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ABSTRACT

Common fairness definitions in machine learning focus on balancing various no-
tions of disparity and utility. In this work we study fairness in the context of risk
disparity among sub-populations. We introduce the framework of Pareto-optimal
fairness, where the goal of reducing risk disparity gaps is secondary only to the
principle of not doing unnecessary harm, a concept that is especially applicable to
high-stakes domains such as healthcare. We provide analysis and methodology to
obtain maximally-fair no-harm classifiers on finite datasets. We argue that even
in domains where fairness at cost is required, no-harm fairness can prove to be
the optimal first step. This same methodology can also be applied to any unbal-
anced classification task, where we want to dynamically equalize the misclassi-
fication risks across outcomes without degrading overall performance any more
than strictly necessary. We test the proposed methodology on real case-studies of
predicting income, ICU patient mortality, classifying skin lesions from images,
and assessing credit risk, demonstrating how the proposed framework compares
favorably to other traditional approaches.

1 INTRODUCTION

Machine learning algorithms play an important role in decision making in society. When these al-
gorithms are used to make high-impact decisions such as hiring, credit-lending, predicting mortality
for intensive care unit patients, or classifying benign/malign skin lesions, it is paramount to guar-
antee that these decisions are both accurate and unbiased with respect to sensitive attributes such as
gender or ethnicity. A model that is trained naively may not have these properties by default; see,
for example Barocas & Selbst (2016).

In these critical applications, it is desirable to impose some fairness criteria. Much of the fairness in
machine learning literature attempts to produce algorithms that satisfy Demographic Parity, which
aims to make algorithm’s predictions independent of the sensitive populations (Louizos et al. (2015);
Zemel et al. (2013); Feldman et al. (2015)); or Equality of Odds or Equality of Opportunity, which
aims to produce predictions that are independent of the sensitive attributes given the ground truth
(Hardt et al. (2016); Woodworth et al. (2017)). These notions of fairness can be appropriate in
many scenarios, but in domains where quality of service is paramount, such as healthcare, we argue
that it is necessary to strive for models that are as close to fair as possible without introducing
any unnecessary harm to any subgroup (Ustun et al. (2019)). Even if the overall fairness goal is a
potentially harmful, zero-gap classifier, pursuing first a Pareto-fair classifier and later applying other
harmful methodologies ensures that all possible non-harmful trade-offs are covered before explicitly
degrading performance, therefore minimal harm is introduced to the decision.

In this work we make use of the concept of Pareto optimality to measure and analyze discrimination
(unfairness) in terms of the difference in predictive risks across sub-populations defined by our
sensitive attributes, a fairness metric that has been explored in other recent works such as Calders
& Verwer (2010); Dwork et al. (2012); Feldman et al. (2015); Chen et al. (2018); Ustun et al.
(2019). We examine the subset of models from our hypothesis class that have the best trade-offs
between sub-population risks, and select from this set the one with the smallest risk disparity gap.
This is in direct contrast to common post-hoc correction methods like the ones proposed in Hardt
et al. (2016); Woodworth et al. (2017), where noise is potentially added to the decisions of the best
performing sub-population. While this latter type of approach diminishes the risk-disparity gap, it
does so by degrading performance on advantaged groups, the previously disadvantaged groups do
not directly benefit from this treatment. Since our proposed methodology does not require test-time
access to sensitive attributes, and can be applied to any standard classification or regression task, it
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can also be used to reduce risk disparity between outcomes, acting as an adaptive risk equalization
loss compatible with unbalanced classification scenarios.

Main Contributions. We formalize the notion of no-harm risk fairness using Pareto optimality
(Mas-Colell et al. (1995)), a state of resource allocations from which it is impossible to reallocate
without making one subgroup worse. We show that finding a Pareto-fair classifier is equivalent to
finding a model in our hypothesis class that belongs to the Pareto front (the set of all Pareto opti-
mal allocations) with respect to the sub-population risks with the smallest possible risk disparity.
This general notion is already amenable to non-binary sensitive attributes. We analyze the fairness
performance trade-offs that can be expected from different approaches with an illustrative exam-
ple. We provide a concrete algorithm that promotes fair solutions belonging to the Pareto front;
this algorithm can be applied to any standard classifier or regression task that can be trained using
(Stochastic) Gradient Descent. We show that if the goal is to obtain a zero-gap classifier, first recov-
ering the fairest Pareto optimal solution and then adding harmful post-hoc corrections ensures the
lowest risk levels across all subgroups. We demonstrate how our methodology performs on synthetic
and real tasks such as inferring income status in the Adult dataset Dua & Graff (2017a) irrespective
of their ethnicity or gender, predicting ICU mortality rates in the MIMIC-III dataset from hospital
notes Johnson et al. (2016), classifying skin lesions in the HAM10000 dataset Tschandl et al. (2018),
and assessing credit risk on the German Credit dataset Dua & Graff (2017b).

2 RELATED WORK

There is an extensive body of work on fairness in machine learning. Following Friedler et al. (2019),
we compare our methodology against the works of Feldman et al. (2015); Kamishima et al. (2012);
Zafar et al. (2017). Our method shares conceptual similarities with Zafar et al. (2017); Woodworth
et al. (2017); Agarwal et al. (2018), with differences on how we define our fairness objective and
adapt it to work with standard neural networks. Although optimality is often discussed in the fairness
literature, it is usually in the context of utility-discrimination tradeoffs. To the best of our knowledge,
this is the first work to discuss optimality with respect to subgroup risks on a unified classifier, a
distinction that disallows extreme performance degradation in the pursuit of fairness.

The work presented in Hashimoto et al. (2018) discusses decoupled classifiers as a way of minimiz-
ing group-risk disparity, but simultaneously cautions against this methodology when presented with
insufficiently large datasets. The works of Chen et al. (2018); Ustun et al. (2019) also empirically
report the disadvantages of decoupled classifiers as a way to mitigate risk disparity. Here we argue
for the use of a single classifier because it allows transfer learning between diverse sub-populations.
We do not need access to the sensitive attribute during test time, but in cases where this is possible,
we instead choose to incorporate it as part of our observation features.

