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ABSTRACT

We study the problem of learning and optimizing through physical simulations
via differentiable programming. We present DiffSim, a new differentiable pro-
gramming language tailored for building high-performance differentiable physical
simulations. We demonstrate the performance and productivity of our language
in gradient-based learning and optimization tasks on 10 different physical simula-
tors. For example, a differentiable elastic object simulator written in our language
is 4.6× shorter than the hand-engineered CUDA version yet runs as fast, and
is 188× faster than TensorFlow. Using our differentiable programs, neural net-
work controllers are typically optimized within only tens of iterations. Finally, we
share the lessons learned from our experience developing these simulators, that is,
differentiating physical simulators does not always yield useful gradients of the
physical system being simulated. We systematically study the underlying reasons
and propose solutions to improve gradient quality.

1 INTRODUCTION

Differentiable physical simulators are effective components in machine learning systems. For exam-
ple, de Avila Belbute-Peres et al. (2018a) and Hu et al. (2019b) have shown that controller optimiza-
tion with differentiable simulators converges one to three orders of magnitude faster than model-free
reinforcement learning algorithms. Unfortunately, with existing tools it is difficult to implement dif-
ferentiable simulators with high performance.

We present DiffSim, a new differentiable programming language for high performance physical sim-
ulations on both CPU and GPU. The language uses a “megakernel” approach, allowing the pro-
grammer to naturally fuse multiple stages of computation into a single kernel. Compared to com-
putational graphs of array operations in TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al.,
2017), DiffSim kernels have higher arithmetic intensity and are therefore more efficient for physical
simulation tasks. To make porting existing physical simulation algorithms easier, the language is
imperative and provides support for parallel loops and control flows (such as “if” statements), which
are necessary constructs in physical simulations, especially when collisions are present. The pro-
grammer directly manipulates array elements via arbitrary indexing, thus allowing partial updates of
global arrays. The DiffSim compiler then automatically parallelizes the code and generates gradient
kernels using reverse-mode automatic differentiation (AD).

Using our language, we are able to quickly implement and differentiate a variety of physical sim-
ulators1. During this process, we encountered several algorithmic and implementation issues when
taking gradients of physical simulators. In particular, since physical simulators are approximations
of the physical process they model (e.g. an ordinary differential equation solver would discretize the
time step), the gradients of a simulator might not be a good approximation of the physical process
model. We identify several issues and propose simple fixes.

The main goal of this paper is to introduce our programming language and differentiable simulators,
and share our experience in engineering these differentiable programs for gradient robustness. Our
contributions are:

1Our language, compiler, and simulator code is submitted along with the paper and will be open-sourced.
All the results in this work can be reproduced by a single python script. Many visual results in this work are
presented in the supplemental video.
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Figure 1: Our language allows us to seamlessly integrate a neural network (NN) controller and a
physical simulation module, and update the weights of the controller or the initial state parametriza-
tion (blue). Our simulations typically have 512 ∼ 2048 time steps, and each time step has up to one
thousand parallel operations.

• A new differentiable programming language, named “DiffSim", tailored for high perfor-
mance physical simulation. It allows programmers to easily build end-to-end gradient-
based deep learning systems with seamlessly integrated differentiable physical modules
(Fig. 1).

• We create 10 different physical simulators in DiffSim and benchmark their performance
against existing baselines. Future researchers can both reuse these differentiable simulators,
and easily write new differentiable simulators using our programming language.

• We analyze the gradient behavior of these simulators and discuss why a working physical
model for forward simulation is often not good enough for differentiable simulation. Most
notably, ignoring the precise time of impact (a common practice in simulation scenarios
when there is no high-speed object) may lead to completely misleading gradients. We
demonstrate a simple yet effective solution to this problem.

2 THE DIFFSIM DIFFERENTIABLE PROGRAMMING LANGUAGE

DiffSim is based on the Taichi programming language (Hu et al., 2019a). In this section, we first
discuss high-level design decisions of DiffSim, and then introduce the language. For readers who
are not familiar with Taichi, we provide a brief background in Appendix A. The DiffSim compiler
design is discussed in Appendix B.

2.1 DESIGN DECISIONS

Our design decisions are centered around conveniently building differentiable physical systems for
deep learning.

Imperative Programming To make porting existing physical simulation algorithms easier, we
adopt an imperative programming scheme, in contrast to the functional array programming lan-
guages that are popular in modern deep learning (Bergstra et al., 2010; Abadi et al., 2016). The user
writes C-style for loops, branches, and accesses array elements directly using the Python frontend.
The compiler automatically generates parallelized kernels and their gradients.

