
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(279)

where in (a) we integrated over y explicitly. A direct comparison between the two sets of equations
suggests the following mapping to navigate between the replica derivation and the proof using
Gaussian comparison theorems. We denote replica quantities with Rep indices:

VRep ⇐⇒
τ1
κ
, V̂Rep ⇐⇒

τ2
η
, qRep ⇐⇒ η2 +

m2

ρ

q̂Rep ⇐⇒ κ2, mRep ⇐⇒ m, m̂Rep ⇐⇒ ν (280)

with these notations, we get :
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The first three equations match the replica prediction, the last three can be exactly matched using the
following change of variable and Gaussian integration:

x̃ =
x
√
ρ

ξ̃ =

(
ρ

ρ− m2

q

)1/2(
m
√
qρ
x̃− ξ

)
(287)
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D Details on the simulations

In this Appendix we give full details on the numerics used to generate the plots in the main manuscript.
An implementation of all the pipelines described below is available at https://github.com/
IdePHICS/GCMProject.

D.1 Ridge regression on real data

Consider a real data set {xµ, yµ}ntot
µ=1, where ntot denote the total number of samples available. In

Figs. 4 and 4 we work with the MNIST and fashion MNIST data sets for which ntot = 6× 104 and
D = 28 × 28 = 764. In both cases, we center the data and normalise by dividing it by the global
standard deviation. We work with binary labels yµ ∈ {−1, 1}, with yµ = 1 for even digits (MNIST)
or clothes above the waist (fashion MNIST) and yµ = −1 for odd digitis (MNIST) or clothes below
the waist (fashion MNIST). In a ridge regression task, we assume yµ = θ>0 u

µ for a teacher feature
map uµ = ϕt(x

µ) and we are interested in studying the performance of the estimator ŷ = v>ŵ
where v = ϕs(x) obtained by solving the empirical risk minimisation problem in eq. (24) with the
squared loss g(x, y) = 1

2 (y − x)2 and `2 regularisation λ > 0.

Simulations: First, we discuss in detail how we conducted the numerical simulations in Figs. 4
and 4 in the main manuscript.

In Fig. 4, the student feature maps ϕs is taken to be different transforms used in the literature.
For the scattering transform, we have used the out-of-the-box python package Kymatio [18] with
hyperparameters J = 3 and L = 8, which defines a feature map ϕs : R28×28 → R217×3×3, and thus
d = 1953. For the random features, a random matrix F ∈ Rd×784 with i.i.d. N (0, 1/784) entries
is generated and fixed. Note that the number of features d = 1953 is chosen to match the ones for
the scattering transform. The random feature map is then applied to the flattened MNIST image as
ϕs(x) = erf (Fx). Finally, we have chosen a kernel corresponding to the limit of this random feature
map [23]:

K(x1,x2) =
2

π
sin−1

(
2x>1 x2√

(1/d+ 2||x1||22) (1/d+ 2||x2||22)

)
. (288)

In Fig. 4, the feature ϕts is taken from a learned neural network at different epochs t ∈ {0, 5, 50, 200}
of training. For this experiment, we chose the following architecture implemented in Pytorch:

Sequential(
(0): Linear(in_features=784 , out_features=2352 , bias=False)
(1): ReLU()
(2): Linear(in_features=2352 , out_features=2352 , bias=False)
(3): ReLU()
(4): Linear(in_features=2352 , out_features=1, bias=False)

)

The first two layers of the network therefore defines a feature map ϕs : R784 → R2352 acting on
flattened fashion MNIST images. The network was initialized using the pyTorch’s default Kaiming
initialisation [75] and was trained on the full data set (ntot samples) with Adam [76] optimiser
(learning rate 10−3) on the MSE loss for a total of 500 epochs. Snapshots were taken at epochs
t ∈ {0, 5, 50, 200}, defining the feature maps ϕts(·) at each of these epochs.