The work of Chen et al. (2018) uses the unified bias-variance decomposition advanced in Domin-
gos (2000) to identify that noise levels across different sub-populations may differ, making per-
fect fairness parity impossible without explicitly degrading performance on one subclass. Their
methodology attempts to bridge the disparity gap by collecting additional samples from high-risk
sub-populations. Here we modify our classifier loss to bridge the disparity gap without inducing
unnecessary harm, which could prove to be synergistic with their methodology.

3 PROBLEM STATEMENT

Consider we have access to a datasetD = {(xi, yi, ai)}ni=1 containing n independent triplet samples
drawn from a joint distribution (xi, yi, ai) ∼ P (X,Y,A) where xi ∈ X are our input features (e.g.,
images, tabular data, etc.), yi ∈ Y is our target variable, and ai ∈ A indicates group membership or
sensitive status (e.g., ethnicity, gender); our input features X may or may not explicitly contain A.

Let h ∈ H be a classifier from a compact hypothesis class H trained to infer y from x, h : X → Y;
and a loss function ` : Y × Y → R. We define the class-specific risk of classifier h on subgroup a
as Ra(h) = EX,Y |A=a[`(Y, h(X))]. The risk discrimination gap between two subgroups a, a′ ∈ A
is measured as Γa,a′(h) = |Ra(h) − Ra′(h)|, and we define the pairwise discrimination gap as
~ΓA(h) = {Γa,a′(h)}a,a′∈A. Our goal is to obtain a classifier h ∈ H that minimizes this gap without
causing unnecessary harm to any particular group in A. To formalize this notion, we define:
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Definition 3.1. Dominant classifier: Classifier h′ is said to dominate h, noted as h′ � h, ifRa(h) ≥
Ra(h′),∀a ∈ A and ∃ a′ ∈ A : Ra′(h) > Ra′(h

′) (i.e., strict inequality on at least one group risk).
Definition 3.2. Pareto front classifier: A classifier h belongs to the Pareto front P(H,A) if it is not
dominated by any h′ ∈ H. We formally define it as P(H,A) = {h ∈ H :6 ∃h′ ∈ H, 6 ∃a′ ∈ A :
[Ra′(h

′) < Ra′(h)] ∧ ([Ra(h′) ≤ Ra(h)],∀a ∈ A)}. This means that there is no other classifier
in H that is at least as good in all risks and strictly better in at least one of them. It is the set of
classifiers such that improving one group’s risk comes at the cost of increasing another’s.

The Pareto front defines the best achievable trade-offs between population risks Ra(h). This def-
inition is already suited for classification and regression tasks where the sensitive attributes are
categorical. Constraining the classifier to be in the Pareto front disallows laziness, there exists no
other classifier in the hypothesis classH that is at least as good on all class-specific risks and strictly
better in one of them. As shown in Chen et al. (2018); Domingos (2000), the risk can be decom-
posed in bias, variance and noise for some loss functions, where the noise is the smallest achievable
risk for infinitely large datasets (Bayes-optimal risk). If the noise differs between sensitive groups,
zero-discrimination (perfect fairness) can only be achieved by introducing bias or variance.

The following, Lemma 3.1, shows that applying a mechanism for reaching equality of risk on a
dominated classifier h ∈ H leads to equal or worse risks than applying it to a Pareto optimal classifier
hp ∈ P(H,A) that dominates h. This motivates searching for Pareto-efficient classifiers, potentially
as an intermediate step, even when the ultimate goal is a degraded, zero-disparity classifier.
Lemma 3.1. If h 6∈ P(H,A)→ ∃hp ∈ P(H,A) : hp � h ∧ Ra(hERp ) ≤ Ra(hER)∀a, with hER

an equal-risk classifier : Ra(hER) = max
a′∈A

Ra′ (h),∀a and hERp : Ra(hERp ) = max
a′∈A

Ra′ (hp).

Literature on fairness has focused on putting constraints on the norm of discrimination gaps similar
to ||~ΓA(h)||∞ (Zafar et al. (2017; 2015); Creager et al. (2019); Woodworth et al. (2017)). We follow
a similar criteria in Definition 3.3 and define the optimal Pareto-fair classifier as the Pareto-optimal
one that minimizes this norm. Note that one could alternatively choose to find the Pareto classifier
that minimizes the maximum subgroup risk.
Definition 3.3. Optimal Pareto-fair classifier and Pareto-fair point: A classifier h∗ is an optimal
Pareto-fair classifier if it minimizes the discrimination gap among all Pareto front classifiers, h∗ =

arg min
h∈P(H,A)

||~ΓA(h)||∞. The Pareto-fair point is defined as ~R∗ = {Ra(h∗)}a∈A.

Figure 1 shows a scenario with binary sensitive attributes a and binary output variable y where none
of the classifiers in the Pareto front intersect the equality of risk line. Here the level of noise between
subgroups differs, and the Pareto-fair point ~R∗ would not be achieved by either a Naive classifier
(minimizes expected global risk), or a classifier where subgroups are re-sampled to appear with
equal probability (rebalanced Naive classifier). Note that the amount of performance degradation
required to enforce perfect fairness starting from the Naive classifier is significantly higher than
when starting from the Pareto-fair point.

