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ABSTRACT

Designing a convolution for a spherical neural network requires a delicate trade-
off between efficiency and rotation equivariance. DeepSphere, a method based
on a graph representation of the discretized sphere, strikes a controllable balance
between these two desiderata. This contribution is twofold. First, we study both
theoretically and empirically how equivariance is affected by the underlying graph
with respect to the number of pixels and neighbors. Second, we evaluate Deep-
Sphere on relevant problems. Experiments show state-of-the-art performance and
demonstrates the efficiency and flexibility of this formulation. Perhaps surpris-
ingly, comparison with previous work suggests that anisotropic filters might be an
unnecessary price to pay.

1 INTRODUCTION

Spherical data is found in many applications (figure 1). Planetary data (such as meteorological
or geological measurements) and brain activity are example of intrinsically spherical data. The
observation of the universe, LIDAR scans, and the digitalization of 3D objects are examples of
projections due to observation. Labels or variables are often to be inferred from them. Examples are
the inference of cosmological parameters from the distribution of mass in the universe (Perraudin
et al., 2019), the segmentation of omnidirectional images (Khasanova & Frossard, 2017), and the
segmentation of cyclones from Earth observation (Mudigonda et al., 2017).
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Figure 1: Examples of spherical data: (a) brain activity recorded through magnetoencephalogra-
phy (MEG),1(b) the cosmic microwave background (CMB) temperature from Planck Collaboration
(2016), (c) hourly precipitation from a climate simulation (Jiang et al., 2019), (d) daily maximum
temperature from the Global Historical Climatology Network (GHCN).2A rigid full-sphere pixeliza-
tion is not ideal: brain activity is only measured on the scalp, the Milky Way’s galactic plane masks
observations, climate scientists desire a variable resolution, and the position of weather stations is
arbitrary and changes over time. (e) Graphs can faithfully and efficiently represent sampled spherical
data by placing vertices where it matters.

As neural networks (NNs) have proved to be great tools for inference, variants have been developed
to handle spherical data. Exploiting the locally Euclidean property of the sphere, early attempts
used standard 2D convolutions on a grid discretization of the sphere (Boomsma & Frellsen, 2017;
Su & Grauman, 2017; Coors et al., 2018). While simple and efficient, those convolutions are not
equivariant to rotations. On the other side of this tradeoff, Cohen et al. (2018) and Esteves et al.
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(2018) proposed to perform proper spherical convolutions through the spherical harmonic transform.
While equivariant to rotations, those convolutions are expensive (section 2).

As a lack of equivariance can penalize performance (section 4.2) and expensive convolutions pro-
hibit their application to some real-world problems, methods standing between these two extremes
are desired. Cohen et al. (2019) proposed to reduce costs by limiting the size of the representation
of the symmetry group by projecting the data from the sphere to the icosahedron. The distortions
introduced by this projection might however hinder performance (section 4.3).

Another approach is to represent the discretized sphere as a graph connecting pixels according to
the distance between them (Bruna et al., 2013; Khasanova & Frossard, 2017; Perraudin et al., 2019).
While Laplacian-based graph convolutions are more efficient than spherical convolutions, they are
not exactly equivariant (Defferrard et al., 2019). In this work, we argue that graph-based spheri-
cal CNNs strike an interesting balance, with a controllable tradeoff between cost and equivariance
(which is linked to performance). Experiments on multiple problems of practical interest show the
competitiveness and flexibility of this approach.

2 METHOD

DeepSphere leverages graph convolutions to achieve the following properties: (i) computational
efficiency, (ii) sampling flexibility, and (iii) rotation equivariance (section 3). The main idea is to
model the discretized sphere as a graph of connected pixels: the length of the shortest path between
two pixels is an approximation of the geodesic distance between them. We use the graph CNN
formulation introduced in (Defferrard et al., 2016) and a pooling strategy that exploits hierarchical
pixelizations of the sphere.

Sampling. Given a sampling scheme V = {xi ∈ S2}ni=1, a function f : S2 ⊃ FV → R is sampled
as TV(f) = f by the sampling operator TV : L2(S2) ⊃ FV → Rn defined as f : fi = f(xi), where
FV will be specified in section 3. As there is no analogue of uniform sampling on the sphere, many
schemes have been proposed with different tradeoffs. In this work, depending on the considered
application, we will use the equiangular (Driscoll & Healy, 1994), HEALPix (Gorski et al., 2005),
and icosahedral (Baumgardner & Frederickson, 1985) grids.

Graph. From V , we construct a weighted undirected graph G = (V, w), where the elements of
V are the vertices and the weight wij = wji is a similarity measure between vertices xi and xj .
The combinatorial graph Laplacian L ∈ Rn×n is defined as L = D − A, where A = (wij) is
the weighted adjacency matrix, D = (dii) is the diagonal degree matrix, and dii =

∑
j wij is the

weighted degree of vertex xi. Given a sampling scheme V , usually fixed by the application or the
available measurements, the freedom in constructing G is in setting w. Section 3 shows how to set
w to minimize the equivariance error.

Convolution. On Euclidean domains, convolutions are efficiently implemented by sliding a win-
dow in the signal domain. On the sphere however, there is no straightforward way to implement a
convolution in the signal domain due to non-uniform samplings. Convolutions are most often per-
formed in the spectral domain through a spherical harmonic transform (SHT). That is the approach
taken by Cohen et al. (2018) and Esteves et al. (2018), which has a computational cost of O(n3/2)
on isolatitude pixelizations (such as the HEALPix and equiangular grids) and O(n2) in general. On
the other hand, following Defferrard et al. (2016), graph convolutions can be defined as

h(L)f =

(
K∑
i=0

αiL
i

)
f , (1)

where K is the polynomial order (which corresponds to the filter’s size) and αi are the coefficients
to be optimized during training.3 Those convolutions are used by Khasanova & Frossard (2017) and
Perraudin et al. (2019) and cost O(n) operations through a recursive application of L.4

3In practice, training with Chebyshev polynomials (instead of monomials) is slightly more stable. We
believe it to be due to their orthogonality and uniformity.