Megakernels Computation in DiffSim is organized into kernels, analogous to the layers in a deep
learning framework, except the gradients of the kernels are automatically generated by automatic
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differentiation. This allows us to define complex kernels without instantiating memory for every
single intermediate stage. For example, in our language, the result of a=b+c is usually stored to
a register instead of a tensor allocated in global memory. This results in much higher arithmetic
intensity and memory efficiency.

Two-stage Automatic Differentiation To allow more control for assembling the kernels, struc-
turing the backward pass of the gradient code, and interacting with external code, we propagate the
gradients between kernels by constructing a tape, or a Wengert list (Wengert, 1964), of the kernel
execution. In physical simulation, it is important for the user to perform a checkpointing optimiza-
tion (Volin & Ostrovskii, 1985) and trade memory for computation, when the number of timesteps
is high.

Automatic Parallelization We inherit the “parallel-for" construct from Taichi to map each loop
iteration onto CPU/GPU threads. When necessary, the programmer can use atomic adds for thread
safety. Our system can automatically differentiate these atomic operations, as long as they are order-
independent.

2.2 THE LANGUAGE

Our system is built on top of a Python frontend of Taichi. Unlike Python, the DiffSim language is
compiled, statically-typed, parallel, and differentiable. The goal is to allow users to write intuitive
C-like control flow, while the compiler automatically parallelizes and differentiate the kernel.

Here we demonstrate the language via a differentiable mass-spring example. The goal is to optimize
the rest lengths of the springs so that the triangle area formed by the three springs becomes 0.2 at
the end of the simulation. Visual illustrations and results are shown below in Fig. 2.
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Figure 2: Optimizing the spring rest lengths so that the triangle’s area reaches target of 0.2. Left:
Initially the springs have lengths [0.1, 0.1, 0.14]. Middle: After optimization the rest lengths are
[0.600, 0.600, 0.529]. This means the springs will expand the triangle according to Hook’s law and
form a larger triangle. Right: The loss curve. [Reproduce: mass_spring_simple.py]

Allocating Global Variables Firstly we allocate a set of global tensors to store the simulation
state. These tensors include a scalar loss of type float32, 2D tensors x, v, force of size steps
×n_springs and type float32x2, and 1D arrays of size n_spring for spring properties: spring_anchor_a
(int32), spring_anchor_b (int32), spring_length (float32).

Defining Kernels A mass-spring system is modelled by Hook’s law F = k(‖xa − xb‖2 −
l0) xa−xb

‖xa−xb‖2
where F is spring force, xa and xb are the positions of two mass points, and l0 is

the rest length. The following kernel loops over all the springs and scatters forces to mass points:

@ti.kernel
def apply_spring_force(t: ti.i32):

# Kernels can have parameters. Here t is a parameter with type int32.
for i in range(n_springs): # A parallel for, preferably on GPU
a, b = spring_anchor_a[i], spring_anchor_b[i]
x_a, x_b = x[t - 1, a], x[t - 1, b]
dist = x_a - x_b
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length = dist.norm() + 1e-4
F = (length - spring_length[i]) * spring_stiffness * dist / length
# Apply spring impulses to mass points. Use atomic_add for parallel safety.
ti.atomic_add(force[t, a], -F)
ti.atomic_add(force[t, b], F)

For each particle i, we use semi-implicit Euler time integration with damping:

vt,i = e−∆tαvt−1,i +
∆t

mi
Ft,i, xt,i = xt−1,i + ∆tvt,i,

where vt,i,xt,i,mi are the velocity, position and mass of particle i at time step t, respectively. α is
a damping factor. The kernel is as follows:

@ti.kernel
def time_integrate(t: ti.i32):

for i in range(n_objects):
s = math.exp(-dt * damping) # Compile-time evaluation since dt and damping are constants
v[t, i] = s * v[t - 1, i] + dt * force[t, i] / mass
x[t, i] = x[t - 1, i] + dt * v[t, i]

Finally, we define the loss function:

@ti.kernel
def compute_loss(t: ti.i32):

x01 = x[t, 0] - x[t, 1]
x02 = x[t, 0] - x[t, 2]
area = ti.abs(0.5 * (x01[0] * x02[1] - x01[1] * x02[0])) # Triangle area from cross product
target_area = 0.1
loss[None] = ti.sqr(area - target_area) # Everything in Taichi is a tensor.
# "loss" is a scalar (0-D tensor), thereby indexed with [None].

