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ABSTRACT

Neural ordinary differential equations (ODEs) have been attracting increasing at-
tention in various research domains recently. There have been some works study-
ing optimization issues and approximation capabilities of neural ODEs, but their
robustness is still yet unclear. In this work, we fill this important gap by exploring
robustness properties of neural ODEs both empirically and theoretically. We first
present an empirical study on the robustness of the neural ODE-based networks
(ODENets) by exposing them to inputs with various types of perturbations and
subsequently investigating the changes of the corresponding outputs. In contrast
to conventional convolutional neural networks (CNNs), we find that the ODENets
are more robust against both random Gaussian perturbations and adversarial attack
examples. We then provide an insightful understanding of this phenomenon by ex-
ploiting a certain desirable property of the flow of a continuous-time ODE, namely
that integral curves are non-intersecting. Our work suggests that, due to their in-
trinsic robustness, it is promising to use neural ODEs as a basic block for building
robust deep network models. To further enhance the robustness of vanilla neural
ODEs, we propose the time-invariant steady neural ODE (TisODE), which regu-
larizes the flow on perturbed data via the time-invariant property and the imposi-
tion of a steady-state constraint. We show that the TisODE method outperforms
vanilla neural ODEs and also can work in conjunction with other state-of-the-art
architectural methods to build more robust deep networks.

1 INTRODUCTION

Neural ordinary differential equations (Chen et al., 2018) form a family of models that approxi-
mate nonlinear mappings by using continuous-time ODEs. Due to their desirable properties, such
as invertibility and parameter efficiency, neural ODEs have attracted increasing attention recently
(Dupont et al., 2019; Liu et al., 2019). For example, Grathwohl et al. (2018) proposed a neural
ODE-based generative model—the FFJORD—to solve inverse problems; Quaglino et al. (2019)
used a higher-order approximation of the states in a neural ODE, and proposed the SNet to acceler-
ate computation. Along with the wider deployment of neural ODEs, robustness issues come to the
fore. However, the robustness of neural ODEs is still yet unclear. In particular, it is unclear how
robust neural ODEs are in comparison to the widely-used CNNs. Robustness properties of CNNs
have been studied extensively. In this work, we present the first systematic study on exploring the
robustness properties of neural ODEs.

To do so, we consider the task of image classification. We expect that results would be similar for
other machine learning tasks such as regression. Neural ODEs are dimension-preserving mappings,
but a classification model transforms a high-dimensional input—such as an image—into an output
whose dimension is equal to the number of classes. Thus, we consider the neural ODE-based classi-
fication network (ODENet) whose architecture is shown in Figure 1. An ODENet consists of three
components: the feature extractor (FE) consists of convolutional layers which maps an input datum
to a multi-channel feature map, a neural ODE that serves as the nonlinear representation mapping
(RM), and the fully-connected classifier (FCC) that generates a prediction vector based on the output
of the RM.

The robustness of a classification model can be evaluated through the lens of its performance on
perturbed images. To comprehensively investigate the robustness of neural ODEs, we perturb orig-
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inal images with commonly-used perturbations, namely, random Gaussian noise (Szegedy et al.,
2013) and harmful adversarial examples (Goodfellow et al., 2014; Madry et al., 2017). We conduct
experiments in two common settings—training the model only on authentic non-perturbed images
and training the model on authentic images as well as the Gaussian perturbed ones. We observe
that ODENets are more robust compared to CNN models against all types of perturbations in both
settings. We then provide an insightful understanding of such intriguing robustness of neural ODEs
by exploiting a certain property of the flow (Dupont et al., 2019), namely that integral curves that
start at distinct initial states are non-intersecting. The flow of a continuous-time ODE is defined
as the family of solutions/paths traversed by the state, starting from different initial points, and an
integral curve is a specific solution for a given initial point. The non-intersecting property indicates
that an integral curve starting from some point is constrained by the integral curves starting from that
point’s neighborhood. Thus, in an ODENet, if a correctly classified datum is slightly perturbed, the
integral curve associated to its perturbed version would not change too much from the original one.
Consequently, the perturbed datum could still be correctly classified. Thus, there exists intrinsic
robustness regularization in ODENets, which is absent from CNNs.

Figure 1: The architecture
of an ODENet. The neu-
ral ODE block serves as a
dimension-preserving nonlin-
ear mapping.