4As long as the graph is sparsified such that the number of edges, i.e., the number of non-zeros in A, is
proportional to the number of vertices n. This can always be done as most weights are very small.
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Pooling. Down- and up-sampling is natural for hierarchical pixelizations,5 where each subdivision
divides a pixel in (an equal number of) child sub-pixels. To pool (down-sample), the data supported
on the sub-pixels is summarized by a permutation invariant function such as the maximum or the
average. To unpool (up-sample), the data supported on a pixel is copied to all its sub-pixels.

Architecture. All our NNs are fully convolutional, and employ a global average pooling (GAP)
for rotation invariant tasks. Graph convolutional layers are always followed by batch normalization
and ReLU activation, except in the last layer. Note that batch normalization and activation act on
the elements of f independently, and hence don’t depend on the domain of f .

3 GRAPH CONVOLUTION AND EQUIVARIANCE

While the graph framework offers great flexibility, its ability to faithfully represent the underlying
sphere — for graph convolutions to be rotation equivariant — highly depends on the sampling
locations and the graph construction.

3.1 PROBLEM FORMULATION

We require FV to be a suitable subspace of L2(S2) such that TV is invertible, i.e., the function
f ∈ FV can be unambiguously reconstructed from its sampled values f . The existence of such
a subspace depends on the sampling scheme V , and its characterization is a common problem in
signal processing (Driscoll & Healy, 1994). For most sampling schemes, it is not known if FV
exists and hence if TV is invertible. A special case is the equiangular sampling scheme where a
sampling theorem holds, and thus a closed form of T−1V is known. For sampling schemes where no
such sampling formula is available, we leverage the discrete SHT to reconstruct f from f = TVf ,
thus approximating T−1V . For all theoretical considerations, we assume that FV exists and f ∈ FV .

By definition, the (spherical) graph convolution is rotation equivariant, if and only if, it commutes
with the rotation operator defined as R(g), g ∈ SO(3): R(g)f(x) = f

(
g−1x

)
. In the context of

this work, graph convolution is performed by recursive applications of the graph Laplacian (equa-
tion (1)). Hence, if L commutes with the rotation operator, then, by recursion, it will also commute
with the convolution h(L). As a result, to simplify our analysis, we concentrate on the graph Lapla-
cian and h(L) is rotational invariant if and only if

RV(g)Lf = LRV(g)f ∀f ∈ FV and ∀g ∈ SO(3), (2)

where RV(g) = TVR(g)T−1V . For practical a evaluation of the equivariance, we define the normal-
ized equivariance error for a signal f , and a rotation g as:

EL(f , g) =

(
‖RV(g)Lf −LRV(g)f‖

‖Lf‖

)2

, (3)

More generally for a class of signal f ∈ C ⊂ FV , the mean equivariance error defined as
EL,C = Ef∈C,g∈SO(3) EL(f , g), (4)

represents well the overall equivariance error. In practice, we analyse this error with respect of
the frequency by setting the set C to functions f made of single degree spherical harmonic. The
expected value is obtained by averaging over a finite number of random functions and random rota-
tions.

3.2 FINDING THE OPTIMAL SET OF WEIGHTS

Naturally, Khasanova & Frossard (2017) designed a Laplacian L that minimizes (3) for specific
rotations on the longitude and latitude axis. Working specifically with the equiangular sampling,
they consider the set G of all the possible graphs where each node is connected only to four of
its nearest neighbours (North, South, West, East). Their approach leads to weights wij inversely
proportional to the Euclidean distance between vertices:

wij =
1

‖xi − xj‖
(5)

5The equiangular, HEALPix, and icosahedral schemes are of this kind.
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We chose a different approach and take inspiration from Belkin & Niyogi (2008), which proves that
for a random uniform sampling scheme the graph Laplacian converges toward the Laplace-Beltrami
operator ∆S2 as the number of sampling points goes to infinity. This convergence result is important
as a) ∆S2 commutes with rotation (∆S2R(g) = R(g)∆S2 ) and b) is diagonalized by the spherical
harmonics. In this case the weighting scheme is full (every node is connected to every node) and is
based on the exponential kernel:

wij = e−
1
4t‖xi−xj‖

2

(6)
In practice, because of the exponential, most of the weights are very close to 0. Hence, to optimize
for computational efficiency, we limit ourselves to only the k nearest neighbors. Given k, the optimal
t is found by searching for the minimizer of (4). Figure 3 shows the optimal kernel widths found for
various resolutions of the HEALPix grid.

3.3 ANALYSIS OF THE PROPOSED WEIGHTING SCHEME

We analyse our proposed weighting scheme both theoretically and empirically.

Theoretical convergence. We extend the work of Belkin and Nyiogi to a sufficiently regular,
deterministic sampling scheme. Given a sampling scheme V = {x0, . . . , xn−1}, define σi to be the
patch of the surface of the sphere corresponding to xi, Ai its corresponding area and di the radius
of the smallest ball in R3 containing σi. Define d(n) := maxi=0,...,n di and A(n) = maxi=0,...,nAi.