Our objective is to find the optimal no-harm classifier h∗ as in Definition 3.3. In order to guarantee
that the Pareto front P(H,A) is non-empty, we assume that for any functions φ({Ra(h)}) : R|A| →
R that are monotonically increasing in the risks, as is the case of the Naive loss φlnaive({Ra(h)}) =∑
a∈A

PaRa(h), the classifier h′ = arg min
h∈H

φ({Ra(h)}) is also in the hypothesis class (not an infi-

mum). To simplify our analysis further, we also assume that the Pareto front is compact, this ensures
that h∗ is a minimum and not an infimum. The following lemma formalizes these statements and
shows that we can recover classifiers in the Pareto front with different levels of discrimination by
minimizing φ({Ra(h)}) subject to a discrimination constraint.
Lemma 3.2. Given that ∃ arg min

h∈H
φ({Ra(h)}a∈A) for any φ({Ra(h)}a∈A) : R|A| → R monoton-

ically increasing with Ra(h),∀a and ε∗ = min
h∈P(H,A)

||~ΓA(h)||∞ we have the following:

h̄ = arg min
h∈H

φ({Ra(h)}a∈A) belongs to P(H,A);

h′ = arg min
h∈H

φ({Ra(h)}a∈A) s.t.||~ΓA(h)||∞ ≤ ε′ belongs to P(H,A),∀ε′ ≥ ε∗;

ĥ = arg min
h∈H

φ({Ra(h)}a∈A) s.t.||~ΓA(h)||∞ ≤ ε∗ is a Pareto-fair classifier.

(1)
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Figure 1: Example of binary output variable y = {0, 1} and two sensitive groups a = {0, 1}, with Pa=1 >
Pa=0. Bottom left figure shows conditional distributions of observation variable pa(x). Top left shows output
variable distribution as a function of both observation and sensitive variable p(y = 1|x, a) which for simplicity
are piece-wise constants with two levels ρlow and ρhigh, ∆ represents the gap between the level transitions
for each group. Middle figure shows the Pareto frontier between (subgroup) risks for this problem; since noise
levels are not the same across subgroups, perfect fairness is not attainable. Equality of Risk requires pure
degradation of service for group a = 1. Both Naive and Rebalanced Naive classifiers do not attain the best
possible no-harm classifier in this case. The proposed Pareto-fair point is shown in green. The utopic point
(Ropt

0 ,Ropt
1 ) can only be reached in the infinite sample regime where the classifier also has access to the sensitive

attribute (h(X,A)). Rightmost figure shows the trade-offs attainable between discrimination and mean risks,
an equivalent problem to the risk trade-off figure.

Proofs for all lemmas are given in the supplementary material, Section A.1. In Section 4 we pro-
vide a concrete algorithm to approximately recover the optimal no-harm classifier h∗ by adapting a
standard Stochastic Gradient Descent approach.

4 OPTIMIZATION METHODS

Recall that we wish to recover the Pareto-fair classifier h∗ within our hypothesis class. From Lemma
3.2 we can recover this classifier by solving ĥ = arg min

h∈H
φ({Ra(h)}a∈A) s.t.||~ΓA(h)||∞ ≤ ε∗, for

any monotonic function φ. Equivalently, we can also solve ĥ = arg min
h∈H

φ({Ra(h)}a∈A) s.t. :

||Ra(h) − min
a′∈A

Ra′(h)|| < ε∗,∀a ∈ A. One approach to solving this numerically is to use the

squared penalty loss Nocedal & Wright (2006),

φ̂ =
∑
a∈A

Ra(h) + µa max(Ra(h)− min
a′∈A

Ra′(h)− ε∗, 0)2, (2)

where we used
∑
a∈A

Ra(h) as an example of the monotonically decreasing function. The two main

challenges of this approach are that ε∗ is unknown and that the weights µa need to be dynamically
adjusted, which is tackled as follows.

From Lemma 3.2 we have that for any monotonically decreasing loss φ({Ra(h)}), h =
arg min
h∈H

φ({Ra(h)}) already belongs to the Pareto front of the classifier. Since we wish to avoid

searching for ε∗ and we want to ensure our classifier is in the Pareto boundary, we define the loss
φ(h; ~µ, h−) =

∑
a∈A

Ra(h) + µa max(Ra(h)−min
a′

Ra′(h
−), 0)2. (3)

Here we make use of a target classifier h−, which is a delayed copy of our current classifier h.
Having a target classifier h− implies that no gradients from term min

a′
Ra′(h

−) affect the current

network parameters, making the loss function φ(h; ~µ, h−) monotonically decreasing for all ~µ � 0.
Target networks in loss functions are extensively used in the domain of Reinforcement Learning
to reduce overestimation Van Hasselt et al. (2016), we adapt this idea to enforce monotonicity.
The penalty terms ~µ are dynamically adjusted until no further reduction of the disparities Ra(h) −
min
a′

Ra′(h
−) is seen on validation data.

The proposed implementation of the Pareto-fair framework is formalized in Algorithm 1 (shown
in supplementary material, Section A.2) where we specify how to update the penalty coefficients
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µa. We regularly check that reductions in the fairness gap obtained on the training set generalize
by evaluating this gap on the validation set; we additionally check if the trade-offs are in the non-
dominated solution set (i.e., we have not observed a universally better classifier during training).
Algorithm 2 (shown in supplementary material, Section A.2) summarizes how we perform stochastic
gradient descent steps with early stopping in-between µa update steps.

To conclude this section let us stress that the proposed framework is independent of the desired
algorithm classH and risk R; these are kept from the original application. The Pareto-fair classifier
uses the same inputs as the Naive classifier, with parameters that have been optimized towards no-
harm fairness. Code will be made available.

5 EXPERIMENTS AND RESULTS

We applied the methodology described in Section 4 to learn a classifier (from hypothesis class H)
in the group-risk Pareto front with the smallest group-risk disparity (Pareto-fair classifier). We first
validate our methodology on synthetic data with known optimal Pareto-fair classifiers. Observations
are drawn from a Gaussian mixture model where each sensitive attribute is encoded by a correspond-
ing Gaussian mode, and target attributes are binary. We demonstrate our methodology on standard
publicly available fairness datasets, and show how the risk disparity gaps are subsequently reduced.
Where applicable, we compare our results against the methodologies proposed in Zafar et al. (2017);
Kamishima et al. (2012); Hardt et al. (2016); Feldman et al. (2015).