Motivated by this property of the neural ODE flow, we attempt
to explore a more robust neural ODE architecture by introduc-
ing stronger regularization on the flow. We thus propose a Time-
Invariant Steady neural ODE (TisODE). The TisODE removes the
time dependence of the dynamics in an ODE and imposes a steady-
state constraint on the integral curves. Removing the time depen-
dence of the derivative results in the time-invariant property of the
ODE. To wit, given a solution z1(t), another solution z̃1(t), with an
initial state z̃1(0) = z1(T

′) for some T ′ > 0, can be regarded as the
−T ′- shift version of z1(t). Such a time-invariant property would
make bounding the difference between output states convenient. To
elaborate, let the output of a neural ODE correspond to states at
time T > 0. By the time-invariant property, the difference between
outputs, ‖z̃1(T )−z1(T )‖, equals to ‖z1(T+T ′)−z1(T )‖. To con-
trol this distance, a steady-state regularization term is introduced to
the overall objective to constrain the change of a state after time ex-
ceeds T . With the time-invariant property and the steady-state term,
we show that TisODE even is more robust. We do so by evaluating
the robustness of TisODE-based classifiers against various types of
perturbations and observe that such models are more robust than vanilla ODE-based models.

In addition, some other effective architectural solutions have also been recently proposed to improve
the robustness of CNNs. For example, Xie et al. (2017) randomly resizes or pads zeros into test
images to destroy the specific structure of adversarial perturbations. Besides, the model proposed by
Xie et al. (2019) contains feature denoising filters to remove the feature-level patterns of adversarial
examples. We conduct experiments to show that our proposed TisODE can work seamlessly and in
conjunction with these methods to further boost the robustness of deep models. Thus, the proposed
TisODE can be used as a generally applicable and effective component for improving the robustness
of deep models.

In summary, our contributions are as follows. Firstly, we are the first to provide a systematic empir-
ical study on the robustness of neural ODEs and find that the neural ODE-based models are more
robust compared to conventional CNN models. This finding inspires new applications of neural
ODEs in improving robustness of deep models, a problem that concerns many deep learning theo-
rists and practitioners alike. Secondly, we propose the TisODE method, which is simple yet effective
in significantly boosting the robustness of neural ODEs. Moreover, the proposed TisODE can also
be used in conjunction with other state-of-the-art robust architectures. Thus, TisODE can serve as a
drop-in module to improve the robustness of deep models effectively.

2 PRELIMINARIES ON NEURAL ODE

It has been shown that a residual block (He et al., 2016) can be interpreted as the discrete approxima-
tion of an ODE by setting the discretization step to be one. When the discretization step approaches
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zero, it yields a family of neural networks, which are called neural ODEs (Chen et al., 2018). For-
mally, in a neural ODE, the relation between input and output is characterized by the following set
of equations:

dz(t)

dt
= fθ(z(t), t), z(0) = zin, zout = z(T ), (1)

where fθ : Rd × [0,∞)→ Rd denotes the trainable layers that are parameterized by weights θ and
z : [0,∞) → Rd represents the d-dimensional state of the neural ODE. In this case, the input zin
of the neural ODE corresponds to the state at t = 0, and the output zout is associated to the state at
some T ∈ (0,∞). Because fθ governs how the state changes with respect to time t, we also use fθ
to denote the dynamics of the neural ODE.

Given input zin, the output zout can be computed by solving the ODE in (1). If T is fixed, the output
zout only depends on the input zin and the dynamics fθ, which also corresponds to the weighted lay-
ers in the neural ODE. Therefore, the neural ODE can be represented as the d-dimensional function
φT (·, ·) of the input zin and the dynamics fθ, i.e.,

zout = z(T ) = z(0) +

∫ T

0

fθ(z(t), t) dt = φT (zin, fθ).

The terminal time T of the output state z(T ) is set to be 1 in practice. Several methods have
been proposed for training neural ODEs, such as the adjoint sensitivity method (Chen et al., 2018),
SNet (Quaglino et al., 2019), and the auto-differentiation technique (Paszke et al., 2017). In
this work, we use the most straightforward technique, i.e., updating the weights θ with the auto-
differentiation technique in the PyTorch framework.

3 AN EMPIRICAL STUDY ON THE ROBUSTNESS OF ODENETS

Robustness of deep models has gained increased attention, as it is imperative that deep models em-
ployed in critical applications, such as healthcare, are robust. The robustness of a model is measured
by the sensitivity of the prediction with respect to small perturbations on the inputs. In this study,
we consider three commonly-used perturbation schemes, namely random Gaussian perturbations,
FGSM (Goodfellow et al., 2014) adversarial examples, and PGD (Madry et al., 2017) adversarial
examples. These perturbation schemes reflect noise and adversarial robustness properties of the
investigated models respectively. We evaluate the robustness via the classification accuracies on
perturbed images, in which the original non-perturbed versions of these images are all correctly
classified.

For a fair comparison with conventional CNN models, we made sure that the number of parameters
of an ODENet is close to that of its counterpart CNN model. Specifically, the ODENet shares the
same network architecture with the CNN model for the FE and FCC parts. The only difference is
that, for the RM part, the input of the ODE-based RM is concatenated with one more channel which
represents the time t. During the training phase, all the hyperparameters are kept the same, including
training epochs, learning rate schedules, and weight decay coefficients. Each model is trained three
times with different random seeds, and we report the average performance (classification accuracy)
together with the standard deviation.