In both experiments, we ran ridge regression at fixed regularisation λ > 0 by sub-sampling n samples
from the data set D = {vµ, yµ}ntot

µ=1, vµ = ϕs (xµ), with the estimator given by the closed-form
expression:

ŵ =

{(
λId + V>V

)−1
V>y, if n ≥ d

V>
(
λIn + VV>

)−1
y, if n < d

(289)

where V ∈ Rn×d is the normalised matrix obtained by concatenating {vµ/
√
d}nµ=1. A similar

closed-form expression in terms of the Gram matrix was used in the kernel case. The averaged
training and test errors were computed over 10 independent draws sub-samples of D. To reduce the
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Figure 5: Test error as a function of the number of samples for kernel ridge regression task on MNIST
odd vs. even data, with λ = 10−1. The different curves compare the performance of a random
features approximation ϕs(x) = erf (Fx) with the performance of the limiting kernel eq. (288).
Different curves correspond to different aspect ratios of the Gaussian projection matrix F ∈ Rd×784.

effect spurious correlations due to the sampling of a finite universe D, we have always evaluated
the test error on the whole universe D. The code for these two experiments is available in https:
//github.com/IdePHICS/GCMProject.

Self-consistent equations: For the theoretical curves, we need to provide the population covari-
ances (Ω,Φ,Ψ) and the teacher weights θ0 ∈ Rp corresponding to the task of interest. Since when
dealing with real data we have a limited number of samples ntot at our disposal, we estimate the
population covariances by the empirical covariances on the whole universe:

Ψ =
1

ntot

ntot∑
µ=1

uµuµ>, Φ =
1

ntot

ntot∑
µ=1

uµvµ>, Ω =
1

ntot

ntot∑
µ=1

vµvµ>. (290)

In principle, the teacher weights need to be estimated by inverting y = Uθ0. However, as explained in
ntot in Sec. 3.4, one can avoid doing so by noting the teacher weights only appear in the self-consistent
equations 13 through ρ = 1

kθ
>
0 Ψθ0 and Φ>θ0. Therefore, all teacher vector θ0 and feature map ϕs

that linearly interpolate the data set {xµ, yµ}ntot
µ=1 are equivalent, since we can write:

ρ =
1

ntot

ntot∑
µ=1

(yµ)
2
, Φ>θ0 =

1

ntot

ntot∑
µ=1

vµyµ. (291)

which is independent from (ϕt,θ0). In particular, note that for our binary labels yµ ∈ {+1,−1},
we have ρ = 1. In both Fig. 4 and 4 of the main, we estimated the covariance Ω as in eq. (290) by
applying the feature maps ϕs described above to the whole data set, took ρ = 1 (since in both we
have binary labels) and used eq. (291) to estimate Φ>θ0. This was then fed to our iterator package
(https://github.com/IdePHICS/GCMProject) to compute the curves. For the kernel curve, we
used the random features approximation of eq. (288) with a d = 20×1953 dimensional feature space
to estimate the covariance Ω. We have checked that this indeed provide a good approximation of K
for the sample range considered, see Fig.5.

Limitations: As we have discussed above, a key ingredient of our theoretical analysis is the
estimation of the population covariances. For real data, this relies on the empirical covariance of
the whole data set with ntot samples. We expect this approximation to be good only for n � ntot
samples, as it is the case for the ranges plotted in Figs. 4 and 4. Indeed, as n ≈ ntot we start observing
deviations between the theoretical prediction and the simulations. In Fig. 6 (right) we show an
example of a NTK kernel regression task on 8 vs 9 MNIST digit classification, for which ntot = 7000.
Note that while the theoretical prediction reach perfect generalisation at n ≈ ntot, the simulated error
approaches a plateau. Alternatively, instead of varying the sample range, in Fig. 6 (left) we show how
the matching betweem theory and simulation degrades by varying ntot on a fixed sample range for a
MNIST odd vs. even task.
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Figure 6: (Left) Test mse for ridge regression on MNIST odd vs. even task and λ = 0.01. Different
curves show the theoretical prediction when the population covariances are estimated using a smaller
number of samples ntot in the universe. (Right) Test mse for NTK kernel regression on MNIST 8 vs.
9 task with λ = 0.01. Note that for this task we have ntot = 7000, and while the theoretical result
predicts perfect generalisation as the number of samples approach ntot, the true test error goes to a
constant.