Assembling the Forward Program With these components, we define the forward time integra-
tion:

def forward(output=None):
for t in range(1, steps):
apply_spring_force(t)
time_integrate(t)

compute_loss(steps - 1)

Learning/Optimization with Gradients The programmer uses ti.Tape to memorize forward ker-
nel launches. It automatically replays the gradients of these kernels in reverse for backpropagation.

def main():
# ... initialization code omitted ...
for iter in range(200):
clear_tensors()

with ti.Tape(loss):
forward()

print(’Iter=’, iter, ’Loss=’, loss[None])

for i in range(n_springs): # Gradient descent
spring_length[i] -= learning_rate * spring_length.grad[i]

Appendix C showcases a full DiffSim program for another minimization problem.

3 EVALUATION AND APPLICATIONS

We evaluate DiffSim on 10 different physical simulators. Our examples cover large-scale continuum
and small-scale rigid body simulations. All results can be reproduced with the provided script. The
dynamic processes are visualized in the supplemental video.
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Table 1: diffmpm performance comparison on an NVIDIA GTX 1080 Ti GPU. We benchmark in 2D
using 6.4K particles. For the lines of code, we only include the essential implementation, excluding
boilerplate code. [Reproduce: python3 diffmpm_benchmark.py]

Approach Forward Time Backward Time Total Time # Lines of Code

TensorFlow 13.20 ms 35.70 ms 48.90 ms (188.×) 190
CUDA 0.10 ms 0.14 ms 0.24 ms (0.92×) 460
DiffSim 0.11 ms 0.15 ms 0.26 ms (1.00×) 110

Differentiable Continuum Mechanics for Elastic Objects [diffmpm] First, we build a differ-
entiable continuum simulation for soft robotics applications as in Fig. 3. The physical system is
governed by momentum and mass conservation, i.e.

ρ
Dv

Dt
= ∇ · σ + ρg,

Dρ

Dt
+ ρ∇ · v = 0.

We follow ChainQueen’s implementation (Hu et al., 2019b) and use the moving least squares ma-
terial point method (Hu et al., 2018) to simulate the system. DiffSim automatically transforms the
program into a differentiable simulator. Compared with the original manually engineered CUDA
implementation in ChainQueen, our new implementation is 4.2× shorter in terms of lines of code,
and runs almost as fast; compared with TensorFlow, DiffSim code is 1.7× shorter and 188× faster
(Table 1). Using this simulator and an open-loop controller, we can easily teach a soft robot to walk.

Figure 3: Controller optimization with our differentiable continuum simulators. Left: the 2D robot
with four muscles. Middle: A 3D robot with 16 muscles and 30K particles crawling on the ground.
[Reproduce: python3 [diffmpm/diffmpm3d].py] Right: We couple the robot (30K particles) and
the liquid simulator (13K particles), and optimize its open-loop controller in this difficult situation.

Differentiable liquid simulator [liquid] We follow Tampubolon et al. (2017) and implemented
a 3D differentiable liquid simulator. Our liquid simulation can be two-way coupled with elastic
object simulation [diffmpm] (Figure 3, right).

Differentiable mass-spring system [mass_spring] We extend the mass-spring system in sec-
tion 2.2 with ground collision and a NN controller. The optimization goal is to maximize the distance
moved forward with 2048 time steps. We designed three mass-spring robots as shown in Fig. 4 (left).

Differentiable billiard simulator [billiards] A differentiable rigid body simulator is built for
optimizing a billiards strategy (Fig. 4, middle). We used forward Euler for the billiard ball motion
and conservation of momentum and kinetic energy for collision resolution.

Differentiable rigid body simulators [rigid_body] We built a more complex differentiable rigid
body simulator for optimizing robot controllers (Fig. 4, right). This simulator supports rigid body
collision and friction, spring forces and actuation.
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Figure 4: Left: Three mass-spring robots. The red and blue springs are actuated. A two layer NN
is used as controller. [Reproduce: python3 mass_spring.py [1/2/3] train]. Middle: Optimizing
billiards. The optimizer adjusts the initial position and velocity of the white ball, so that the blue ball
will reach the target destination (black dot). [Reproduce: python3 billiards.py] Right: Optimizing
a robot walking. The rigid robot is controlled with a NN controller and learned to walk in 20 gradient
descent iterations. [Reproduce: python3 rigid_body.py]

Differentiable incompressible fluid simulator [smoke] We implemented a smoke simulator with
semi-Lagrangian advection Stam (1999) and implicit pressure projection, following the example in
Autograd (Maclaurin et al., 2015). Using gradient descent optimization on the initial velocity field,
we are able to find a velocity field that changes the pattern of the fluid to a target image (Fig. 5a).
We compare the performance of our system against Autograd and PyTorch in Table 2.

Table 2: smoke benchmark against Autograd and PyTorch. We used a 110 × 110 grid
and 100 time steps, each with 10 Jacobi pressure projections. [Reproduce: python3
[smoke/smoke_autograd/smoke_pytorch].py]. Note that the Autograd program uses float64 pre-
cision (which approximately doubles the runtime), while PyTorch and DiffSim use float32.