3.1 EXPERIMENTAL SETTINGS

Dataset: We conduct experiments to compare the robustness of ODENets with CNN models on
three datasets, i.e., the MNIST (LeCun et al., 1998), the SVHN (Netzer et al., 2011), and a subset of
the ImageNet datset (Deng et al., 2009). We call the subset ImgNet10 since it is collected from 10
synsets of ImageNet: dog, bird, car, fish, monkey, turtle, lizard, bridge, cow, and crab. We selected
3,000 training images and 300 test images from each synset and resized all images to 128× 128.

Architectures: On the MNIST dataset, both the ODENet and the CNN model consists of four
convolutional layers and one fully-connected layer. The total number of parameters of the two
models is around 140k. On the SVHN dataset, the networks are similar to those for the MNIST; we
only changed the input channels of the first convolutional layer to three. On the ImgNet10 dataset,
there are nine convolutional layers and one fully-connected layer for both the ODENet and the CNN
model. The numbers of parameters is approximately 280k. In practice, the neural ODE can be
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solved with different numerical solvers such as the Euler method and the Runge-Kutta methods
(Chen et al., 2018). Here, we use the easily-implemented Euler method in the experiments. To
balance the computation and the continuity of the flow, we solve the ODE initial value problem in
equation (1) by the Euler method with step size 0.1. Our implementation builds on the open-source
neural ODE codes.1 Details on the network architectures are included in the Appendix.

Training: The experiments are conducted using two settings on each dataset—training models only
with original non-perturbed images and training models on original images together with their per-
turbed versions. In both settings, we added a weight decay term into the training objective to reg-
ularize the norm of the weights, since this can help control the model’s representation capacity and
improve the robustness of a neural network (Sokolić et al., 2017). In the second setting, images
perturbed with random Gaussian noise are used to fine-tune the models, because augmenting the
dataset with small perturbations can possibly improve the robustness of models and synthesizing
Gaussian noise does not incur excessive computation time.

3.2 ROBUSTNESS OF ODENETS TRAINED ONLY ON NON-PERTURBED IMAGES

The first question we are interested in is how robust ODENets are against perturbations if the model
is only trained on original non-perturbed images. We train CNNs and ODEnets to perform clas-
sification on three datasets and set the weight decay parameters for all models to be 0.0005. We
make sure that both the well-trained ODENets and CNN models have satisfactory performances on
original non-perturbed images, i.e., around 99.5% for MNIST, 95.0% for the SVHN, and 80.0% for
ImgNet10.

Since Gaussian noise is ubiquitous in modeling image degradation, we first evaluated the robustness
of the models in the presence of zero-mean random Gaussian perturbations. It has also been shown
that a deep model is vulnerable to harmful adversarial examples, such as the FGSM (Goodfellow
et al., 2014). We are also interested in how robust ODENets are in the presence of adversarial
examples. The standard deviation σ of Gaussian noise and the l∞-norm ε of the FGSM attack for
each dataset are shown in Table 1.

Table 1: Robustness comparison of different models. We report their mean classification accuracies
(%) and standard deviations (mean ± std) on perturbed images from the MNIST, the SVHN, and
the ImgNet10 datasets. Two types of perturbations are used—zero-mean Gaussian noise and FGSM
adversarial attack. The results show that ODENets are much more robust in comparison to CNN
models.

Gaussian noise Adversarial attack

MNIST σ = 50 σ = 75 σ = 100 FGSM-0.15 FGSM-0.3 FGSM-0.5
CNN 98.1±0.7 85.8±4.3 56.4±5.6 63.4±2.3 24.0±8.9 8.3±3.2

ODENet 98.7±0.6 90.6±5.4 73.2±8.6 83.5±0.9 42.1±2.4 14.3±2.1

SVHN σ = 15 σ = 25 σ = 35 FGSM-3/255 FGSM-5/255 FGSM-8/255
CNN 90.0±1.2 76.3±2.7 60.9±3.9 29.2±2.9 13.7±1.9 5.4±1.5

ODENet 95.7±0.7 88.1±1.5 78.2±2.1 58.2±2.3 43.0±1.3 30.9±1.4

ImgNet10 σ = 10 σ = 15 σ = 25 FGSM-5/255 FGSM-8/255 FGSM-16/255
CNN 80.1±1.8 63.3±2.0 40.8±2.7 28.5±0.5 18.1±0.7 9.4±1.2

ODENet 81.9±2.0 67.5±2.0 48.7±2.6 36.2±1.0 27.2±1.1 14.4±1.7

From the results in Table 1, we observe that the ODENets demonstrate superior robustness com-
pared to CNNs for all types of perturbations. On the MNIST dataset, in the presence of Gaussian
perturbations with a large σ of 100, the ODENet produces much higher accuracy on perturbed im-
ages compared to the CNN model (73.2% vs. 56.4%). For the FGSM-0.3 adversarial examples,
the accuracy of ONEnet is around twice as high as that of the CNN model. On the SVHN dataset,
ODENets significantly outperform CNN models, e.g., for the FGSM-5/255 examples, the accuracy
of the ODENet is 43.0%, which is much higher than that of the CNN model (13.7%). On the
ImgNet10, for both cases of σ = 25 and FGSM-8/255, ODENet outperforms CNNs by a large
margin of around 9%.