Theorem 3.1. For a sampling V = {xi ∈ S2}n−1i=0 of the sphere that is equi-area and such that
d(n) ≤ C

α , α ∈ (0, 1/2], for all f : S2 → R Lipschitz with respect to the Euclidean distance in R3,
for all y ∈ S2, there exists a sequence tn = nβ such that

lim
n→∞

|S2|
4πt2n

Ltnn TVf [i] = ∆S2f(xi) ∀i = 0, ..., n− 1.

As a direct implication of this theorem, L converges pointwisely toward the Laplace-Beltrami op-
erator (∆S2 ). This operator commutes with rotation and hence this convergence is a strong hint for
equivariance. Importantly, the proof of Theorem 3.1 in Appendix A inspires us in the construction
of our graph Laplacian. It is inspirational for the graph construction and for how the parameter t
needs to be adjusted with respect to the number of points n.

Nevetheless, it is important to keep in mind the limits of Theorem 3.1. First, it is not a proof of
equivariance of the graph convolution for a specific sampling. To construct such a proof, a stronger
convergence result is needed, for example uniform convergence (instead of pointwise). We note that
in the random sampling case, the graph laplacian does not converges uniformly in general (Belkin &
Niyogi, 2007, Sec. 3), but does for a class of Lipschitz functions (Belkin & Niyogi, 2008, Sec. 6).
Second, while do not have a formal proof for it, we strongly believe that the HEALPix sampling does
satisfy the hypothesis d(n) ≤ C

nα , α ∈ (0, 1/2] with α very close or equal to 1/2. The empirical
results discussed in the next paragraph also point in this direction. This is further discussed in
Appendix A.

Empirical convergence. In figure 2, we present the equivariance error ĒL,C(`) (4) computed nu-
merically as a function of the frequency (degree) `, for different parameter sets of DeepSphere as
well as for graph construction of Khasanova & Frossard (2017). The error depends of the number
of pixels: 12N2

side for HEALPix and 4b2 for the equiangular sampling. Here Nside and b are the
sampling parameters determining their precision. The frequencies ` of the monochromatic signals
were chosen in the range (0, 3Nside − 1) for the Healpix sampling, and in the range (0, b) for the
equiangular sampling, to allow for an almost perfect implementation (up to numerical errors) of the
operator RV in equation (4) (Gorski et al., 1999). Using these parameters, the error measured is
mostly due to imperfections in the empirical approximation of the Laplace-Beltrami operator and
not to the sampling.

For 8 neighbors, selecting the optimal value of t already leads to an improvement compared to Per-
raudin et al. (2019), whose graph also was constructed to have at maximum 8 neighbors. With higher
the number of neighbors, the equivariance error decreases by more than one order of magnitude. Fur-
thermore, increasing the graph resolution (Nside) leads to an improvement in the high frequencies as
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well. Increasing the graph resolution of the graph of Khasanova & Frossard (2017) does not seem to
improve its equivariance. We note that in our numerical test, this graph was perfectly equivariant to
rotations along the horizontal and vertical axis as it should be by design. Nevertheless, it is simply
not equivariant along the last rotation. Such equivariance properties might be sufficient for analysing
omnidirectional images (that are naturally aligned on the north-south axis).

4 EXPERIMENTS

4.1 3D OBJECTS RECOGNITION

The recognition of 3D shapes is a rotation invariant task: rotating an object doesn’t change its nature.
While 3D shapes are usually represented as meshes or point clouds, representing them as spherical
maps (figure 4) naturally allows a rotation invariant treatment.

The SHREC’17 shape retrieval contest (Savva et al., 2017) contains 51,300 randomly oriented 3D
models from ShapeNet (Chang et al., 2015), to be classified in 55 categories (tables, lamps, air-
planes, etc.). As in Cohen et al. (2018), objects are represented by 6 spherical maps. At each pixel,
a ray is traced towards the center of the sphere. The distance from the sphere to the object forms
a depth map. The cos and sin of the surface angle forms two normal maps. The same is done for
the object’s convex hull.6 The maps are discretized using either an equiangular grid with bandwidth
b = 64 (n = 4b2 = 16, 384 pixels) or an HEALPix grid with Nside = 32 (n = 12N2

side = 12, 288
pixels).

The equiangular graph is built with equation (5) and k = 4 neighbors (following Khasanova &
Frossard, 2017). The HEALPix graph is built with equation (6), k = 8, and a kernel width t set
to the average of the distances (following Perraudin et al., 2019). The NN is made of 5 graph
convolutional layers, each followed by a max pooling layer which down-samples by 4. A GAP
and a fully connected layer with softmax follow. The polynomials are all of order K = 3 and the
number of channels per layer is 16, 32, 64, 128, 256, respectively. Following Esteves et al. (2018),
the cross-entropy plus a triplet loss is optimized with Adam for 30 epochs on the dataset augmented
by 3 random translations. The learning rate is 5 · 10−2 and the batch size is 32.