As it was discussed in Sec. 3.4 of the main manuscript, the universality argument sketched above is
only valid in the case of a linear student. For instance, applying the same construction to a binary
classification task with f0(x) = f̂(x) = sign(x) lead to a mismatch between theory and experiments,
as exemplified in Fig. 3 of the main for a logistic regression task on CIFAR10 gray-scale images.
Interestingly, this is even the case for binary classification with the square loss g(x, y) = 1

2 (x− y)2,
in which the estimator ŵ is the same as for ridge regression. In other words, by simply changing the
predictor f̂(x) = sign(x), we have a breakdown of universality, as shown in Fig. 7.
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Figure 7: Classification error for binary classification task with the square loss on MNIST odd vs.
even task and λ = 0.01

D.2 Binary classification on GAN generated data

For our purposes, a generative adversarial network (GAN) is a pre-trained neural network defining a
map G taking a Gaussian i.i.d. vector z ∼ N (0, I) (a.k.a. the latent representation) into a realistic
looking input image x ∈ RD. In both Figs. 3 and 3, we have used a deep convolutional GAN
(dcGAN) [59] with the following architecture

and which has been trained on the full CIFAR10 data set. It therefore takes a 100-dimensional latent
vector and returns a D = 32 × 32 × 3 = 3072 CIFAR10-looking image. The GAN was trained
on the original CIFAR10 data set without data augmentation for 50 epochs. Both the discriminator
and the generator were trained using Adam, with Adam parameters β1 = 0.5 and β2 = 0.999. In
practice, the advantage of working with a GAN is that we have a generative process to sample as
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many independent data points as we need, both for the simulations and for the estimation of the
population covariances.

Learning the teacher: As discussed in Sec. 3.3 of the main manuscript, to label the GAN
generated CIFAR10-looking images we learn a teacher feature map ϕt and weights θ0 ∈ Rp. For
the experiments shown in Figs. 3, we have trained with a fully-connected neural network on the full
CIFAR10 data set with the following squared architecture:

Generator(
(main): Sequential(

(0): ConvTranspose2d(100 , 512 , kernel_size=(4, 4), stride=(1, 1),
bias=False)

(1): BatchNorm2d(512 , eps=1e-05, momentum=0.1, affine=True ,
track_running_stats=True)

(2): ReLU(inplace=True)
(3): ConvTranspose2d(512 , 256 , kernel_size=(4, 4), stride=(2, 2),

padding=(1, 1), bias=False)
(4): BatchNorm2d(256 , eps=1e-05, momentum=0.1, affine=True ,

track_running_stats=True)
(5): ReLU(inplace=True)
(6): ConvTranspose2d(256 , 128 , kernel_size=(4, 4), stride=(2, 2),

padding=(1, 1), bias=False)
(7): BatchNorm2d(128 , eps=1e-05, momentum=0.1, affine=True ,

track_running_stats=True)
(8): ReLU(inplace=True)
(9): ConvTranspose2d(128 , 64, kernel_size=(4, 4), stride=(2, 2),

padding=(1, 1), bias=False)
(10): BatchNorm2d(64 , eps=1e-05, momentum=0.1, affine=True ,

track_running_stats=True)
(11): ReLU(inplace=True)
(12): ConvTranspose2d(64 , 3, kernel_size=(1, 1), stride=(1, 1),

bias=False)
(13): Tanh()

)
)