Approach Forward Time Backward Time Total Time # Essential LoC

PyTorch (CPU) 451 ms 399 ms 850 ms (5.0×) 74
PyTorch (GPU) 331 ms 562 ms 893 ms (5.2×) 74
Autograd (CPU) 347 ms 1445 ms 1792 ms (10.5×) 51
DiffSim (CPU) 83 ms 566 ms 649 ms (3.8×) 75
DiffSim (GPU) 68 ms 103 ms 171 ms (1.0×) 75

(a) smoke (b) wave
Figure 5: (a): (Left to right) with an optimized initial smoke velocity field, the fluid changes its
pattern to a “Taichi" symbol. [Reproduce: python3 smoke_taichi.py] (b): Unoptimized (top three)
and optimized (bottom three) waves at time step 3, 189, and 255. [Reproduce: python3 wave.py]

Differentiable height field shallow water simulator [wave] We adopt the wave equation in Wang
et al. (2018) to model shallow water height field evolution:

ü = c2∇2u+ cα∇2u̇, (1)

where u is the height of shallow water, c is the “speed of sound” and α is a damping coefficient.
We use the u̇ and ü notations for the first and second order partial derivatives of u w.r.t time t
respectively. We set the “Taichi" symbol as the target pattern. Fig. 5b shows the unoptimized and
optimized final wave patterns. More details on discretization is in Appendix D.
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Differentiable water renderer [water_renderer] We implemented differentiable renderers to vi-
sualize the refracting water surfaces from wave. We use finite differences to reconstruct the water
surface models based on the input height field and refract camera rays to sample the images, using
bilinear interpolation for meaningful gradients. To show our system works well with other differen-
tiable programming systems, we use an adversarial optimization goal: fool VGG-16 into thinking
that the refracted squirrel image is a goldfish (Fig. 6).

Figure 6: This three-stage program (simulation, rendering, recognition) is end-to-end differentiable.
Our optimized initial water height field evolves to form a refraction pattern that perturbs the image
into one that fools VGG16 (99.91% goldfish). [Reproduce: python3 water_renderer.py]

Differentiable Electric Field Simulator [electric] Recall Coulomb’s law: F =
k q1q2r2 r̂. In the right figure, there are 8 electrodes carrying static charge. The red
ball also carries static charge. The controller, which is a two-layer neural network,
tries to manipulate the electrodes so that the red ball follows the path of the blue
ball. The bigger the electrode, the more positive charge it carries.

Differentiable Volume Renderer [volume_renderer] We implemented a basic
volume renderer that simply uses ray marching (we ignore light, scattering, etc.) to integrate a
density field over each camera ray. In this task, we render a number of target images from different
viewpoints, with the camera rotated around the given volume. The goal is then to optimize for the
density field of the volume that would produce these target images: we render candidate images from
the same viewpoints and compute an L2 loss between them and the target images, before performing
gradient descent on the density field (Fig. 7).

Figure 7: Volume rendering of bunny shaped density field. Left: 3 (of the 7) target images.
Right: optimized images of the middle bunny after iteration 2, 50, 100. [Reproduce: python3
volume_renderer.py]

4 BUILDING DIFFERENTIABLE SIMULATORS WITH ROBUST GRADIENTS

DiffSim makes it possible to easily implement and experiment with various physical simulations.
Although some provide reliable and useful gradients, others present difficulties during backpropa-
gation. A typical physical simulation can have thousands of time steps, and each step may contain
thousands of tensor operations (i.e., “layers”). Our layers are deeper than a typical convolutional
neural network, while wider than a recurrent neural network. At the same time the non-linearities
introduced by the physical systems are different than the typical element-wise non-linearities.

Just as in deep neural network training, obtaining robust gradients in physical simulation that guide
optimization is not always easy. The most notable pitfall is to assume that differentiating a well-
behaving forward simulation yields a useful gradient version for corresponding inverse problems.
As we will show later, sometimes a good-enough forward simulation can be automatically differen-
tiated into a gradient program that yields completely incorrect gradients of the physical process.
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Figure 8: How gradients can go wrong with naive time integrators. For clarity we use a large ∆t
here. Left: Since collision detection only happens at multiples of ∆t (2∆t in this case), lowering the
initial position of the ball (light blue) leads to a lowered final position. Middle Left: By improving
the time integrator to support continuous time of impact (TOI), collisions can be detected at any
time, e.g. 1.9∆t (light red). Now the blue ball ends up higher than the green one. Middle Right:
Although the two time integration techniques lead to almost identical forward results (in practice ∆t
is small), the naive time integrator gives an incorrect gradient of 1, but adding TOI yields the correct
gradient. Please see our supplemental video for a better demonstration. [Reproduce: python3
rigid_body_toi.py] Right: When zooming in, the loss of the naive integrator is decreasing, and the
saw-tooth pattern explains the positive gradients. [Reproduce: python3 rigid_body_toi.py zoom]

Time is still discrete and non-differentiable Most physical simulations rely on time discretiza-
tion, and gradients of time itself are not considered during automatic differentiation. In short, we
are only differentiating the simulation program of a time-discretized physical process, instead of the
process itself.