6Albeit we didn’t observe much improvement by using the convex hull.
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performance size speed

F1 mAP params inference training

Cohen et al. (2018) (b = 128) - 67.6 1400 k 38.0 ms 50 h
Cohen et al. (2018) (simplified,7b = 64) 78.9 66.5 400 k 12.0 ms 32 h
Esteves et al. (2018) (b = 64) 79.4 68.5 500 k 9.8 ms 3 h
DeepSphere (equiangular b = 64) 79.4 66.5 190 k 0.9 ms 50 m
DeepSphere (HEALPix Nside = 32) 80.7 68.6 190 k 0.9 ms 50 m

Table 1: Results on SHREC’17 (3D shapes). DeepSphere achieves similar performance at a much
lower cost, suggesting that anisotropic filters are an unnecessary price to pay.

accuracy time

Perraudin et al. (2019), 2D CNN baseline 54.2 104 ms
Perraudin et al. (2019), CNN variant, k = 8 62.1 185 ms
Perraudin et al. (2019), FCN variant, k = 8 83.8 185 ms
k = 8 neighbors, t from section 3.2 87.1 185 ms
k = 20 neighbors, t from section 3.2 91.3 250 ms
k = 40 neighbors, t from section 3.2 92.5 363 ms

Table 2: Results on the classification of partial convergence maps.
Lower equivariance error translates to higher performance.
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Results are shown in table 1. As the network is trained for shape classification rather than re-
trieval, we report the classification F1 alongside the mAP used in the retrieval contest.8 DeepSphere
achieves the same performance as Cohen et al. (2018) and Esteves et al. (2018) at a much lower cost,
suggesting that anisotropic filters are an unnecessary price to pay. As the information in those spher-
ical maps resides in the low frequencies (figure 5), reducing the equivariance error didn’t translate
into improved performance. For the same reason, using the more uniform HEALPix discretization
or lowering the resolution down to Nside = 8 (n = 768 pixels) didn’t impact performance either.

4.2 COSMOLOGICAL MODEL CLASSIFICATION

Given observations, cosmologists estimate the posterior probability of cosmological parameters,
such as the matter density Ωm and the normalization of the matter power spectrum σ8. Those pa-
rameters are typically estimated by likelihood-free inference, which requires a function to predict
the parameters from simulations. As that is complicated to setup, prediction methods are typically
benchmarked on the classification of spherical maps instead (Schmelzle et al., 2017). We used the
same task, data, and setup as Perraudin et al. (2019): the classification of 720 partial convergence
maps made of n ≈ 106 pixels (1/12 ≈ 8% of a sphere at Nside = 1024) from two ΛCDM cosmo-
logical models, (Ωm = 0.31, σ8 = 0.82) and (Ωm = 0.26, σ8 = 0.91), at a relative noise level of
3.5 (i.e., the signal is hidden in noise of 3.5 times higher standard deviation). Convergence maps
represent the distribution of over- and under-densities of mass in the universe (see Bartelmann, 2010,
for a review of gravitational lensing).

Graphs are built with equation (6), k = 8, 20, 40 neighbors, and the corresponding optimal kernel
widths t given in section 3.2. Following Perraudin et al. (2019), the NN is made of 5 graph convo-
lutional layers, each followed by a max pooling layer which down-samples by 4. A GAP and a fully
connected layer with softmax follow. The polynomials are all of order K = 4 and the number of
channels per layer is 16, 32, 64, 64, 64, respectively. The cross-entropy loss is optimized with Adam
for 80 epochs. The learning rate is 2 · 10−4 · 0.999step and the batch size is 8.

Unlike on SHREC’17, results (table 2) show that a lower equivariance error on the convolutions
translates to higher performance. That is probably due to the high frequency content of those maps
(figure 5). There is a clear cost-accuracy tradeoff, controlled by the number of neighbors k (figure 6).

5As implemented in https://github.com/jonas-koehler/s2cnn.
8We omit the F1 for Cohen et al. (2018) as we didn’t get the mAP reported in the paper when running it.
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accuracy mAP

Jiang et al. (2019) (rerun) 94.95 38.41
Cohen et al. (2019) (S2R) 97.5 68.6
Cohen et al. (2019) (R2R) 97.7 75.9
DeepSphere (weighted loss) 97.8± 0.3 77.15± 1.94
DeepSphere (non-weighted loss) 87.8± 0.5 89.16± 1.37

Table 3: Results on climate event segmentation: mean accuracy (over TC, AR, BG) and mean
average precision (over TC and AR). DeepSphere achieves state-of-the-art performance.

This experiment moreover demonstrates DeepSphere’s flexibility (using partial spherical maps) and
scalability (competing spherical CNNs were tested on maps of at most 10, 000 pixels).

4.3 CLIMATE EVENT SEGMENTATION

We evaluate our method on a task proposed by (Mudigonda et al., 2017): the segmentation of ex-
treme climate events, Tropical Cyclones (TC) and Atmospheric Rivers (AR), in global climate sim-
ulations (figure 1c). The data was produced by a 20-year run of the Community Atmospheric Model
v5 (CAM5) and consists of 16 channels such as temperature, wind, humidity, and pressure at mul-
tiple altitudes. We used the pre-processed dataset from (Jiang et al., 2019).9 There is 1,072,805
spherical maps, down-sampled to a level-5 icosahedral grid (n = 10 · 4l + 2 = 10, 242 pixels). The
labels are heavily unbalanced with 0.1% TC, 2.2% AR, and 97.7% background (BG) pixels.

The graph is built with equation (6), k = 6 neighbors, and a kernel width t set to the average of
the distances. Following Jiang et al. (2019), the NN is an encoder-decoder with skip connections.
Details in section B.3. The polynomials are all of order K = 3. The cross-entropy loss (weighted
or non-weighted) is optimized with Adam for 30 epochs. The learning rate is 1 · 10−3 and the batch
size is 64.

Results are shown in table 3 (details in tables 6, 7 and 8). The mean and standard deviation are
computed over 5 runs. Note that while Jiang et al. (2019) and Cohen et al. (2019) use a weighted
cross-entropy loss, that is a suboptimal proxy for the mAP metric. DeepSphere achieves state-of-
the-art performance, suggesting again that anisotropic filters are unnecessary. Note that results from
Mudigonda et al. (2017) cannot be directly compared as they don’t use the same input channels.