1https://github.com/rtqichen/torchdiffeq.
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3.3 ROBUSTNESS OF ODENETS TRAINED ON ORIGINAL IMAGES TOGETHER WITH
GAUSSIAN PERTURBATIONS

Training a model on original images together with their perturbed versions can improve the robust-
ness of the model. As mentioned previously, Gaussian noise is commonly assumed to be present
in real-world images. Synthesizing Gaussian noise is also fast and easy. Thus, we add random
Gaussian noise into the original images to generate their perturbed versions. ODENets and CNN
models are both trained on original images together with their perturbed versions. The standard de-
viation of the added Gaussian noise is randomly chosen from {50, 75, 100} on the MNIST dataset,
{15, 25, 35} on the SVHN dataset, and {10, 15, 25} on the ImgNet10. All other hyperparameters
are kept the same as above.

Table 2: Robustness comparison of different models. We report their mean classification accuracies
(%) and standard deviations (mean ± std) on perturbed images from the MNIST, the SVHN, and
the ImgNet10 datsets. Three types of perturbations are used—zero-mean Gaussian noise, FGSM
adversarial attack, and PGD adversarial attack. The results show that ODENets are more robust
compared to CNN models.

Gaussian noise Adversarial attack

MNIST σ = 100 FGSM-0.3 FGSM-0.5 PGD-0.2 PGD-0.3
CNN 98.7±0.1 54.2±1.1 15.8±1.3 32.9±3.7 0.0±0.0

ODENet 99.4±0.1 71.5±1.1 19.9±1.2 64.7±1.8 13.0±0.2

SVHN σ = 35 FGSM-5/255 FGSM-8/255 PGD-3/255 PGD-5/255
CNN 90.6±0.2 25.3±0.6 12.3±0.7 32.4±0.4 14.0±0.5

ODENet 95.1±0.1 49.4±1.0 34.7±0.5 50.9±1.3 27.2±1.4

ImgNet10 σ = 25 FGSM-5/255 FGSM-8/255 PGD-3/255 PGD-5/255
CNN 92.6±0.6 40.9±1.8 26.7±1.7 28.6±1.5 11.2±1.2

ODENet 92.6±0.5 42.0±0.4 29.0±1.0 29.8±0.4 12.3±0.6

The robustness of the models is evaluated under Gaussian perturbations, FGSM adversarial exam-
ples, and PGD (Madry et al., 2017) adversarial examples. The latter is a stronger attacker compared
to the FGSM. The l∞-norm ε of the PGD attack for each dataset is shown in Table 2. Based on the
results, we observe that ODENets consistently outperform CNN models on both two datasets. On
the MNIST dataset, the ODENet outperforms the CNN against all types of perturbations. In par-
ticular, for the PGD-0.2 adversarial examples, the accuracy of the ODENet (64.7%) is much higher
than that of the CNN (32.9%). Besides, for the PGD-0.3 attack, the CNN is completely misled
by the adversarial examples, but the ODENet can still classify perturbed images with an accuracy
of 13.0%. On the SVHN dataset, ODENets also show superior robustness in comparison to CNN
models. For all the adversarial examples, ODENets outperform CNN models by a margin of at least
10 percentage points. On the ImgNet10 dataset, the ODENet also performs better than CNN models
against all forms of adversarial examples.

3.4 INSIGHTS ON THE ROBUSTNESS OF ODENETS

Figure 2: No integral curves intersect.
The integral curve starting from Ã1 is
always sandwiched between two inte-
gral curves starting from A1 and A3.

From the results in Sections 3.2 and 3.3, we find
ODENets are more robust compared to CNN models.
Here, we attempt to provide an intuitive understanding of
the robustness of the neural ODE. In an ODENet, given
some datum, the FE extracts an informative feature map
from the datum. The neural ODE, serving as the RM,
takes as input the feature map and performs a nonlinear
mapping. In practice, we use the weight decay technique
during training which regularizes the norm of weights in
the FE part, so that the change of feature map in terms of
a small perturbation on the input can be controlled. We
aim to show that, in the neural ODE, a small change on
the feature map will not lead to a large deviation from the
original output associated with the feature map.
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Theorem 1 (ODE integral curves do not intersect (Dupont et al., 2019; Younes, 2010)). Let z1(t)
and z2(t) be two solutions of the ODE in (1) with different initial conditions, i.e. z1(0) 6= z2(0).
Then, it holds that z1(t) 6= z2(t) for all t ∈ [0,∞).