5.1 SYNTHETIC DATA

We tested our approach on synthetic data where the observations are drawn from conditional Gaus-
sian distributions X|A = a ∼ N(µA, 1), the target variable y is a conditional Bernoulli variable
with distribution Y |X = x,A = a ∼ Ber

(
fa(x)

)
with fa(x) = ρlowa 1[x ≤ ca] + ρhigha 1[x > ca]

)
,

and |A| = 3. We used mean squared error (MSE) as our loss function. Under these conditions, the
Bayes-optimal classifier for each subgroup is h(x) = fa(x). The sub-group risk function for any
classifer h can be computed as Ra(h) = EX|A=a[Y − h(X))2] = EX|A=a[fa(X)(1 − h(X))2 +

(1− fa(X))h(X)2]. Network details are given in the supplementary material, Section A.3. Figure
2 shows the analytically-derived Pareto front (see Section A.4 in supplementary material), as well
as the trade-off obtained by the proposed algorithm and a balanced Naive classifier.

Figure 2: Synthetic data experiment. Bottom left figure shows the conditional distribution of the observa-
tion variables for each of the three subgroups, while upper left shows the distribution of the target variable
conditioned on both the observation and sensitive attribute; it additionally shows the theoretical and empirical
Pareto-fair classifier. Center figures shows the empirical validation risks as a function of epochs during the
optimization procedure, with a sharp transition visible when we begin following Algorithm 1 (top) and the val-
ues of the penalties at every epoch (bottom). Rightmost figure shows the risk distribution of all Pareto-optimal
classifiers, as well as the risk attained by a rebalanced Naive classifier, and the classifier recovered using our
method (close to the optimum); the equality of risk line is shown for reference.

Our approach works as expected, we can see that the Pareto-fair optimization procedure is able to
correctly trade risks from the two advantaged subgroups to reduce the risk of the worst performing
subgroup. It is also able to obtain a classifier that is close to the theoretical optimal by learning from
finite samples, and outperforms the balanced Naive classifier.
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5.2 REAL DATASETS

We evaluate group-risk disparity gaps on mortality prediction, skin lesion classification, income
prediction, and credit lending for fairness-unaware (Naive) classifiers. We demonstrate how the
proposed Pareto-fair approach can reduce those risk disparity gaps without unnecessary harm using
the proposed optimization methodology.

Similarly to Chen et al. (2018); Zafar et al. (2017); Hardt et al. (2016); Woodworth et al. (2017), we
omit the sensitive attribute a ∈ A from our observation features. Our method trains a single classifier
for the entire dataset to avoid needing test-time access to sensitive attributes whenever possible. All
classifiers shown in this section are implemented using neural networks and/or logistic regression,
we used either cross-entropy or categorical MSE as our training loss depending on the dataset, and a
60/20/20 train-validation-test split. For details on the architecture used on each dataset, refer to the
supplementary material, Section A.3.

We compare our methodology against a Naive classifer, where no special consideration is given
to fairness, a rebalanced Naive classifier, where we oversample underrepresented sub-populations,
and against the post-processing framework presented in Hardt et al. (2016). We also apply this latter
framework to the no-harm classifier recovered by our method, which can be seen as an extension and
experimental validation of the ideas advanced in Woodworth et al. (2017). Additional comparisons
are included when possible.

5.2.1 PREDICTING MORTALITY IN INTENSIVE CARE PATIENTS

Medical decisions in general and mortality prediction in particular are examples where notions of
fairness among sub-populations are of paramount importance, and where ethical considerations
make no-harm fairness a very attractive paradigm. To that end, we used clinical notes collected
from adult ICU patients at the Beth Israel Deaconess Medical Center (MIMIC-III dataset) Johnson
et al. (2016) to predict patient mortality. We follow the pre-processing methodology outlined in
Chen et al. (2018), where we analyze clinical notes acquired during the first 48 hours of ICU admis-
sion; discharge notes where excluded, as where ICU stays under 48 hours. Tf-idf statistics on the
10, 000 most frequent words in clinical notes are taken as input features.

We study fairness with respect to age (under/over 55 years old), self-reported ethnicity, and outcome.
We chose to include the outcome (Alive/Deceased) variable as a sensitive sub-population criteria
both to demonstrate a case where sensitive attributes would not be available at test-time, and also
because in our experiments patients who ultimately passed away on ICU were under-served by a
Naive classifier, with predictive risks significantly higher than surviving patients. Table 1 shows
empirical risks and accuracy of all tested methodologies.

5.2.2 SKIN LESION CLASSIFICATION

The HAM10000 dataset Tschandl et al. (2018) collects over 10, 000 dermatoscopic images of skin
lesions over a diverse population. Lesions are classified according to diagnostic categories. Di-
agnosis is confirmed by expert consensus, pathology, and follow-up appointments or confocal mi-
croscopy. Gender and age attributes of participants were also recorded.

We trained a DenseNet121 network Huang et al. (2017) to classify skin lesions from dermatoscopic
images. We found that a Naive classifier exhibited almost no measurable discrimination based on
age or race on this dataset. We instead chose to use the diagnosis class as both the target and
sensitive variable, casting balanced risk minimization as a particular use-case for Pareto fairness.
This is possible since our methodology does not require test-time access to sensitive labels. It was
not possible to show comparisons against Hardt et al. (2016) since the sensitive attribute is perfectly
predictive of the outcome. Table 2 shows empirical risks and accuracies for all tested methodologies.