Compared to Cohen et al. (2019)’s conclusion, it is surprising that S2R does worse than DeepSphere
(which is limited to S2S). Potential explanations are (i) that their icosahedral projection introduces
harmful distortions, or (ii) that a larger architecture can compensate for the lack of generality. We
indeed observed that more feature maps and depth led to higher performance (section B.3).

4.4 UNEVEN SAMPLING

To demonstrate the flexibility of modeling the discretized sphere by a graph, we collected historical
measurements from n ≈ 10, 000 weather stations scattered across the Earth.10 The spherical data is
heavily non-uniformly sampled, with a much higher density of weather stations over North America
than the Pacific (figure 1d). For illustration, we devised two artificial tasks. A dense regression:
predict the temperature on a given day knowing the temperature on the previous 5 days. A global
regression: predict the day (represented as one period of a sine over the year) from temperature or
precipitations. Predicting from temperature is much easier as it has a clear yearly pattern.

The graph is built with equation (6), k = 5 neighbors, and a kernel width t set to the average of the
distances. The equivariance property of the resulting graph has not been tested, and we don’t expect
it to be good due to the heavily non-uniform sampling. The NN is made of 3 graph convolutional
layers. The polynomials are all of order K = 0 or 4 and the number of channels per layer is
50, 100, 100, respectively. For the global regression, a GAP and a fully connected layer follow. For

9Available at http://island.me.berkeley.edu/ugscnn/data.
10https://www.ncdc.noaa.gov/ghcn-daily-description
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temp. (from past temp.) day (from temperature) day (from precipitations)

order K MSE MAE R2 MSE MAE R2 MSE MAE R2

0 10.88 2.42 0.896 0.10 0.10 0.882 0.58 0.42 −0.980
4 8.20 2.11 0.919 0.05 0.05 0.969 0.50 0.18 0.597

Table 4: Prediction results on data from weather stations. Structure always improves performance.

the dense regression, a graph convolutional layer follows instead. The MSE loss is optimized with
RMSprop for 250 epochs. The learning rate is 1 · 10−3 and the batch size is 64.

Results are shown in table 4. While using a polynomial order K = 0 is like modeling each time
series independently with an MLP, orders K > 0 integrate neighborhood information. Results show
that using the structure induced by the spherical geometry always yields better performance.

5 CONCLUSION

This work showed that DeepSphere strikes an interesting, and we think currently optimal, balance
between desiderata for a spherical CNN. A single parameter, the number of neighbors k a pixel is
connected to in the graph, controls the tradeoff between cost and equivariance (which is linked to
performance). As computational cost and memory consumption scales linearly with the number
of pixels, DeepSphere scales to spherical maps made of millions of pixels, a required resolution
to faithfully represent cosmological and climate data. Also relevant in scientific applications is
the flexibility offered by a graph representation (for partial coverage, missing data, and non-uniform
samplings). Finally, the implementation of the graph convolution is straightforward, and the ubiquity
of graph neural networks — pushing for their first-class support in DL frameworks — will make
implementations even easier and more efficient.

A potential drawback of graph Laplacian-based approaches is the isotropy of graph filters, reducing
in principle the expressive power of the NN. Experiments from Cohen et al. (2019) and Boscaini
et al. (2016) indeed suggest that more general convolutions achieve better performance. Our ex-
periments on 3D shapes (section 4.1) and climate (section 4.3) however show that DeepSphere’s
isotropic filters do not hinder performance. Possible explanations for this discrepancy are that
NNs somehow compensate for the lack of anisotropic filters, or that some tasks can be solved with
isotropic filters. The distortions induced by the icosahedral projection in Cohen et al. (2019) or the
leakage of curvature information in Boscaini et al. (2016) might also alter performance.

Developing graph convolutions on irregular samplings that respect the geometry of the sphere is an-
other research direction of importance. Practitioners currently interpolate their measurements (com-
ing from arbitrarily positioned weather stations, satellites or telescopes) to regular samplings. This
practice either results in a waste of precision or computational and storage resources. Our ultimate
goal is for practitioners to be able to work directly on their measurements, however distributed.

8
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SUPPLEMENTARY MATERIAL

A PROOF OF THEOREM 3.1

Preliminaries. The proof of theorem 3.1 is inspired from the work of Belkin & Niyogi (2008). As
a result, we start by restating some of their results. Given a sampling V = {xi ∈M}n−1i=0 of a closed,
compact and infinitely differentiable manifoldM, a smooth (∈ C∞(M)) function f :M→ R, and
defined the vector f of samples of f as follows: TVf = f ∈ Rn, fi = f(xi). The proof is
constructed by leveraging 3 different operators:

• The extended graph Laplacian operator is a linear operator Ltn : L2(M) → L2(M) is
defined as

Ltnf(y) :=
1

n

n−1∑
i=0

e−
‖xi−y‖

2

4t (f(y)− f(xi)) . (7)

Note that we have the following relation Ltnf = TVL
t
nf .

• The functional approximation to the Laplace-Beltrami operator is a linear operator Lt :
L2(M)→ L2(M) defined as

Ltf(y) =

∫
M
e−
‖x−y‖2

4t (f(y)− f(x)) dµ(x), (8)

where µ is the uniform probability measure on the manifoldM, and vol(M) is the volume
ofM.

• The Laplace-Beltrami operator ∆M is defined as the divergence of the gradient

∆Mf(y) := −div(∇Mf) (9)

of a differentiable function f : M→ R. The gradient ∇f : M→ TpM is a vector field
defined on the manifold pointing towards the direction of steepest ascent of f , where TpM
is the affine space of all vectors tangent toM at p.