To illustrate this theorem, considering a simple 1-dimensional system in which the state is a scalar.
As shown in Figure 2, equation (1) has a solution z1(t) starting from A1 = (0, z1(0)), where z1(0)
is the feature of some datum. Equation (1) also has another two solutions z2(t) and z3(t), whose
starting points A2 = (0, z2(0)) and A3 = (0, z3(0)), both of which are close to A1. Suppose A1

is between A2 and A3. By Theorem 1, we know that the integral curve z1(t) is always sandwiched
between the integral curves z2(t) and z3(t).

Now, let ε < min{|z2(0)− z1(0)|, |z3(0)− z1(0)|}. Consider a solution z̃1(t) of equation (1). The
integral curve z̃1(t) starts from a point Ã1 = (0, z̃1(0)). The point Ã1 is in the ε-neighborhood of
A1 with |z̃1(0) − z1(0)| < ε. By Theorem 1, we know that |z̃1(T ) − z1(T )| ≤ |z3(T ) − z2(T )|.
In other words, if any perturbation smaller than ε is added to the scalar z1(0) in A1, the deviation
from the original output z1(T ) is bounded by the distance between z2(T ) and z3(T ). In contrast, in
a CNN model, there is no such bound on the deviation from the original output. Thus, we opine that
due to this non-intersecting property, ODENets are intrinsically robust.

4 TISODE: BOOSTING THE ROBUSTNESS OF NEURAL ODES

In the previous section, we presented an empirical study on the robustness of ODENets and observed
that ODENets are more robust compared to CNN models. In this section, we explore how to boost
the robustness of the vanilla neural ODE model further. This motivates the proposal of time-invariant
steady neural ODEs (TisODEs).

4.1 TIME-INVARIANT STEADY NEURAL ODES

From the discussion in Section 3.4, the key to improving the robustness of neural ODEs is to control
the difference between neighboring integral curves. By Grownall’s inequality (Howard, 1998) (see
Theorem 2 in the Appendix), we know that the difference between two terminal states is bounded
by the difference between initial states multiplied by the exponential of the dynamics’ Lipschitz
constant. However, it is very difficult to bound the Lipschitz constant of the dynamics directly.
Alternatively, we propose to achieve the goal of controlling the output deviation by following two
steps: (i) removing the time dependence of the dynamics and (ii) imposing a certain steady-state
constraint.

Figure 3: An illustration of the time-
invariant property of ODEs. We can see
that the curve z̃1(t) is exactly the hori-
zontal translation of z1(t) on the inter-
val [T ′,∞).

In the neural ODE characterized by equation (1), the dy-
namics fθ(z(t), t) depends on both the state z(t) at time
t and the time t itself. In contrast, if the neural ODE is
modified to be time-invariant, the time dependence of the
dynamics is removed. Consequently, the dynamics de-
pends only on the state z. So, we can rewrite the dynam-
ics function as fθ(z), and the neural ODE is characterized
as 

dz(t)

dt
= fθ(z(t));

z(0) = zin;

zout = z(T ).

(2)

Let z1(t) be a solution of (2) on [0,∞) and ε > 0
be a small positive value. We define the set M1 =
{(z1(t), t)|t ∈ [0, T ], ‖z1(t) − z1(0)‖ ≤ ε}. This set
contains all points on the curve of z1(t) during [0, T ] that

are also inside the ε-neighborhood of z1(0). For some element (z1(T ′), T ′) ∈ M1, let z̃1(t) be the
solution of (2) which starts from z̃1(0) = z1(T

′). Then we have
z̃1(t) = z1(t+ T ′) (3)

for all t in [0,∞). The property shown in equation (3) is known as the time-invariant property. It
indicates that the integral curve z̃1(t) is the −T ′ shift of z1(t) (Figure 3).
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We can regard z̃1(0) as a slightly perturbed version of z1(0), and we are interested in how large
the difference between z̃1(T ) and z1(T ) is. In a robust model, the difference should be small. By
equation (3), we have ‖z̃1(T )− z1(T )‖ = ‖z1(T +T ′)− z1(T )‖. Since T ′ ∈ [0, T ], the difference
between z1(T ) and z̃1(T ) can be bounded as follows,

‖z̃1(T )−z1(T )‖=

∥∥∥∥∥
∫ T+T ′

T

fθ(z1(t)) dt

∥∥∥∥∥≤
∥∥∥∥∥
∫ T+T ′

T

|fθ(z1(t))|dt

∥∥∥∥∥≤
∥∥∥∥∥
∫ 2T

T

|fθ(z1(t))|dt

∥∥∥∥∥ ,
(4)

where all norms are `2 norms and |fθ| denotes the element-wise absolute operation of a vector-
valued function fθ. That is to say, the difference between z̃1(T ) and z1(T ) can be bounded by only
using the information of the curve z1(t). For any t′ ∈ [0, T ] and element (z1(t′), t′) ∈M1, consider
the integral curve that starts from z1(t

′). The difference between the output state of this curve and
z1(T ) satisfies inequality (4).