5.2.3 INCOME PREDICTION AND CREDIT RISK ASSESMENT

We tested the proposed method on the Adult UCI dataset Dua & Graff (2017a) and on the German
Credit dataset Dua & Graff (2017b). In the Adult UCI dataset the goal is to predict a person’s
income, which can be an important factor on meaningful decisions such as credit lending. This
dataset contains 105 binarized observations representing education status, age, ethnicity, gender,
and marital status and a target variable indicating income status (binary attribute representing over
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Out/Age/Race Naive Rebalanced Naive Naive+Zafar Ours Rebalanced Naive+Hardt Ours+Hardt

A/A/NW 0.07 / 96.0% 0.06 / 94.9% 0.01 / 100.0% 0.20 / 85.3% 68.9% 68.2%
A/A/W 0.06 / 96.2% 0.06 / 95.1% 0.01 / 100.0% 0.21 / 82.4% 70.4% 70.7%
A/S/NW 0.10 / 94.8% 0.13 / 87.9% 0.01 / 100.0% 0.32 / 70.3% 69.7% 70.6%
A/S/W 0.09 / 94.1% 0.14 / 87.7% 0.01 / 99.8% 0.31 / 72.5% 69.8% 70.2%
D/A/NW 0.67 / 44.0% 0.74 / 52.0% 2.27 / 28.0% 0.34 / 80.0% 65.1% 73.2%
D/A/W 0.48 / 50.0% 0.58 / 54.5% 0.60 / 71.2% 0.15 / 89.4% 48.9% 79.7%
D/S/NW 0.58 / 35.7% 0.61 / 42.6% 0.33 / 89.6% 0.23 / 75.7% 51.3% 74.6%
D/S/W 0.57 / 37.5% 0.60 / 52.9% 0.05 / 98.8% 0.23 / 76.4% 53.8% 73.9%
Mean 0.33 / 68.5% 0.37 / 71.0% 0.41 / 85.9% 0.25 / 79.0% 62.2% 72.6%
Discrimination 0.61 / 60.5% 0.68 / 52.5% 2.27 / 72.0% 0.18 / 19.1% 21.5% 11.5%

Table 1: Group-specific cross-entropy risks and accuracies for Naive, Rebalanced Naive, Zafar applied to
the features learned in the Naive classifier (Naive+Zafar), and our proposed Pareto-Fair classifiers (Ours). We
considered the combination of Outcome (Alive or Deceased, A/D), Age (Adult or Senior, A/S) and Race (White
or Non-White, W/NW) to be our sensitive attributes, and Outcome as our target attribute. No classifier had test-
time access to the sensitive attributes. Accuracies for the post-processing Equality of Odds method proposed in
Hardt et al. (2016) applied on the Rebalanced Naive (Rebalanced Naive+Hardt) and Pareto-Fair (Ours+Hardt)
classifiers are also shown (equalized across Age and Ethnicity). The proposed Pareto-Fair classifier exhibited
the lowest balanced mean risk and risk disparity amongst all trained classifiers. Although Naive+Zafar exhibits
the highest mean accuracy, it does so at the cost of severly underserving non-white adults who ultimately passed
away, as a result, their discrimination values are relatively high. Only the Ours+Hardt classifier exhibits lower
accuracy disparity, but the reduction in accuracy disparity is similar to the reduction in mean accuracy. When
comparing Ours+Hardt and Rebalanced Naive+Hardt classifiers, we note that not only the resulting accuracy
discrimination is lower on the Ours+Hardt classsifier, the mean accuracy is also significantly higher, supporting
the argument of first applying Pareto-fairness before doing harmful post-processing.

Lesion Type Naive Rebalaced Naive Ours

akiec 0.110 / 48% 0.118 / 56% 0.089 / 63%
bcc 0.096 / 60% 0.059 / 73% 0.065 / 63%
bkl 0.110 / 51% 0.105 / 58% 0.092 / 52%
df 0.142 / 50% 0.143 / 33% 0.053 / 83%
mel 0.011 / 95% 0.009 / 96% 0.024 / 89%
nv 0.043 / 86% 0.057 / 71% 0.044 / 79%
vasc 0.156 / 37% 0.125 / 50% 0.069 / 65%
Mean 0.095 / 61% 0.088 / 63% 0.062 / 71%
Discrimination 0.145 / 58% 0.134 / 63% 0.068 / 37%

Table 2: Group-specific mean square error risks and accuracies for Naive Rebalanced Naive and proposed
Pareto-Fair (Ours) classifiers. We took Lesion Type to be both our target and sensitive variable; a particular
application of Pareto-fairness to adaptive risk-equalization. Lesion types are classified as Actinic keratoses
and intraepithelial carcinoma (akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (bkl), dermatofi-
broma (df), melanoma (mel), melanocytic nevi (nv) and vascular lesions (vasc). The Pareto-fair classifier
behaves as expected, exhibiting the best balanced mean risk and balanced accuracy, as well as the lowest risk
and accuracy discriminations among the three tested methodologies. Note that comparisons against the other
baselines is not possible since the target label is not binary.

or under $50, 000); data is collected on 32, 561 adults. In the German Credit dataset the goal is
predicting credit risk, this dataset contains 1, 000 entries with 20 observation attributes; sensitive
attribute gender is not directly included in the data, but can be derived from the given information.

We strive to ensure no-harm fairness across gender and ethnicity. To compare ourselves against state
of the art methods Zafar et al. (2017); Feldman et al. (2015); Kamishima et al. (2012) we binarize the
sensitive attributes into White-Male and Other when dealing with ethnicity and gender simultane-
ously, or Male and Female when dealing with gender, and use the unified testbed provided in Friedler
et al. (2019). We limit our hypothesis classH to linear logistic regression to compare evenly against
these standard baselines. Results on the Adult dataset when repairing for ethnicity and gender are
shown in Table 3a. Comparable results when repairing for only the gender attribute in both the Adult
and German Credit datasets are shown in tables 3b and 3c respectively. All values are reported on
test data using 5-fold cross-validation. Non-Hardt methods show similar accuracy performances on
these particular examples, with our method showing consistently smaller risk disparity gaps. Note
that no other method has group risks that dominate our Pareto-fair classifier, the converse is not true,
all other classifiers have risks that are strictly dominated by our classifier, suggesting their results
are not Pareto efficient. As expected, Hardt is the method with the smallest accuracy disparity, but
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this comes at a steep accuracy cost. In the Adult dataset, where there is sufficient data to train a
neural network, we observe that it slightly outperforms linear logistic regression as expected. Lower
cross-entropy risks do not necessarily translate to highest accuracies, this was especially true on the
relatively small German Credit dataset.