Consider the rigid ball example in Fig. 8 (left), where a rigid ball collides with a friction-less ground.
Gravity is ignored, and due to conservation of kinetic energy the ball keeps a constant speed even
after this elastic collision.

In the forward simulation, using a small ∆t often leads to a reasonable result, as done in many
physics simulators. Lowering the initial ball height will increase the final ball height, since there is
less distance to travel before the ball hits the ground and more after (see the loss curves in Fig.8,
middle right). However, using a naive time integrator, no matter how small ∆t is, the evaluated
gradient of final height w.r.t. initial height will be 1 instead of −1. This counter-intuitive behavior
is due to the fact that time discretization itself is not differentiated by the compiler. Fig. 8 explains
this effect in greater detail.

We propose a simple solution of adding continuous collision resolution (see, for example, Redon
et al. (2002)), which considers precise time of impact (TOI), to the forward program (Fig. 8, middle
left). Although it barely improves the forward simulation (Fig. 8, middle right), the gradient will be
corrected effectively (Fig. 8, right). The details of continuous collision detection are in Appendix E.
In real-world simulators, we find the TOI technique leads to significant improvement in gradient
quality in controller optimization tasks (Fig. 9).
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Figure 9: Adding TOI greatly improves gradient and optimization quality. Each experiment is re-
peated five times. Having TOI or not barely affects forward simulation: in the supplemental video,
we show that a robot controller optimized in a simulator with TOI, actually works well in a sim-
ulator without TOI. [Reproduce: python3 [mass_spring/rigid_body.py] [1/2] plot && python3
plot_losses.py]

Gradient explosion in simulations with long time horizons Consider this artificial 1D car ex-
ample: an open-loop controller provides a constant throttle which translates into acceleration. The
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discretized ODE is vt = e−∆tβvt−1 + a, xt = xt−1 + vt, where a is the controller output, and β is
a damping factor (Fig. 10, left). Assuming the loss function is the distance travelled and a fixed ∆t
per time step, we change the simulation time by increasing the number of time steps.
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Figure 10: Left: A slider moving right with constant acceleration and no friction. Middle: Without
damping, the gradient of distance w.r.t. acceleration grows quadratically with respect to the number
of time steps n, i.e. ∂L/∂a = 1/2 ·(n∆t)2. Right: Even with damping, gradients will grow linearly
with simulation time. [Reproduce: python3 gradient_explosion.py [large]]

As shown in Fig. 10, the gradient magnitude grows quadratically. In practice, physical systems often
have damping, and energy injected by NNs will not last forever. In this case, controller gradients
will be proportional to the number of time steps (Fig. 10, right). “Damping” does not have to
be explicit. A lot of physical processes intrinsically introduce energy losses, such as friction and
inelastic collisions in rigid_body, and numerical viscosity in wave and smoke. The rule of thumb:
whenever you double the simulation time, halve your learning rate to keep the gradient at the
same magnitude.

In reality, controllers are usually closed-loop and the positive feedback of controller outputs may
make the gradient magnitude even more unpredictable. Practically, we have found adding damping
to the simulator stabilizes gradients. Intuitively, with damping, the actuation will have an expo-
nentially decaying influence, limiting the gradients from propagating back. In Appendix F, we
additionally discuss initialization, local minima, and discontinuity issues in physical simulation.

Future work Despite the aforementioned gradient issues, we remain optimistic about differen-
tiable simulators. We raise the following questions for potentially meaningful future directions:

• How do we combine differentiable simulators with actor-critic methods in reinforcement
learning, so that value networks provide smooth long-term gradients and differentiable
simulators provide accurate short-term gradients?

• Existing physical simulation models have been largely built for forward simulation, but
what are good models for backpropagation? I.e., are there models that lie in a sweet spot
between being physically accurate during forward simulation, and being stably differen-
tiable during backpropagation?

• How do we introduce exploration mechanisms for controller optimization with differen-
tiable simulators? Again, could ideas from reinforcement learning (e.g. solutions to "ex-
ploitation v.s. exploration") be applied to optimization approaches via differentiable phys-
ical systems?

