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A EXPERIMENT

Table 4: The Intra-LPIPS (↑) results for both
DDPM-based strategies and GAN-based baselines
are presented for 10-shot image generation tasks.
The best results are marked as bold.

Methods FFHQ → FFHQ →
Sketches Amedeo’s paintings

TGAN 0.394±0.023 0.548±0.026
TGAN+ADA 0.427±0.022 0.560±0.019
EWC 0.430±0.018 0.594±0.028
CDC 0.454±0.017 0.620±0.029
DCL 0.461±0.021 0.616±0.043

DDPM-PA 0.495±0.024 0.626±0.022
DDPM-TAN (Ours) 0.544±0.025 0.620±0.021

In this section, we present the hyper-parameters
of shift adaptor layer, Intra-LPIPS evaluation
results on two additional datasets for 10-shot
transformations, FFHQ → Sketches and FFHQ
→ Amedeo’s paintings. We also provide sup-
plementary information detailing our selection
process for the hyper-parameters.

A.1 SHIFT ADAPTOR LAYER

For the l-th shift adaptor layer ψ, it can be
expressed as: ψl(xl−1) = f(xl−1Wdown)Wup

(Houlsby et al., 2019). We project the in-
put downward using Wdown, transforming it
from its original dimension Rw×h×r to a lower-
dimensional space with a bottleneck dimension
Rw

c ×h
c ×d. Following this, we apply a non-linear

activation function f(·) and execute an upward
projection with Wup. For the DDPMs, we set the parameters c = 4 and d = 8, whereas we set c = 2
and d = 8 for the LDMs. To ensure the adapter layer outputs are initialized to zero, we set all the
extra layer parameters to zero.

A.2 ADDITIONAL RESULTS

Quantitative Evaluation. As depicted in Table 4, our proposed DPMs-TAN method demonstrates
superior performance over contemporary GAN-based and DPMs-based methods in terms of gen-
eration diversity for the given adaptation scenarios in FFHQ → Sketches and FFHQ → Amedeo’s
paintings. Especially, we achieve 0.544±0.025 for the FFHQ → Sketches, far more better than other
methods.

Qualitative Evaluation. In Figure 6, we provide additional results for GAN-based and DDPM-
based methods for the 10-shot FFHQ → Sunglasses and Babies task. When compared to the
GAN-based method (shown in the 2nd and 3rd rows), our approach (shown in the 5th and 6th rows)
generates images of faces wearing sunglasses, displaying a wide variety of detailed hairstyles and
facial features. Moreover, DPMs-TAN produces samples with more vivid and realistic reflections in
the sunglasses. Notably, our method also manages to generate more realistic backgrounds.

A.3 HYPER-PARAMETERS

In this subsection, we delve into our process for selecting key hyperparameters, including γ for the
similarity-guided training, ω for the adversarial noise selection, and the count of training iterations.
All experiments are conducted using a pre-trained LDM, and for evaluation purposes, we generate
1000 images for the Intra-LPIPS evaluation and 10000 images for the FID.

Table 5: This shows the change in FID (↓) and Intra-LPIPS (↑)kan results for FFHQ → Sunglasses as
the γ value increases.

γ FID (↓) Intra-LPIPS (↑)

1 20.75 0.641 ± 0.014
3 18.86 0.627 ± 0.013
5 18.13 0.613 ± 0.011
7 24.12 0.603 ± 0.017
9 29.48 0.592 ± 0.017
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Similarity-guided Training Scale γ. Table 5 shows the changes in FID (↓) and Intra-LPIPS (↑)
scores for FFHQ → Sunglasses as the γ (in Equation 7) increases. Initially, the FID score decrease,
as the generated images gradually become closer to the target domain. At γ = 5, the FID reaches its
lowest value of 18.13. Beyond this point, the FID score increases as the generated images become
too similar to the target images or become random noise as failed case, leading to lower diversity and
fidelity. The Intra-LPIPS score consistently decreases with gamma increasing, which further supports
the idea that larger γ values lead to overfitting with the target image. Therefore, we select γ = 5 as a
trade-off.