Therefore, we propose to add an additional term Lss to the loss function when training the time-
invariant neural ODE:

Lss =

N∑
i=1

∥∥∥∥∥
∫ 2T

T

|fθ(zi(t))|dt

∥∥∥∥∥ , (5)

where N is the number of samples in the training set and zi(t) is the solution whose initial state
equals to the feature of the ith sample. The regularization term Lss is termed as the steady-state
loss. This terminology “steady state” is borrowed from the dynamical systems literature. In a stable
dynamical system, the states stabilize around a fixed point, known as the steady-state, as time tends
to infinity. If we can ensure that Lss is small, for each sample, the outputs of all the points in Mi will
stabilize around zi(T ). Consequently, the model is robust. This modification of the neural ODE is
dubbed Time-invariant steady neural ODE.

4.2 EVALUATING ROBUSTNESS OF TISODE-BASED CLASSIFIERS

Here, we conduct experiments to evaluate the robustness of our proposed TisODE, and compare
TisODE-based models with the vanilla ODENets. We train all models with original non-perturbed
images together with their Gaussian perturbed versions. The regularization parameter for the steady-
state loss Lss is set to be 0.1. All other hyperparameters are exactly the same as those in Section 3.3.

Table 3: Classification accuracy (mean ± std in %) on perturbed images from MNIST, SVHN and
ImgNet10. To evaluate the robustness of classifiers, we use three types of perturbations, namely
zero-mean Gaussian noise with standard deviation σ, FGSM attack and PGD attack. From the
results, the proposed TisODE effectively improve the robustness of the vanilla neural ODE.

Gaussian noise Adversarial attack

MNIST σ = 100 FGSM-0.3 FGSM-0.5 PGD-0.2 PGD-0.3
CNN 98.7±0.1 54.2±1.1 15.8±1.3 32.9±3.7 0.0±0.0

ODENet 99.4±0.1 71.5±1.1 19.9±1.2 64.7±1.8 13.0±0.2
TisODE 99.6±0.0 75.7±1.4 26.5±3.8 67.4±1.5 13.2±1.0

SVHN σ = 35 FGSM-5/255 FGSM-8/255 PGD-3/255 PGD-5/255
CNN 90.6±0.2 25.3±0.6 12.3±0.7 32.4±0.4 14.0±0.5

ODENet 95.1±0.1 49.4±1.0 34.7±0.5 50.9±1.3 27.2±1.4
TisODE 94.9±0.1 51.6±1.2 38.2±1.9 52.0±0.9 28.2±0.3

ImgNet10 σ = 25 FGSM-5/255 FGSM-8/255 PGD-3/255 PGD-5/255
CNN 92.6±0.6 40.9±1.8 26.7±1.7 28.6±1.5 11.2±1.2

ODENet 92.6±0.5 42.0±0.4 29.0±1.0 29.8±0.4 12.3±0.6
TisODE 92.8±0.4 44.3±0.7 31.4±1.1 31.1±1.2 14.5±1.1

From the results in Table 3, we can see that our proposed TisODE-based models are clearly more
robust compared to vanilla ODENets. On the MNIST dataset, when combating FGSM-0.3 attacks,
the TisODE-based models outperform vanilla ODENets by more than 4 percentage points. For the
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FGSM-0.5 adversarial examples, the accuracy of the TisODE-based model is 6 percentage points
better. On the SVHN dataset, the TisODE-based models perform better in terms of all forms of
adversarial examples. On the ImgNet10 dataset, the TisODE-based models also outperform vanilla
ODE-based models on all types of perturbations. In the presence of FGSM and PGD-5/255 exam-
ples, the accuracies are enhanced by more than 2 percentage points.

4.3 TISODE - A GENERALLY APPLICABLE DROP-IN TECHNIQUE FOR IMPROVING THE
ROBUSTNESS OF DEEP NETWORKS

In view of the excellent robustness of the TisODE, we claim that the proposed TisODE can be used
as a general drop-in module for improving the robustness of deep networks. We support this claim
by showing the TisODE can work in conjunction with other state-of-the-art techniques and further
boost the models’ robustness. These techniques include the feature denoising (FDn) method (Xie
et al., 2019) and the input randomization (IR) method (Xie et al., 2017). We conduct experiments on
the MNIST and SVHN datasets. All models are trained with original non-perturbed images together
with their Gaussian perturbed versions. We show that models using the FDn/IRd technique becomes
much more robust when equipped with the TisODE. In the FDn experiments, the dot-product non-
local denoising layer (Xie et al., 2019) is added to the head of the fully-connected classifier.