5 RELATED WORK

Differentiable programming The recent rise of deep learning has motivated the development of
differentiable programming libraries for deep NNs, most notably auto-differentiation frameworks
such as Theano (Bergstra et al., 2010), TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al.,
2017). These frameworks usually provide coarse-grained operations (e.g., convolutions) on dense
tensors as building blocks, which are “atoms" of these programming systems and cannot be further
customized. However, physical simulation requires complex and customizable operations due to
the intrinsic computational irregularity. Using the aforementioned frameworks, programmers have
to compose these coarse-grained basic operations into desired complex operations. Doing so often
leads to unsatisfactory performance.
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Earlier work on automatic differentiation focuses on transforming existing scalar code to obtain
derivatives (e.g. Utke et al. (2008), Hascoet & Pascual (2013), Pearlmutter & Siskind (2008)).
A recent trend has emerged for modern programming languages to support differentiable function
transformations through annotation (e.g. Innes et al. (2019), Wei et al. (2019)). While these frame-
works and compilers enable differentiating general programming languages, these transformations
often do not target massively parallel architectures such as GPUs when compiling complex kernels,
since it involves automatic parallelization of arbitrary code.

Differentiable functional array programming languages such as Halide (Ragan-Kelley et al., 2013;
Li et al., 2018b), Autograd (Maclaurin et al., 2015), and JAX (Bradbury et al., 2018) operate on
arrays instead of scalars to utilize parallelism, and Halide separates the concerns of storage and
computation from actual algorithm design. Enoki (Jakob, 2019) is an SPMD framework also tar-
geted at differentiable simulation. It uses template metaprogramming to transform C++ code into
derivatives code, while just-in-time compiling the transformed code into PTX assembly. Instead of
operating on arrays that are immutable, DiffSim uses an imperative style to make porting existing
physical simulation algorithms easier, while offering fine-grained control such as checkpointing.

Differentiable Physical Simulators Building differentiable simulators for robotics and machine
learning has recently increased in popularity. Without differentiable programming, Battaglia et al.
(2016), Chang et al. (2016) and Mrowca et al. (2018) used NNs to approximate the physical pro-
cess and used the NN gradients as the approximate simulation gradients. Degrave et al. (2016)
and de Avila Belbute-Peres et al. (2018b) used Theano and PyTorch respectively to build differ-
entiable rigid body simulators. Schenck & Fox (2018) differentiates position-based fluid using
custom CUDA kernels. Popović et al. (2000) used a differentiable rigid body simulator for ma-
nipulating physically based animations. The ChainQueen differentiable elastic object simulator (Hu
et al., 2019b) implements forward and gradient versions of continuum mechanics in hand-written
CUDA kernels, leading to performance that is two orders of magnitude higher than a pure Tensor-
Flow implementation. 3D deep learning also often incorporates differentiable rendering operations
(OpenDR (Loper & Black, 2014), N3MR (Kato et al., 2018), redner (Li et al., 2018a), Mitsuba
2 (Nimier-David et al., 2019)) for modelling the effects of geometry and appearance of objects on
the images.

6 CONCLUSION

We have presented DiffSim, a new differentiable programming language designed specifically for
building high performance differentiable physical systems for deep learning. We have productively
used the system to build 10 different simulators and integrated them into deep learning systems.
Benchmarks show higher performance with our language than existing tools. Finally, we discuss
why a naive automatically differentiated physical program may not provide useful gradients. We
hope our programming language, our differentiable simulators, and our discussions on how to build
simulators with robust gradients can inspire future work on combining differentiable physical simu-
lation and deep learning.
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A BACKGROUND ON THE TAICHI PROGRAMMING LANGUAGE

Taichi is an imperative programming language that delivers both high performance and high pro-
ductivity on modern hardware. The key design that distinguishes Taichi from other imperative pro-
gramming languages such as C++/CUDA is the decoupling of computation from data structures.
In the Taichi language, multi-level (sparse) voxel grids of various forms can be easily constructed
using a data structure mini language, and programmers code algorithms on these sparse data struc-
tures as if they are dense, using indices (i.e. x[i, j, k]). The Taichi compiler then takes both the
sparse data structure and algorithm information to apply performance optimizations. Taichi offers
programmers with “parallel-for"s that saturates computing cores of modern processors. According
to the benchmark in Hu et al. (2019a), programs written in Taichi are 10.0× shorter and 4.55× faster
than hand-optimized baseline implementations, due to better sparse data structure abstraction and
the optimizing compiler. For more details, readers are referred to Hu et al. (2019a).