Leveraging these three operators Belkin & Niyogi (2008; 2007) have build proofs of both pointwise
and spectral convergence of the extended graph Laplacian towards the Laplace-Beltrami operator
in the general setting of any compact, closed and infinitely differentiable maniformM, where the
sampling scheme V is drawn randomly on the manifold. For this reason, their results are all to
be interpreted in a probabilistic sense. Their proofs consist in establishing that (7) converges in
probability towards (8) as n→∞ and (8) converges toward (9) as t→ 0. In particular, this second
step is given by the following:
Proposition 1 (Belkin & Niyogi (2008), Proposition 4.4). Let M be a k-dimensional compact
smooth manifold embedded in some Euclidean space RN , and fix y ∈M. Let f ∈ C∞(M). Then

1

t

1

(4πt)k/2
Ltf(y)

t→0−−→ 1

vol(M)
∆Mf(y). (10)

Building the proof. As the sphere is a compact smooth manifold embedded in R3, we can reuse
proposition 1. Thus, our strategy to prove Theorem 3.1 is to a) show that

lim
n→∞

Ltnf(y) = Lt(y) (11)

for a particular class of deterministic sampling schemes and b) apply Proposition 1.

We start by proving that for smooth functions, for any fixed t, the extended graph Laplacian Ltn
converges towards its continuous counterpart Lt as the sampling increases in size.
Proposition 2. For an equal area sampling {xi ∈ S2}n−1i=0 : Ai = Aj∀i, j of the sphere it is true
that for all f : S2 → R Lipschitz with respect to the Euclidean distance ‖·‖ with Lipschitz constant
Cf ∣∣∣∣∣

∫
S2
f(x)dµ(x)− 1

n

∑
i

f(xi)

∣∣∣∣∣ ≤ Cfd(n).
11
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Furthermore, for all y ∈ S2 the Heat Kernel Graph Laplacian operator Ltn converges pointwise to
the functional approximation of the Laplace Beltrami operator Lt

Ltnf(y)
n→∞−−−−→ Ltf(y).

Proof. Assuming f : S2 → R is Lipschitz with Lipschitz constant Cf , we have∣∣∣∣∫
σi

f(x)dµ(x)− 1

n
f(xi)

∣∣∣∣ ≤ Cfd(n) 1

n
,

where σi ⊂ S2 is the subset of the sphere corresponding to the patch arround xi. Remember that the
sampling is equal area. Hence, using the triangular inequality and summing all the contributions of
the n patches, we obtain∣∣∣∣∣
∫
S2
f(x)dµ(x)− 1

n

∑
i

f(xi)

∣∣∣∣∣ ≤∑
i

∣∣∣∣ 1

4π2

∫
σi

f(x)dµ(x)− 1

n
f(xi)

∣∣∣∣ ≤ nCfd(n) 1

n
= Cfd

(n)

A direct application of this result leads to the following pointwise convergences

∀f Lipschiz, ∀y ∈ S2,
1

n

∑
i

e−
‖xi−y‖

2

4t →
∫
e−
‖x−y‖2

4t dµ(x)

∀f Lipschiz, ∀y ∈ S2,
1

n

∑
i

e−
||xi−y||

2

4t f(xi)→
∫
e−
‖x−y‖2

4t f(x)dµ(x)

Definitions 7 and 8 end the proof.

The last proposition show that for a fixed t, Ltnf(x) → 1/4π2Ltf(x). To utilize Proposition 1 and
complete the proof, we need to find a sequence of tn for which this holds as tn → 0. Furthermore
this should hold with a faster decay than 1

4πt2n
.

Proposition 3. Given a sampling regular enough, i.e., for which we assume Ai =
Aj ∀i, j and d(n) ≤ C

nα , α ∈ (0, 1/2], a Lipschitz function f and a point y ∈ S2 there exists a
sequence tn = nβ , β < 0 such that

∀f Lipschitz, ∀x ∈ S2
∣∣∣∣ 1

4πt2n

(
Ltnn f(x)− Ltnf(x)

)∣∣∣∣ n→∞−−−−→ 0.

Proof. To ease the notation, we define

Kt(x, y) := e−
‖x−y‖2

4t (12)

φt(x; y) := e−
‖x−y‖2

4t (f(y)− f(x)) . (13)

We start with the following inequality

‖Ltnf − Ltf‖∞ = max
y∈S2

∣∣Ltnf(y)− Ltf(y)
∣∣

= max
y∈S2

∣∣∣∣∣ 1n
n∑
i=1

φt(xi; y)−
∫
S2
φt(x; y)dµ(x)

∣∣∣∣∣
≤ max

y∈S2

n∑
i=1

∣∣∣∣ 1nφt(xi; y)−
∫
σi

φt(x; y)dµ(x)

∣∣∣∣
≤ d(n) max

y∈S2
Cφty , (14)

whereCφty is the Lipschitz constant of x→ φt(x, y) and the last inequality follows from Proposition
2. Using the assumption d(n) ≤ C√

n
we find

‖Ltnf − Ltf‖∞≤
C√
n

max
y∈S2

Cφty

12
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We now find the explicit dependence between t and Cφty

Cφty = ‖∂xφt(·; y)| ∞

= ‖∂x
(
Kt(·; y)f

)
‖∞

= ‖∂xKt(·; y)f +Kt(·; y)∂xf ||∞
≤ ‖∂xKt(·; y)f‖∞+‖Kt(·; y)∂xf‖∞
≤ ‖∂xKt(·; y)‖∞‖f‖∞+‖Kt(·; y)‖∞‖∂xf‖∞
= ‖∂xKt(·; y)‖∞‖f‖∞+‖∂xf‖∞
= CKt

y
‖f‖∞+‖∂xf‖∞

= CKt
y
‖f‖∞+Cf

where CKt
y

is the Lipschitz constant of the function x→ Kt(x; y). We note that this constant does
not depend on y:

CKt
y

=
∥∥∥∂xe− x24t ∥∥∥

∞
=
∥∥∥ x

2t
e−

x2

4t

∥∥∥
∞

=
x

2t
e−

x2

4t

∣∣∣
x=
√
2t

= (2et)−
1
2 ∝ t− 1

2 .