Adversarial Noise Selection Scale ω. As shown in Table 6, the FID (↓) and Intra-LPIPS (↑) scores
for FFHQ → Sunglasses vary with an increase in the omega (ω) value (from Equation 8). Initially,
the FID score decreases as the generated images gradually grow closer to the target image. When
ω = 0.02, the FID reaches its lowest value of 18.13. Beyond this point, the FID score increases
because the synthesized images become too similar to the target image, which lowers diversity. The
Intra-LPIPS score consistently decreases as ω increases, further supporting that larger ω values lead
to overfitting with the target image. We also note that the results are relatively stable when ω is
between 0.1 and 0.3. As such, we choose ω = 0.02 as a balance between fidelity and diversity.

Table 6: This shows the change in FID (lower is better) and Intra-LPIPS (higher is better) results for
FFHQ → Sunglasses as the ω value increases.

ω FID (↓) Intra-LPIPS (↑)

0.01 18.42 0.616 ± 0.020
0.02 18.13 0.613 ± 0.011
0.03 18.42 0.613 ± 0.016
0.04 19.11 0.614 ± 0.013
0.05 19.48 0.623 ± 0.015

Iteration. As illustrated in Table 7, the FID (↓) and Intra-LPIPS (↑) for FFHQ → Sunglasses vary
as training iterations increase. Initially, the FID value drops significantly as the generated image
gradually resembles the target image, reaching its lowest at 18.13 with 300 training iterations. After
this point, the FID score stabilizes after around 400 iterations as the synthesized images closely
mirror the target image. The Intra-LPIPS score steadily decreases with an increase in iterations up to
400, further suggesting that a higher number of iterations can lead to overfitting to the target image.
Therefore, we select 300 as an optimal number of training iterations, offering a balance between
image quality and diversity.

Table 7: This shows the change in FID (lower is better) and Intra-LPIPS (higher is better) results for
FFHQ → Sunglasses as the number of training iterations increases.

Iteration FID (↓) Intra-LPIPS (↑)

0 111.32 0.650 ± 0.071
50 93.82 0.666 ± 0.020

100 58.27 0.666 ± 0.015
150 31.08 0.654 ± 0.017
200 19.51 0.635 ± 0.014
250 18.34 0.624 ± 0.011
300 18.13 0.613 ± 0.011
350 21.17 0.604 ± 0.016
400 21.17 0.608 ± 0.019

A.4 QUANTITATIVE EVALUATION OF DIFFERENT ITERATION

As shown in Figure 5, the first row demonstrate that the orangial train the DPMs with limited iterations
is hard to get a successfully transfer. The second raw shows that training with our similarity-guide

13



Under review as a conference paper at ICLR 2024

DPMs

DPMs +
Similarity-Guided

DPMs + 
TAN

Iterations Iterations
50 100 150 200 50 100 150 200

Figure 5: This figure shows our ablation study with all models trained for in different iterations
on a 10-shot sunglasses dataset: the first line - baseline (direct fine-tuning model), second line -
DPMs-TAN w/o A (only using similarity-guided training), and third line - DPMs-TAN (our method).

Method DPMs DPMs+SG DPMs+AN DPMs+TAN

Without Adaptor (MB) 17086 17130 17100 17188

With Adaptor (MB) 6010 6030 6022 6080

Table 8: This table displays the GPU memory consumption for each module, comparing scenarios
with and without the use of the adaptor.

method can boost the convergence to the taget domain. The third rows shows that training further
with adversrial noise can even more faster converge. As shown the 150 iteration of right pictures,
compared with the training only with similarity-guide (2nd row) TAN can get the face with sunglasses
image.

A.5 GPU MEMORY

Table 8 illustrates the GPU memory usage for each module in batch size 1, comparing scenarios with
and without the use of an adaptor. It reveals that our module results in only a slight increase in GPU
memory consumption.

B PROOFS

B.1 SOURCE AND TARGET MODEL DISTANCE

This subsection introduces the detailed derivation of source and target model distance, Equation 5 as
following:

DKL
(
pθS ,ϕ(x

S
t−1|xt), pθT ,ϕ(xTt−1|xt)

)
= DKL

(
pθ(S,T ),ϕ(xt−1|xt, y = S), pθ(S,T ),ϕ(xt−1|xt, y = T )

)
≈ DKL(N (xt−1;µθ(S,T )

+ σ2
t γ∇xt

log pϕ(y = S|xt), σ2
t I),N (xt−1;µθ(S,T )

+ σ2
t γ∇xt

log pϕ(y = T |xt), σ2
t I))