B COMPILER DESIGN AND IMPLEMENTATION

Existing differentiable programming tools for deep learning are typically centered around large data
blobs. For example, in AlexNet, the second convolution layer has size 27× 27× 128× 128. These
tools usually provide users with both low-level operations such as tensor add and mul, and high-
level operations such as convolution. The bottleneck of typical deep-learning-based computer vision
tasks are convolutions, so the provided high-level operations, with very high arithmetic intensity2,
can fully exploit hardware capability.

However, these high-level operations are “atoms” of such differentiable programming tools, and
cannot be further customized. Users often have to use low-level operations to compose their desired
high-level operations. This introduces a lot of temporary buffers, and potentially excessive GPU
kernel launches. As shown in Hu et al. (2019b), a pure TensorFlow implementation of a complex
physical simulator is 132× slower than a CUDA implementation, due to excessive GPU kernel
launches and the lack of producer-consumer locality3.

Unlike existing differentiable programming tools that use arrays as coarse-grained elementary ob-
jects, in DiffSim users directly manipulate fine-grained elements in these arrays. A DiffSim program
consists of multiple kernels that are just-in-time compiled, and each kernel is composed of (parallel)
imperative instructions. The built-in reverse-mode automatic differentiation system is two-scale:
we maintain a coarse-grained tape recording kernel launches at run time, and a fine-grained tape
for computation inside the kernels at compile time for high performance. These design decisions
make DiffSim suitable for building differentiable physics engines. We adopt standard reverse-mode
automatic differentiation.

Primal and adjoint kernels In DiffSim, (primal) kernels are operators that take as input multiple
sparse tensors (e.g., X,Y ) and output another set of sparse tensors. Mathematically, kernel f has
the form

f(X0, X1, .., Xn) = Y0, Y1, . . . , Ym.

Kernels usually execute uniform operations on sparse tensors. For example, a simple 3D kernel g
may do the operation Zijk = g(X,Y )ijk = Xijk + sin(Yi,j,k−1). All tensors are initialized to be
unpopulated (i.e. empty). Taichi automatically populates output tensors (Z in this case) so that its
data structure holds all non-zero entries (e.g. voxels in 3D). A computation task typically involves a
series of kernels, each taking a subset of previously generated tensors as inputs.

When it comes to differentiable programming, a loss function is defined on the final output tensors.
The gradients of the loss function “L” with respect to each tensor are stored in adjoint tensors and
computed via adjoint kernels.

The adjoint tensor of (primal) tensor Xijk is denoted as X∗ijk. Its entries are defined by X∗ijk =

dL/dXijk. At a high level, our automatic differentiation (AD) system transforms a primal kernel
2FLOPs per byte loaded from/stored to main memory.
3The CUDA kernels have much higher arithmetic intensity compared to the TensorFlow computational

graph system. In other words, when implementing in CUDA immediate results are cached in registers, while
in TensorFlow they are “cached" in main memory.
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into its adjoint form. Mathematically,

(primal) f(X0, X1, .., Xn) = Y0, Y1, . . . , Ymy Reverse-Mode Automatic Differentiation

(adjoint) f∗(X0, X1, .., Xn, Y
∗
0 , Y

∗
1 , . . . , Y

∗
m) = X∗0 , X

∗
1 , .., X

∗
n.

Differentiating within kernels: The “make_adjoint” pass (reverse-mode AD) After the first
simplification pass4, which simplifies most branching into “select(cond, x, y)”, the “make_adjoint”
pass transforms a forward evaluation (primal) kernel into its gradient accumulation (“adjoint”) ker-
nel. Note that even nested “if” statements will be transformed into “select”s during simplification.
AD is implemented as a transform on the IR, called “make_adjoint”. It takes straight-line code
directly and operates on the hierarchical intermediate representation (IR) of Taichi. An outer par-
allel for loop is allowed for the primal kernel. The DiffSim compiler will distribute these parallel
iterations onto CPU/GPU threads.

During the “make_adjoint pass", for each SSA statement, a local adjoint variable will be allocated
for contribution accumulation. The compiler will traverse the statements in reverse order, and accu-
mulate the gradients to the corresponding adjoint local variable.

An example: 1D array operation yi = sinx2
i has its IR representation as follows:

for i ∈ range(0, 16, step 1) do
%1 = load x[i]
%2 = mul %1,%1
%3 = sin(%2)
store y[i] = %3

end for

The above primal kernel will be transformed into the following adjoint kernel:

for i in range(0, 16, step 1) do
// adjoint variables
%1adj = alloca 0.0
%2adj = alloca 0.0
%3adj = alloca 0.0
// original forward computation
%1 = load x[i]
%2 = mul %1,%1
%3 = sin(%2)
// reverse accumulation
%4 = load y_adj[i]
%3adj += %4
%5 = cos(%2)
%2adj += %3adj ∗%5
%1adj += 2 ∗%1 ∗%2adj
atomic add x_adj[i],%1adj

end for

(Note that for clarity the transformed code is not strictly SSA here. The actual IR has more instruc-
tions.) A following simplification pass will simplify redundant instructions generated by the AD
pass.