The teacher feature map ϕt : RD → Rp was then taken to be the first 2-layers, and the teacher
weights θ0 the weights of the last layer, where D = p = 32 × 32 × 3 = 3072. We used the same
architecture for the experiment in Fig. 3, but with D = p = 32× 32 = 1024 on gray-scale CIFAR10
images. Both teachers were trained on the odd-even discrimination task on CIFAR10 discussed above
with the mean-squared error for 50 epochs, starting from pyTorch’s default Kaiming initialisation
[75] . Optimisation was performed using SGD with momentum 0.9 and weight decay 5 · 10−4. We
started with a learning rate of 0.05, which decayed by a factor 0.1 after 25 and 40 epochs. The
resulting trained teacher achieved a 78% classification accuracy on this task. See Fig. 8 for an
illustration of this pipeline.

Simulations: The experiment shown in Fig. 3 follow a similar pipeline as the one described in
Sec. D.1. The student feature maps ϕts are obtained by removing the last layer of a trained a 3-layer
student network with architecture:

Sequential(
(0): Linear(in_features=1024 , out_features=2304 , bias=False)
(1): ReLU()
(2): Linear(in_features=2304 , out_features=2304 , bias=False)
(3): ReLU()
(4): Linear(in_features=2304 , out_features=1, bias=False)

)

Training was performed on a data set composed of n = 30000 independent samples drawn from
the dcGAN described above, with labels yµ ∈ {+1,−1} assigned by the learned teacher yµ =
sign

(
u>θ0

)
, uµ = ϕt (xµ). The network was trained for 300 epochs using Adam optimiser on

the MSE loss and pyTorch’s default Kaiming initialisation, and snapshops of the weights were
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Figure 8: Illustration of the pipeline to generate synthetic realistic data. A dcGAN is first trained to
generate CIFAR10-looking images from i.i.d. Gaussian noise. Then, a teacher trained to classify real
CIFAR10 images is used to assign labels to the dcGAN generated images.

extracted at epochs t ∈ {0, 5, 50, 200}. Finally, logistic regression was performed on the learned
features v = ϕs(x) on fresh pair of dcGAN generated samples and labels using the out-of-the-
box LogisticRegression solver from Scikit-learn. The points and error bars in Fig. 3 were
computed by averaging over 10 independent runs. The same pipeline was used for Fig. 3, but for
ϕs = id and on dcGAN generated CIFAR10 gray-scale images.

Self-consistent equations: As before, the self-consistent eqs. 13 require the population covari-
ances (Ω,Φ,Ψ) and the teacher weights θ0. For synthetic GAN data, the population covariances of
the feature maps (ϕt,ϕ

t
s) used in the simulations can be estimated as well as needed with a Monte

Carlo sampling algorithm. For the curves shown in Figs. 3 and 3, the covariances were estimated with
n = 106 samples with a precision of the order of 10−5. Together with the teacher weights θ0 used to
generate the labels, this provides everything needed to compute the theoretical learning curves from
the self-consistent equations.
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E Ridge regression with linear teachers

In this Appendix we discuss briefly random matrix theory, and consider heuristic reasons behind the
validity of our asymptotic result beyond Gaussian covariates (u,v) in the context of ridge regression,
with linear teacher. As is well known, the computation of the training and test MSE for ridge
regression can be written as a random matrix theory problem. We do not attempt a rigorous approach,
but rather to motivate with simple arguments, many of them actually well known, the observed
universality and its limits.

First, let us remind the definition of the model and introduce some simplifications that arise in ridge
regression task. We have Gaussian covariates vectors u ∈ Rp and v ∈ Rd, with correlations matrices
Ψ,Ω and Φ, from which we draw n independent samples:[

u
v

]
∈ Rp+d ∼ N

(
0,

[
Ψ Φ

Φ> Ω

])
. (292)

We assume the existence of a linear teacher generating the labels y = Uθ0, and recall the student
performs ridge regression on the data matrix V .