= Et,x0,ϵ

[
1

2σ2
t

∥∥µθ(S,T )
+ σ2

t γ∇xt log pϕ(y = S|xt)− µθ(S,T )
− σ2

t γ∇xt log pϕ(y = T |xt)
∥∥2]

= Et,x0,ϵ

[
C1 ∥∇xt log pϕ(y = S|xt)−∇xt log pϕ(y = T |xt)∥2

]
, (11)

where C1 = γ/2 is a constant. Since C1 is scale constant, we can ignore this scale constant for the
transfer gap and Equation 11 is the same as Equation 5.
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B.2 SIMILARITY-GUIDED LOSS

In this subsection, we introduce the full proof how we get similarity-guided loss, Equation 6. Inspired
by (Ho et al., 2020), training is carried out by optimizing the typical variational limit on negative
log-likelihood:

E[− log pθ,ϕ(x0|y = T )] ≤ Eq
[
− log

pθ,ϕ(x0:T |y = T )

q(x1:T |x0)

]

= Eq

− log p(xT )−
∑
t≥1

log
pθ,ϕ(xt−1|xt, y = T )

q(xt|xt−1)

 := L . (12)

According to (Ho et al., 2020), q(xt|x0) can be expressed as:

q(xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)

)
. (13)

Training efficiency can be obtained by optimizing random elements of L 12 using stochastic gradient
descent. Further progress is made via variance reduction by rewriting L 12 with Equation 13 as Ho
et al. (2020):

L = Eq[DKL (q(xT |x0, p(xT |y = T ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL (q(xt−1|xt, x0), pθ,ϕ(xt−1|xt, y = T ))︸ ︷︷ ︸
Lt−1

− log pθ,ϕ(x0|x1, y = T )︸ ︷︷ ︸
L0

] . (14)

As Dhariwal & Nichol (2021), the conditional reverse noise process pθ,ϕ(xt−1|xt, y) is:

pθ,ϕ(xt−1|xt, y) ≈ N
(
xt−1;µθ(xt, t) + σ2

t γ∇xt
log pϕ(y|xt), σ2

t I
)
. (15)

The Lt−1 with Equation 15 can be rewrited as:

Lt−1 := DKL (q(xt−1|xt, x0), pθ,ϕ(xt−1|xt, y = T ))

= Eq
[

1

2σ2
t

∥∥µ̃t(xt, x0)− µt(xt, x0)− σ2
t γ∇xt

log pϕ(y|xt)
∥∥2]

= Et,x0,ϵ

[
C2

∥∥ϵt − ϵθ(xt, t)− σ̂2
t γ∇xt log pϕ(y = T |xt)

∥∥2] , (16)

where C2 =
β2
t

2σ2
tαt(1−ᾱt)

is a constant, and σ̂t = (1− ᾱt−1)
√

αt

1−ᾱt
. We define the Lt−1 as

similarity-guided DPMs train loss and we will ignore the C2 for better results during training as (Ho
et al., 2020).

C LIMITATION

In this subsection, we acknowledge some limitations of our method. Given that our goal is to transfer
the image from the source domain to the target domain, the images we synthesize will feature
characteristics specific to the target domain, such as sunglasses as shown in Figure 4. This can
potentially lead to inconsistency in the generated images and there is a risk of privacy leakage. For
instance, the reflection in the sunglasses seen in the 3rd and 4th columns of the 4th row in Figure 4 is
very similar to the one in the target image. This could potentially reveal sensitive information from
the target domain, which is an issue that needs careful consideration in applying this method.

D SAMPLES

D.1 SUNGLASSES AND BABY

Figure 6 presents samples from GAN-based and DDPM-based methods for 10-shot FFHQ →
Sunglasses (top) and FFHQ → Babies (bottom).

15



Under review as a conference paper at ICLR 2024

CDC

DCL

DDPM-PA

DDPM-TAN
(Ours)

LDM-TAN
(Ours)

Source Domain

CDC

DCL

DDPM-PA

DDPM-TAN
(Ours)

LDM-TAN
(Ours)

Target Domain

Figure 6: The 10-shot image generation samples on FFHQ → Sunglasses and FFHQ → Babies.
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Figure 7: This is the generated image by dreambooth.

D.2 DREAMBOOTH

Figure 7 displays samples with the target image at the top and DreamBooth fine-tuned images at the
bottom, as the generated images closely resemble the target images.
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