Table 4: Classification accuracy (mean ± std in %) on perturbed images from MNIST and SVHN.
We evaluate against three types of perturbations, namely zero-mean Gaussian noise with standard
deviation σ, FGSM attack and PGD attack. From the results, upon the CNNs modified with FDn
and IRd, using TisODE can further improve the robustness.

Gaussian noise Adversarial attack

MNIST σ = 100 FGSM-0.3 FGSM-0.5 PGD-0.2 PGD-0.3
CNN 98.7±0.1 54.2±1.1 15.8±1.3 32.9±3.7 0.0±0.0

CNN-FDn 99.0±0.1 74.0±4.1 32.6±5.3 58.9±4.0 8.2±2.6
TisODE-FDn 99.4±0.0 80.6±2.3 40.4±5.7 72.6±2.4 28.2±3.6

CNN-IRd 95.3±0.9 78.1±2.2 36.7±2.1 79.6±1.9 55.5±2.9
TisODE-IRd 97.6±0.1 86.8±2.3 49.1±0.2 88.8±0.9 66.0±0.9

SVHN σ = 35 FGSM-5/255 FGSM-8/255 PGD-3/255 PGD-5/255
CNN 90.6±0.2 25.3±0.6 12.3±0.7 32.4±0.4 14.0±0.5

CNN-FDn 92.4±0.1 43.8±1.4 31.5±3.0 40.0±2.6 19.6±3.4
TisODE-FDn 95.2±0.1 57.8±1.7 48.2±2.0 53.4±2.9 32.3±1.0

CNN-IRd 84.9±1.2 65.8±0.4 54.7±1.2 74.0±0.5 64.5±0.8
TisODE-IRd 91.7±0.5 74.4±1.2 61.9±1.8 81.6±0.8 71.0±0.5

From Table 4, we observe that both FDn and IRd can effectively improve the adversarial robustness
of vanilla CNN models (CNN-FDn, CNN-IRd). Furthermore, combining our proposed TisODE
with FDn or IRd (TisODE-FDn, TisODE-IRd), the adversarial robustness of the resultant model
is significantly enhanced. For example, on the MNIST dataset, the additional use of our TisODE
increases the accuracies on the PGD-0.3 examples by at least 10 percentage points for both FDn
(8.2% to 28.2%) and IRd (55.5% to 66.0%). However, on both MNIST and SVHN datasets, the
IRd technique improves the robustness against adversarial examples, but its performance is worse
on random Gaussian noise. With the help of the TisODE, the degradation in the robustness against
random Gaussian noise can be effectively ameliorated.

5 RELATED WORKS

In this section, we briefly review related works on the neural ODE and works concerning improving
the robustness of deep neural networks.

Neural ODE: The neural ODE (Chen et al., 2018) method models the input and output as two
states of a continuous-time dynamical system by approximating the dynamics of this system with
trainable layers. Before the proposal of neural ODE, the idea of modeling nonlinear mappings using
continuous-time dynamical systems was proposed in Weinan (2017). Lu et al. (2017) also showed
that several popular network architectures could be interpreted as the discretization of a continuous-
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time ODE. For example, the ResNet (He et al., 2016) and PolyNet (Zhang et al., 2017) are associated
with the Euler scheme and the FractalNet (Larsson et al., 2016) is related to the Runge-Kutta scheme.
In contrast to these discretization models, neural ODEs are endowed with an intrinsic invertibility
property, which yields a family of invertible models for solving inverse problems (Ardizzone et al.,
2018), such as the FFJORD (Grathwohl et al., 2018).

Recently, many researchers have conducted studies on neural ODEs from the perspectives of opti-
mization techniques, approximation capabilities, and generalization. Concerning the optimization
of neural ODEs, the auto-differentiation techniques can effectively train ODENets, but the train-
ing procedure is computationally and memory inefficient. To address this problem, Chen et al.
(2018) proposed to compute gradients using the adjoint sensitivity method (Pontryagin, 2018), in
which there is no need to store any intermediate quantities of the forward pass. Also in Quaglino
et al. (2019), the authors proposed the SNet which accelerates the neural ODEs by expressing their
dynamics as truncated series of Legendre polynomials. Concerning the approximation capability,
Dupont et al. (2019) pointed out the limitations in approximation capabilities of neural ODEs be-
cause of the preserving of input topology. The authors proposed an augmented neural ODE which
increases the dimension of states by concatenating zeros so that complex mappings can be learned
with simple flow. The most relevant work to ours concerns strategies to improve the generalization
of neural ODEs. In Liu et al. (2019), the authors proposed the neural stochastic differential equation
(SDE) by injecting random noise to the dynamics function and showed that the generalization and
robustness of vanilla neural ODEs could be improved. However, our improvement on the neural
ODEs is explored from a different perspective by introducing constraints on the flow. We empiri-
cally found that our proposal and the neural SDE can work in tandem to further boost the robustness
of neural ODEs.