Sensitive Attribute Hardt Kamishima Feldman Zafar Ours-LR Ours-NN Ours+Hardt-NN

White Male 78.2% 91.0% 90.8% / 3.17 90.5% / 0.24 90.5% / 0.11 90.8% / 0.12 80.8%
Other 74.6% 80.5% 80.4% / 2.47 80.1% / 0.42 80.7% / 0.21 81.0% / 0.20 78.3%
Mean 76.4% 85.7% 85.6% / 2.82 85.3% / 0.33 85.6% / 0.16 85.9% / 0.16 79.6%
Discrimination 3.5% 10.5% 10.4% / 0.70 10.3% / 0.18 9.8% / 0.10 9.8% / 0.07 2.5%

(a) Method comparison in Adult dataset with sensitive groups White Male and Other.

Sensitive Attribute Hardt Kamishima Feldman Zafar Ours-LR Ours-NN Ours+Hardt-NN

Male 82.9% 92.6% 92.3% / 3.19 92.2% / 0.20 91.9% / 0.10 91.9% / 0.11 81.8%
Female 79.6% 80.9% 80.7% / 2.44 80.8% / 0.41 81.0% / 0.20 81.6% / 0.20 78.8%
Mean 81.2% 86.7% 86.5% / 2.81 86.5% / 0.30 86.4% / 0.15 86.7% / 0.15 80.3%
Discrimination 3.3% 11.7% 11.6% / 0.74 11.4% / 0.20 11.9% / 0.10 10.3% / 0.09 3.0%

(b) Method comparison in Adult dataset with sensitive groups Male and Female.

Sensitive Attribute Hardt Kamishima Feldman Zafar Ours-LR

Male 50.7% 63.7% 73.2% / 0.57 72.5% / 0.57 65.1% / 0.36
Female 50.4% 70.5% 71.1% / 0.56 71.6% / 0.63 68.8% / 0.38
Mean 50.5% 67.1% 72.1% / 0.57 72.1% / 0.60 67.0% / 0.37
Discrimination 0.4% 6.8% 2.2% / 0.01 0.9% / 0.06 3.7% / 0.02

(c) Method comparison in German Credit dataset with sensitive groups Male and Female.

Table 3: Accuracy and cross-entropy results on Adult dataset with sensitive groups White Male and Other (a),
Male and Female (b), and on German Credit dataset with sensitive attributes Male and Female (c); no classifier
had test-time access to the sensitive attributes. We compare against the methods proposed in Hardt et al. (2016)
(Hardt),Koski (1985) (Kamishima), Feldman et al. (2015) (Feldman), Zafar et al. (2017) (Zafar); all of which
use linear logistic regression as their hypothesis class. We show accuracy results on our method using linear
logistic regresion (OursLR), a fully-connected neural network (Ours-NN), and postprocessing on the neural
network classifier (Ours+Hardt-NN). Fairness parameters for Kamishima, Feldman and Zafar were adjusted by
sweeping, results report performance of smaller risk disparity classifier.

6 DISCUSSION

There exists a rich literature of fairness in machine learning in general, and risk-based fairness in
particular. Here we explore a relatively untapped sub-problem where the goal is to reduce risk
disparity gaps in the most ethical way possible (i.e., minimizing unnecessary harm). Unlike other
works in the area, our problem investigates on how to reduce this disparity gap without collecting
additional data samples, using the entirety of the available training data to produce an algorithm that
is maximally fair with respect to sub-populations, and that does not necessarily require test-time
access to sensitive attributes.

We provide a concrete algorithmic adaptation to any standard classification or regression loss to
bridge this disparity gap at no unnecessary harm, and demonstrate its performance on several real-
world case studies. Even for applications where the need for strict fairness outweighs the need for
no-harm classifiers, this methodology can be applied before any post-hoc corrections to ensure that
the risk disparity gap is closed in the most risk-efficient way for all involved sub-populations. The
proposed algorithm does not sweep through different disparity constraint values, as previously done
in related works, making it a simpler alternative.

As an avenue of future research, it could be of interest to analyze if we can automatically identify
high-risk sub-populations as part of the learning process and attack risk disparities as they arise,
rather than relying on preexisting notions of disadvantaged groups or populations. We strongly
believe that no-harm notions of fairness are of great interest for several applications, especially so
on domains such as healthcare and lending, where decisions have highly impactful.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and Hanna Wallach. A reduc-
tions approach to fair classification. arXiv preprint arXiv:1803.02453, 2018.

Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016.

Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification.
Data Mining and Knowledge Discovery, 21(2):277–292, 2010.

Irene Chen, Fredrik D Johansson, and David Sontag. Why is my classifier discriminatory? In
Advances in Neural Information Processing Systems, pp. 3539–3550, 2018.

Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa A Weis, Kevin Swersky, Toniann
Pitassi, and Richard Zemel. Flexibly fair representation learning by disentanglement. arXiv
preprint arXiv:1906.02589, 2019.

Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th International
Conference on Machine Learning, pp. 231–238, 2000.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017a. URL http://archive.
ics.uci.edu/ml.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017b. URL https://
archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science confer-
ence, pp. 214–226. ACM, 2012.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Certifying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 259–268. ACM, 2015.

Sorelle A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P
Hamilton, and Derek Roth. A comparative study of fairness-enhancing interventions in machine
learning. In Proceedings of the Conference on Fairness, Accountability, and Transparency, pp.
329–338. ACM, 2019.