Note that since ridge regression can be performed in any basis, we might as well work in the basis
where the population covariance Ψ of the vector u is diagonal. Additionally, we shall use the fact that
one can consider a θ0 to be an i.i.d. Rademacher vector, i.e. a random vector of ±1 without loss of
generality. Indeed, the statistical properties of the random variable u · θ0, for a generic θ0, and of the
random variable ũ · θ, with θ a Rademacher vector are identical provided a change in the (diagonal)
covariance:

Ψ =


Ψ1(θ0)1

2
0 . . . 0

0 Ψ2(θ0)2
2

. . . 0
...

...
. . .

...
0 0 . . . Ψp(θ0)p

2
.

 (293)

The Gaussian model we consider can therefore be rewritten with a Rademacher vector θ provided we
change the correlation matrix Ψ (as well as the cross-correlation Φ) accordingly.

We now come back on the problem. Given the vector y and the data V ∈ Rn×d, the ridge estimator
has the following closed-form solution:

ŵ =

(
1

n
V>V + λId

)−1

V>y = (Sv,v + λId) S>u,vθ (294)

where we have defined the empirical covariance matrices

Su,u ≡
1

n
U>U, Su,v ≡

1

n
U>V Sv,v ≡

1

n
V>V. (295)

Given this vector, one can now readily write the expected value of the training and test losses as
follows:

Etrain. = EU,V,θ

[
1

n
‖Uθ − Vŵ (U,V) ‖22

]
= EU,V,θ

[
1

n
θ>U>Uθ

]
+ EU,V

[
1

n
ŵ (U,V)

> V>Vŵ(U,V)

]
− 2EU,V

[
1

n
θ>U>Vŵ(U,V)

]
= E [Tr Su,u] + E

[
Tr Su,v (Sv,v + λId)

−1 Sv,v (Sv,v + λId)
−1 S>u,v

]
− 2E

[
Tr Su,v (Sv,v + λId)

−1 S>u,v
]

(296)

and

Egen. = EU,V,u,v,θ

[
1

n
‖u>θ − v>ŵ(U,V)‖22

]
= EU,V,u,v,θ

[
1

n
θ>uu>θ

]
+ EU,V

[
1

n
ŵ(U,V)>vv>ŵ(U,V)

]
− 2EU,V

[
1

n
θ>uv>ŵ(U,V)

]
= Tr Σu,u + E

[
Tr Su,v (Sv,v + λId)

−1
Σv,v (Sv,v + λId)

−1 S>u,v
]
− 2E

[
Tr Σu,v (Sv,v + λId)

−1 S>u,v
]

(297)
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where we have denoted the population correlation matrices Ψ ≡ Σu,u,Φ ≡ Σu,v,Ω ≡ Σv,v for
readability and a direct comparison with their empirical counterpart. The traces appears by the left
and right multiplication by the random vector θ.

At this point, the entire problem has been mapped to a random matrix theory exercise: assuming
data are indeed Gaussian, one can use RMT to compute the six traces that appears in (296,297).
Indeed, this is the canonical approach used in most rigorous works for the ridge regression task in
the teacher-student framework, instance in [12, 36–38]. Remarkably, the replica (and the rigorous
Gordon counterpart) allow to find the same result without the explicit use of RMT.

We now discuss, heuristically, why these results are valid even though the distribution of [u,v] is
not actually Gaussian, and in some instances even for real data. Indeed, that both (Etrain., Egen.)
do not depend explicitly on the distribution of the data, but —assuming some concentration (or
self-averaging)— only on:

1. The spectrum of the population covariances Σu,u,Σu,v,Σv,v .
2. The spectrum of the empirical covariances Su,u,Su,v,Sv,v .
3. The expectation of the trace of products between empirical and population covariances.