Hence we have

C√
n

max
y∈S2

Cφty ≤
C√
n

(
(2et)−

1
2 ‖f‖∞ + Cf

)
≤

C ‖f‖∞
nα(2et)1/2

+
C

nα
Cf .

Inculding this result in (14) and rescaling by 1/4πt2, we obtain∥∥∥∥ 1

4πt2
(
Ltnf − Ltf

)∥∥∥∥
∞
≤ 1

4πt2
∥∥(Ltnf − Ltf)∥∥∞

≤ C

4π

[
‖f‖∞√

2e

1

nαt5/2
+

Cf
nαt2

]
.

In order for C
4π

[
‖f‖∞√

2e
1

nαt5/2
+

Cf
nαt2

]
n→∞−−−−→
t→0

0, we need
{
nαt5/2 →∞
nαt2 →∞

It happens if
{
t(n) = nβ , β ∈ (− 2α

5 , 0)

t(n) = nβ , β ∈ (−α2 , 0)
=⇒ t(n) = nβ , β ∈ (− 2α

5 , 0).

Indeed, we have
nαt5/2 = n5/2β+α

n→∞−−−−→∞ since 5
2β + α > 0 ⇐⇒ β > − 2α

5

and nαt2 = n2β+α
n→∞−−−−→∞ since 2β + α > 0 ⇐⇒ β > −α2 .

As a result, for t = nβ with β ∈ (− 1
5 , 0) we have

{
(tn)

n→∞−−−−→ 0∥∥∥ 1
4πt2n

Ltnn f − 1
4πt2n

Ltnf
∥∥∥
∞

n→∞−−−−→ 0,

which concludes the proof.

Theorem 3.1, is then an immediate consequence of Proposition 3 and 1.

Proof of Theorem 3.1. Thanks to Proposition 3 and Proposition 1 we conclude that ∀y ∈ S2

lim
n→∞

1

4πt2n
Ltnn f(y) = lim

n→∞

1

4πt2n
Ltnf(y) =

1

|S2|
4S2f(y)

Eventually selecting y as a point of the sampling, we obtain

lim
n→∞

|S2|
4πt2n

Ltnn TVf [i] = ∆S2f(xi) ∀i = 0, ..., n− 1.

13
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micro (label average) macro (instance average)

P@N R@N F1@N mAP P@N R@N F1@N mAP

Cohen et al. (2018) (b = 128) 0.701 0.711 0.699 0.676 - - - -
Cohen et al. (2018) (simplified, b = 64) 0.704 0.701 0.696 0.665 0.430 0.480 0.429 0.385
Esteves et al. (2018) (b = 64) 0.717 0.737 - 0.685 0.450 0.550 - 0.444
DeepSphere (equiangular b = 64) 0.709 0.700 0.698 0.665 0.439 0.489 0.439 0.403
DeepSphere (HEALPixNside = 32) 0.725 0.717 0.715 0.686 0.475 0.508 0.468 0.428

Table 5: Official metrics from the SHREC’17 object retrieval competition.

In the work of Belkin & Niyogi (2008) the sampling is drawn form a uniform random distribution
on the sphere, and their proof heavily relies on the uniformity properties of the distribution from
which the sampling is drawn. In our case the sampling is deterministic, and this is indeed a problem
that we need to overcome by imposing the regularity conditions above.

To conclude, we see that the result obtained is of similar form than the result obtained in Belkin &
Niyogi (2008). Given the kernel density t(n) = nβ , Belkin & Niyogi (2008) proved convergence
in the random case for β ∈ (− 1

4 , 0) and we proved convergence in the deterministic case for β ∈
(− 2α

5 , 0), where α ∈ (0, 1/2] (for the spherical Manifold).

B EXPERIMENTAL DETAILS

B.1 3D OBJECTS RECOGNITION

Table 5 shows the results obtained from the competition’s official evaluation script.

(15)
[GC16 + BN + ReLU ]nside32 + Pool + [GC32 + BN + ReLU ]nside16 + Pool

+ [GC64 + BN + ReLU ]nside8 + Pool + [GC128 + BN + ReLU ]nside4

+ Pool + [GC256 + BN + ReLU ]nside2 + Pool + GAP + FCN + softmax

B.2 COSMOLOGICAL MODEL CLASSIFICATION

(16)
[GC16 + BN + ReLU ]nside1024 + Pool + [GC32 + BN + ReLU ]nside512

+ Pool + [GC64 + BN + ReLU ]nside256 + Pool

+ [GC64 + BN + ReLU ]nside128 + Pool + [GC64 + BN + ReLU ]nside64

+ Pool + [GC2]nside32 + GAP + softmax

B.3 CLIMATE EVENT SEGMENTATION

Table 6, 7, and 8 show the accuracy, mAP, and efficiency of all the NNs we ran.