Arthur M Geoffrion. Proper efficiency and the theory of vector maximization. Journal of mathe-
matical analysis and applications, 22(3):618–630, 1968.

Moritz Hardt, Eric Price, Nathan Srebro, et al. Equality of opportunity in supervised learning. In
Advances in neural information processing systems, pp. 3315–3323, 2016.

Tatsunori B Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. arXiv preprint arXiv:1806.08010, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3:160035, 2016.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier
with prejudice remover regularizer. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 35–50. Springer, 2012.

Juhani Koski. Defectiveness of weighting method in multicriterion optimization of structures. Com-
munications in applied numerical methods, 1(6):333–337, 1985.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pp. 6402–6413, 2017.

9

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)


Under review as a conference paper at ICLR 2020

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair
autoencoder. arXiv preprint arXiv:1511.00830, 2015.

Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic theory, vol-
ume 1. Oxford university press New York, 1995.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 2012.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media,
2006.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5:
180161, 2018.

Berk Ustun, Yang Liu, and David Parkes. Fairness without harm: Decoupled classifiers with prefer-
ence guarantees. In International Conference on Machine Learning, pp. 6373–6382, 2019.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Blake Woodworth, Suriya Gunasekar, Mesrob I Ohannessian, and Nathan Srebro. Learning non-
discriminatory predictors. arXiv preprint arXiv:1702.06081, 2017.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. Fair-
ness constraints: Mechanisms for fair classification. arXiv preprint arXiv:1507.05259, 2015.

Muhammad Bilal Zafar, Isabel Valera, Manuel Rodriguez, Krishna Gummadi, and Adrian Weller.
From parity to preference-based notions of fairness in classification. In Advances in Neural In-
formation Processing Systems, pp. 229–239, 2017.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.
In International Conference on Machine Learning, pp. 325–333, 2013.

10



Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 PROOFS

Here we restate the Lemmas shown in Section 3 along with a sketch of the proofs

Lemma 3.1 If h 6∈ P(H,A) → ∃hp � h ∈ P(H,A) : Ra(hERp ) ≤ Ra(hER),∀a, where hER

is a equality of risks classifier in H such that Ra(hER) = max
a′∈A

Ra′ (h),∀a and hERp : Ra(hERp ) =

max
a′∈A

Ra′ (hp),∀a

Proof. If hp dominates h→ Ra(hER) = max
a′∈A

Ra′ (hp) ≤ max
a′∈A

Ra′ (h) = Ra(hER)

Lemma 3.2 Given that ∃ arg min
h∈H

φ({Ra(h)}a∈A) for any φ({Ra(h)}a∈A) : R|A| → R monoton-

ically increasing with Ra(h),∀a and ε∗ = min
h∈P(H,A)

||~ΓA(h)||∞ we have the following:

h̄ = arg min
h∈H

φ({Ra(h)}a∈A) belongs to P(H,A);

h′ = arg min
h∈H

φ({Ra(h)}a∈A) s.t.||~ΓA(h)||∞ ≤ ε′ belongs to P(H,A),∀ε′ ≥ ε∗;

ĥ = arg min
h∈H

φ({Ra(h)}a∈A) s.t.||~ΓA(h)||∞ ≤ ε∗ is a Pareto-fair classifier.

(4)

Proof. By definition, ε∗ = min
h∈P(H,A)

||~ΓA(h)||∞, therefore, ∀ε′ ≥ ε∗ we know that the set of

all feasible classifiers that belong to both the Pareto front P(H,A) and satisfy ||~ΓA(h)||∞ ≤ ε′

is non-empty, call this set P(H,A, ε′). By contradiction, suppose h′ 6∈ P(H,A, ε′), therefore,
there exists a classifier h̃ ∈ P(H,A, ε′), and a subgroup ã such that Ra(h′) ≥ Ra(h̃),∀a ∈
A and Rã(h′) > Rã(h̃). Since φ({Ra(h)}a∈A) is monotonically decreasing in Ra(h), then
φ({Ra(h′)}) > φ({Ra(h̃)}), which is absurd, proving that h′ ∈ P(H,A)

The statements for ĥ and h̄ follow from taking ε′ = ε∗,∞ respectively.

A.2 ALGORITHMIC DETAILS

Here we provide the core Pareto-Fair algorithm (Algorithm 1), updating and optimizing the loss
function proposed in Eq 3, a detailed view on how we optimize our adaptive loss in-between penalty
update (µa) steps is shown in Algorithm 2.
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Algorithm 1: ParetoFairOptimization
[h] Given: hθ, L,DTr,DVal, nµ, np, nmax, γ > 1, lr,B
~µ← ~0, µcount ← 0, ecount ← 0, ε∗ ←∞, h∗ ← hθ
while ecount ≤ nmax and µcount ≤ nµ do

µcount ← µcount + 1, ecount ← ecount + 1

hθ, R
Val
− ← AdaptiveOptimize(hθ, L, ~µ,DTr,DVal, np, lr,B) // Optimize loss with fixed ~µ

// Check that solution is no-harm and reduces fairness gap

if ||~ΓA(h)||∞ ≤ ε∗ and ~̄Rval(h) is not dominated by previous validation risks then
µcount ← 0, h∗ ← hθ, ε

∗ ← ||~ΓA(h)||∞
end
a′ = arg maxa R̄

Val
a (h) // Update µ values

if µa′ = 0 then µa′ ←
R̄val

a′ (h)

2ε∗ else µa′ ← γµa′

end
// Exit loop due to excessive iterations or no improvement in fairness

Return: h∗

Algorithm 2: AdaptiveOptimize
Given: hθ, L, ~µ,DTr,DVal, np, lr,B
p← 0, φ∗ ←∞ h∗ ← hθ
RTr
− ← mina R̄