We expect that asymptotically the prediction from the theory will thus be valid for much more generic
distributions [u,v] ∼ Pu,v, provided they share the same population covariances Σu,u,Σu,v,Σv,v
(which we call Ψ,Φ,Ω). To see this, we need to check how this change in distribution would affect
points (1),(2) and (3). Fixing the population covariances, the first bullet point (1) is automatically
taken into account. Point (2) and (3) are, however, less trivial: in order to have universality we need
that a) the spectrum of the empirical covariances of the non-Gaussian distribution to converge the
one obtained with the Gaussian one; and b) the trace of products between the empirical and the
population covariances also to converge to the universal values computed from Gaussians data.

These two last points have been investigated in RMT [77], and it is a classical result that such
quantities are universal and converge to the Gaussian-predicted values for many distribution, way
beyond the Gaussian assumption (in which case the spectral densities are known as the Wigner
and Wishart model, or Marcenko-Pastur distribution [78]): this powerful universality of RMT is at
the origin of the applicability of the model beyond Gaussian data. For instance, [64] showed that
these assumptions are verified for any data generated as u = Σ

1/2
u,uω, assuming the components of

the vector ω are drawn i.i.d. from any distribution (with some assumption on the larger moments).
While this is still restrictive, stronger results can be shown, and [49, 63, 65, 79] extended them (also
loosening the independence assumption) for a very generic class of distributions of correlated random
vectors u.

Let us give a concrete example. For simplicity, consider the restricted case where u = v, i.e. the
teacher acts on the same space as the student. In this case, eqs. (296,297) simplify (this is essentially
the analysis in [36]) to:

Etrain. = EU,θ

[
1

n
‖Uθ − Uŵ(U)‖22

]
= EU,θ

[
1

n
θ>U>Uθ

]
+ EU

[
1

n
ŵ(U)>U>Uŵ(U)

]
− 2EU

[
1

n
θ>U>Uŵ(U)

]
= E [Tr S] + E

[
Tr S (S + λId)

−1
S (S + λId)

−1 S>
]
− 2E

[
Tr S (S + λId)

−1 S>
]
(298)

and

Egen. = EU,u,θ
[

1

n
‖u>θ − u>ŵ(U)‖22

]
= EU,u,θ

[
1

n
θ>uu>θ

]
+ EU

[
1

n
ŵ(U)>uu>ŵ(U)

]
− 2EU

[
1

n
θ>uu>ŵ(U)

]
= Tr Σu,u + E

[
Tr S (S + λId)

−1
Σ (S + λId)

−1 S>
]
− 2E

[
Tr Σ (S + λId)

−1 S>
]

(299)

In the expression of the training loss eq. (298), we see terms such as

A = E
[
Tr S (S + λId)

−1 S>
]
, (300)
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depend only on the limiting distribution of eigenvalues of S ∈ Rd×d. This is a very well known
problem when the dimension d and the number of samples n are send to infinity with fixed ratio
α = n/d, and the limiting spectral density is known as the Marcenko-Pastur law. This is a very
robust distribution that is valid way beyond the Gaussian hypothesis [49, 63, 65, 79].

In the expression of the generalisation loss eq. (299), however, terms such as

B = E
[
Tr Σ (S + λId)

−1 S>
]
. (301)

appears. These can be computed using classical RMT results on the concentration of the inverse of the
covariance [64, 80]. The strongest result we are aware of for such problems is from the remarkable
work of [49]. This universality of random matrix theory is thus at the origin of the surprisingly
successful application of our Gaussian theory to real data with arbitrary feature maps. Of course the
discussion here is limited to the case where u = v and a concrete mathematical statement would
require the generalisation of these arguments to the more generic case of eqs.(296,297), which are
closer to the work of [37]. We leave this discussion to future works.

A similar universality has been discussed for kernel methods in very recent works, but for the slightly
different setting in which data is drawn from a Mixture of Gaussians [38, 50] (in which case there is
no teacher, the label depends on which Gaussian has been chosen). The universality observed here for
ridge regression with linear student, albeit different, is of a similar nature, and it would be interesting
to discuss the link between these two approaches.
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