The experiment with the model from Jiang et al. (2019) was rerun in order to obtain the AP metrics,
but with a batch size of 64 instead of 256 due to GPU memory limit.

Several experiments were run with different architectures for DeepSphere (DS). Jiang architecture
use a similar one as Jiang et al. (2019), with only the convolutional operators replaced. DeepSphere
only is the original architecture giving the best results, deeper and with four times more feature maps
than Jiang architecture. And the wider architecture is the same as the previous one with two times
the number of feature maps.

Regarding the weighted loss, the weights are chosen with scikit-learn function
compute class weight on the training set.

14
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TC AR BG mean

Mudigonda et al. (2017) 74 65 97 78.67
Jiang et al. (2019) (paper) 94 93 97 94.67
Jiang et al. (2019) (rerun) 93.9 95.7 95.2 94.95
Cohen et al. (2019) (S2R) 97.8 97.3 97.3 97.5
Cohen et al. (2019) (R2R) 97.9 97.8 97.4 97.7

DS (Jiang architecture, weighted loss) 97.1 97.6 96.5 97.1
DS (weighted loss) 97.4± 1.1 97.7± 0.7 98.2± 0.5 97.8± 0.3
DS (wider architecture, weighted loss) 91.5 93.4 99.0 94.6

DS (Jiang architecture, non-weighted loss) 33.6 93.6 99.3 75.5
DS (non-weighted loss) 69.2± 3.7 94.5± 2.9 99.7± 0.1 87.8± 0.5
DS (wider architecture, non-weighted loss) 73.4 92.7 99.8 88.7

Table 6: Results on climate event segmentation: accuracy. Tropical cyclones (TC) and atmospheric
rivers (AR) are the two positive classes, against the background (BG). Mudigonda et al. (2017) is
not directly comparable as they don’t use the same input feature maps. Note that a non-weighted
cross-entropy loss is not optimal for the accuracy metric.

TC AR mean

Jiang et al. (2019) (rerun) 11.08 65.21 38.41
Cohen et al. (2019) (S2R) - - 68.6
Cohen et al. (2019) (R2R) - - 75.9

DS (Jiang architecture, non-weighted loss) 46.2 93.9 70.0
DS (non-weighted loss) 80.86± 2.42 97.45± 0.38 89.16± 1.37
DS (wider architecture, non-weighted loss) 84.71 98.05 91.38

DS (Jiang architecture, weighted loss) 49.7 89.2 69.5
DS (weighted loss) 58.88± 3.17 95.41± 1.51 77.15± 1.94
DS (wider architecture, weighted loss) 52.80 94.78 73.79

Table 7: Results on climate event segmentation: average precision. Tropical cyclones (TC) and
atmospheric rivers (AR) are the two positive classes. Note that a weighted cross-entropy loss is not
optimal for the average precision metric.

size speed

params inference training

Jiang et al. (2019) 330 k 10 ms 10 h
DeepSphere (Jiang architecture) 590 k 5 ms 3 h
DeepSphere 13 M 33 ms 13 h
DeepSphere (wider architecture) 52 M 50 ms 20 h

Table 8: Results on climate event segmentation: size and speed.

15
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DeepSphere with Jiang architecture
encoder:

(17)
[GC8 + BN + ReLU ]L5 + Pool + [GC16 + BN + ReLU ]L4 + Pool

+ [GC32 + BN + ReLU ]L3 + Pool + [GC64 + BN + ReLU ]L2 + Pool
+ [GC128 + BN + ReLU ]L1 + Pool + [GC128 + BN + ReLU ]L0

decoder:

(18)

Unpool + [GC128 + BN + ReLU ]L1 + concat + [GC128 + BN + ReLU ]L1

+ Unpool + [GC64 + BN + ReLU ]L2 + concat
+ [GC64 + BN + ReLU ]L2 + Unpool + [GC32 + BN + ReLU ]L3

+ concat + [GC32 + BN + ReLU ]L3 + Unpool
+ [GC16 + BN + ReLU ]L4 + concat + [GC16 + BN + ReLU ]L4 + Unpool
+ [GC8 + BN + ReLU ]L5 + concat + [GC8 + BN + ReLU ]L5 + [GC3]L5

Concat is the operation that concatenate the results of the corresponding encoder layer.

Original DeepSphere architecture with encoder decoder
encoder:

(19)
[GC32 + BN + ReLU ]L5 + [GC64 + BN + ReLU ]L5

+ Pool + [GC128 + BN + ReLU ]L4 + Pool
+ [GC256 + BN + ReLU ]L3 + Pool + [GC512 + BN + ReLU ]L2

+ Pool + [GC512 + BN + ReLU ]L1 + Pool + [GC512]L0

decoder:

(20)

Unpool + [GC512 + BN + ReLU ]L1 + concat + [GC512 + BN + ReLU ]L1

+ Unpool + [GC256 + BN + ReLU ]L2 + concat
+ [GC256 + BN + ReLU ]L2 + Unpool + [GC128 + BN + ReLU ]L3

+ concat + [GC128 + BN + ReLU ]L3 + Unpool
+ [GC64 + BN + ReLU ]L4 + concat + [GC64 + BN + ReLU ]L4

+ Unpool + [GC32 + BN + ReLU ]L5 + [GC3]L5

B.4 UNEVEN SAMPLING

Architecture for dense regression:

(21)[GC50 + BN + ReLU ] + [GC100 + BN + ReLU ] + [GC100 + BN + ReLU ] + [GC1]

Architecture for global regression:

(22)[GC50 + BN + ReLU ] + [GC100 + BN + ReLU ]

+ [GC100 + BN + ReLU ] + GAP + FCN

16
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