Robust Improvement: A straightforward way of improving the robustness of a model is to smooth
the loss surface by controlling the spectral norm of the Jacobian matrix of the loss function (Sokolić
et al., 2017). In terms of adversarial examples (Carlini & Wagner, 2017; Chen et al., 2017), re-
searchers have proposed adversarial training strategies (Madry et al., 2017; Elsayed et al., 2018;
Tramèr et al., 2017) in which the model is fine-tuned with adversarial examples generated in real-
time. However, generating adversarial examples is not computationally efficient, and there exists
a trade-off between the adversarial robustness and the performance on original non-perturbed im-
ages (Yan et al., 2018; Tsipras et al., 2018). There are also some works that propose defense mech-
anisms against adversarial examples by using obfuscated gradients. For example, Xie et al. (2017)
utilized random resizing and random padding to destroy the specific structure of adversarial per-
turbations. In Xie et al. (2019), the authors designed a feature denoising filter that can remove the
perturbation’s pattern from feature maps. In this work, we explore novel architectures with better
intrinsic robustness. We show that the proposed TisODE can improve the robustness of deep net-
works and can also work in tandem with these state-of-the-art methods Xie et al. (2017; 2019) to
achieve further improvements.

6 CONCLUSION

In this paper, we first empirically study the robustness of neural ODEs. Our studies reveal that neural
ODE-based models are superior in terms of robustness compared to CNN models. We then explore
how to further boost the robustness of vanilla neural ODEs and propose the TisODE. Finally, we
show that the proposed TisODE outperforms the vanilla neural ODE and also can work in conjunc-
tion with other state-of-the-art techniques to further improve the robustness of deep networks. Thus,
the TisODE method is an effective drop-in module for building robust deep models.
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Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
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7 APPENDIX

7.1 NETWORKS USED ON THE MNIST, THE SVHN, AND THE IMGNET10 DATASETS

Table 5: The architectures of the ODENets on different datasets.

MNIST Repetition Layer

FE ×1 Conv(1, 64, 3, 1) + GroupNorm + ReLU
×1 Conv(64, 64, 4, 2) + GroupNorm + ReLU

RM ×2 Conv(64, 64, 3, 1) + GroupNorm + ReLU

FCC ×1 AdaptiveAvgPool2d + Linear(64,10)

SVHN Repetition Layer

FE ×1 Conv(3, 64, 3, 1) + GroupNorm + ReLU
×1 Conv(64, 64, 4, 2) + GroupNorm + ReLU

RM ×2 Conv(64, 64, 3, 1) + GroupNorm + ReLU

FCC ×1 AdaptiveAvgPool2d + Linear(64,10)

ImgNet10 Repetition Layer

FE

×1 Conv(3, 32, 5, 2) + GroupNorm
×1 MaxPooling(2)
×1 BaiscBlock(32, 64, 2)
×1 MaxPooling(2)

RM ×3 BaiscBlock(64, 64, 1)

FCC ×1 AdaptiveAvgPool2d + Linear(64,10)

In Table 5, the four arguments of the Conv layer represent the input channel, output channel, kernel
size, and the stride. The two arguments of the Linear layer represents the input dimension and the
output dimension of this fully-connected layer. In the network on the ImgNet10, the BasicBlock
refers to the standard architecture in (He et al., 2016), the three arguments of the BasicBlock repre-
sent the input channel, output channel and the stride of the Conv layers inside the block. Note that
we replace the BatchNorm layers in BasicBlocks as the GroupNorm to guarantee that the dynamics
of each datum is independent of other data in the same mini-batch.

7.2 THE CONSTRUCTION OF IMGNET10 DATASET

Table 6: The corresponding indexes to each class in the original ImageNet dataset

Class Indexing
dog n02090721, n02091032, n02088094
bird n01532829, n01558993, n01534433
car n02814533, n03930630, n03100240
fish n01484850, n01491361, n01494475

monkey n02483708, n02484975, n02486261
turtle n01664065, n01665541, n01667114
lizard n01677366, n01682714, n01685808
bridge n03933933, n04366367, n04311004
cow n02403003, n02408429, n02410509
crab n01980166, n01978455, n01981276

7.3 GRONWALL’S INEQUALITY

We formally state the Gronwall’s Inequality here, following the version in (Howard, 1998).
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Theorem 2. Let U ⊂ Rd be an open set. Let f : U × [0, T ]→ Rd be a continuous function and let
z1, z2: [0, T ]→ U satisfy the initial value problems:

dz1(t)

dt
= f(z1(t), t), z1(t) = x1

dz2(t)

dt
= f(z2(t), t), z2(t) = x2

Assume there is a constant C ≥ 0 such that, for all t ∈ [0, T ],

‖f(z2(t), t)− f(z1(t), t))‖ ≤ C‖z2(t)− z1(t)‖

Then, for any t ∈ [0, T ],
‖z1(t)− z2(t)‖ ≤ ‖x2 − x1‖ · eCt.
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