Tr
a (h)

while p ≤ np // Making loss progress
do

for {(xi, yi, ai}Bi=1 ∈ DTr // Run one epoch of SGD on training set
do

Ia = {i ∈ {1, . . . , B} ∧ ai = a}, R̄B
a(hθ) = 1

|Ia|
∑
i∈Ia

L(hθ(xi), yi) // Empirical risks

φB(hθ) =
∑
a∈A R̄

B
a(hθ) + µa max(R̄B

a(hθ)−RTr
−, 0)2

θ ← θ − lr∇θφB(hθ) // Gradient step
end
if φVal(hθ) < φ∗ // Evaluate improvement on Val and update target risks
then

h∗ ← hθ; φ∗ ← φVal(hθ); p← 0
else

p← p+ 1;
end
RTr
− ← mina R̄

Tr
a (h); RVal

− ← mina R̄
Val
a (h)

end
Return: h∗, RVal

−
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A.3 NEURAL ARCHITECTURES

Table 4 summarizes network architectures and loss functions for all experiments in Section 5. Note
that all network heads are EnsembleHeads instead of the standard Dense layer head, these Ensem-
bleHeads were introduced to reduce generalization error, and are described in Section A.3.1.

Dataset Network Body Gate Loss type Network Head

Synthetic FullyConnected
64x64 ELU CategoricalMSE EnsembleHead

16-head, p=0.5

Adult
Dua & Graff (2017a)

FullyConnected
64x64 ELU CrossEntropy EnsembleHead

16-head, p=0.5

MIMIC-III
Johnson et al. (2016)

FullyConnected
2048x2048 ELU CrossEntropy EnsembleHead

16-head, p=0.5

HAM10000
Tschandl et al. (2018)

DenseNet121
Huang et al. (2017) ReLU CategoricalMSE EnsembleHead

16-head, p=0.5

Table 4: Summary of network architectures and losses. All output network heads are 16-head ensemble dense
layers to improve generalization errors.

A.3.1 ENSEMBLE HEADS

The use of ensemble networks can help reduce the generalization error (Lakshminarayanan et al.
(2017)). We found gaps in generalization error to be particularily significant when attempting to
bridge risk disparity gaps. To that end, we propose a minimalistic, lightweight implementation
of Ensemble heads. The algorithm used to recover the ensemble output at train-time is similar to
a structured dropout layer, where several independent dense layers are stochastically averaged to
recover the final output, this operation can be efficiently implemented using a single, large dense
layer and sampling combination weights as described in Algorithm 3. For test-time evaluation, we
instead take the mean across all ensemble heads as the final output.

Algorithm 3: EnsembleHead

Given: x ∈ RB×L, np, no, p, θ ∈ RL×(ne×n0)

x ∈ RB×L // Batch of feature vectors

np, no // Number of ensemble heads and outputs

θ ∈ RL×(ne×n0) // Parameters of base dense layer

p // Probability of head activity

ye = Reshape(x× θ; [B,no, np]) // Get full ensemble outputs

γe = [Ber(p)]B×np // Get active heads in batch

y = ye×γe∑
e γe

// Get mean output of active heads

Return: y

Ensembles have also been shown to empirically outperform single models, and how they can par-
tially account for risk variance Domingos (2000).

A.4 ANALYSIS OF PARETO-OPTIMAL CLASSIFIERS IN THE INFINITE DATA AND MODEL
CAPACITY REGIME

In this section we analyze the form of Pareto-optimal solutions to classification (and regression)
tasks in the asymptotically ideal case where we have infinite capacity hypothesis classes, that is,
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or hypothesis class H contains every function mapping points from the observation space X to the
classification or regression space R|Y|.

We additionally assume that the joint distributions between target variables Y and observation vari-
ables X given every sensitive attribute are known (i.e., P (Y,X|A) is known), and that the loss
function L(h(x), y) is convex with respect to h(x).

Lemma 3.2 shows that any joint loss of the form

φPA
({Ra(h)}) = EX,Y,A[L(h(X), Y ] =

∑
a∈A

PaRa(h), (5)

produces solutions which are already in the Pareto front of {Ra(h)} for any distribution ofA ∼ PA.
Since the loss function is convex with respect to h(X) and the hypothesis class is complete, it can
also be shown that for any point in the Pareto front, there exists a value of PA such that that point is
reached by minimizing φPA

({Ra(h)}) Geoffrion (1968); Koski (1985); Miettinen (2012)

We can therefore analyze the Bayes-optimal classifier hPA
which minimizes the Naive risk

φPA
({Ra(h)}), and analytically compute the sub-population risks Ra(hPA

) induced. In general,
we can write

E[Y |x] =
∑
a∈A

E[Y |x, a]P (a|x),

=

∑
a∈A

E[Y |x,a]P (x|a)Pa∑
a∈A

P (x|a)Pa
,

hPA
(X) = arg min

η
E[L(η, Y )|X],

Ra(hPA
) = EX,Y [L(hPA

(X), Y )|A = a],

(6)

and in the particular case where target variable Y is categorical, and the classifier loss is an L2 loss
against the one-hot encoding of variable Y the equations reduce to

E[Y |x] =

∑
a∈A

~P [Y |x,a]P (x|a)Pa∑
a∈A

P (x|a)Pa
,

hPA
(X) = E[Y |x],

Ra(hPA
) = EX [

∑
y P (y|a,X)

∑
y′(h

y′

PA
(X)− δ[y − y′])2].

(7)

14


	Introduction
	Related Work
	Problem Statement
	Optimization Methods
	Experiments and Results
	Synthetic Data
	Real Datasets
	Predicting Mortality in Intensive Care Patients
	Skin Lesion Classification
	Income Prediction and Credit Risk Assesment


	Discussion
	Appendix
	Proofs
	Algorithmic details
	Neural Architectures
	Ensemble Heads

	Analysis of Pareto-optimal classifiers in the infinite data and model capacity regime