4Taichi uses a hierarchical static single assignment (SSA) intermediate representation (IR) as its internal
program representation. The Taichi compiler applies multiple transform passes to lower and simplify the SSA
IR in order to get high-performance binary code.
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Explicit storage control Memory consumption and performance directly relates to the scalability
of differentiable programs. Reverse-mode AD typically requires recording the whole computational
history for backpropagation, leading to much larger memory consumption than traditional forward
programs. Therefore, we expose the tensor storage detail to users, which makes it possible to micro-
manage memory and possibly trade computation for memory (e.g., "checkpointing"). The draw back
of such flexibility is the risk of having the computational history corrupted by the user, although in
practice this is not an issue for experienced DiffSim programmers.

C A FULL DIFFSIM PROGRAM EXAMPLE

Here we briefly introduce the language constructs via a simple minimization problem on vectors xi,
with yi given. The loss function is defined as

L(x) =
1

2

n−1∑
i=0

(xi − yi)2.

Clearly the solution is xi = yi. The following code finds this solution using gradient descent:

import taichi_lang as ti
import random

# Declare the tensors
n = 32
x = ti.var(dt=ti.f32)
y = ti.var(dt=ti.f32)
L = ti.var(dt=ti.f32)

# Specify the layout of the primal and adjoint tensors
@ti.layout
def data():

# Place tensors and their adjoints (*.grad)
ti.root.dense(ti.i, n).place(x, y, x.grad, y.grad)
ti.root.place(L, L.grad)

@ti.kernel
def reduce():

for i in range(n):
ti.atomic_add(L, 0.5 * (x[i] - y[i]) ** 2)

# Initialize the vectors
for i in range(n):

x[i] = 0.0
y[i] = random.random()

@ti.kernel
def reset_gradients():

L.grad[None] = 1
for i in x:
x.grad[i] = 0
y.grad[i] = 0

@ti.kernel
def update():

for i in x:
x[i] -= x.grad[i] * 0.1

# Optimize with 100 gradient descent iterations
for k in range(100):

L[None] = 0
reduce()
print(’L =’, L[None])

reset_gradients()
# Call the *adjoint* version of the reduce kernel
reduce.grad()
update()

for i in range(n):
# Now you should approximately have x[i] == y[i]
print(x[i], y[i])
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The layout language is from Taichi (Hu et al., 2019a). An alternative way to automatically place the
gradient tensors is as follows:

@ti.layout
def data():

ti.root.dense(ti.i, n).place(x, y)
ti.root.place(L)
# Automatically place the adjoint tensors immediately next to the primal tensor
ti.lazy_grad()

An efficient layout that ensures consecutive elements in the tensor are also consecutive in memory:

@ti.layout
def data():

for v in [x, y, x.grad, y.grad]:
ti.root.dense(ti.i, n).place(v)

ti.root.place(L, L.grad)

Generalizing the program to sparse tensors requires using a different two-level sparse data structure:

@ti.layout
def data():

# Use a two-level sparse 1D array for storing x and y
# A sparse pointer array that points to
# blocks of 16 elements of
# x_i, y_i and their gradients, is defined:
ti.root.dense(ti.i, n // 16).pointer().dense(ti.i, 16).place(x, y)
ti.root.place(L)
ti.lazy_grad()

A more efficient sparse layout:

@ti.layout
def data():

block = ti.root.dense(ti.i, n // 16).pointer()
for v in [x, y, x.grad, y.grad]:
block.dense(ti.i, 16).place(v)

ti.root.place(L, L.grad)

In short, all the original data structure nodes from Taichi are supported, for organizing primal tensors
(e.g., x) and adjoint tensors (e.g., x.grad). For quick prototyping, ti.lazy_grad() conveniently applies
a default data organization for the adjoint tensors. Invoking the adjoint version of a kernel, e.g.
reduce, requires calling reduce.grad().

D WAVE SIMULATOR DETAILS

Wang et al. (2018) used the finite different time-domain (FDTD) method (Larsson & Thomée, 2008)
to discretize Eqn. 1, yielding an update scheme:

ut,i,j = 2ut−1,i,j + (c2∆t2 + cα∆t)(∇2u)t−1,i,j − pt−2,i,j − cα∆t(∇2u)t−2,i,j ,

where

(∇2u)t,i,j =
−4ut,i,j + ut,i,j+1 + ut,i,j−1 + ut,i+1,j + ut,i−1,j

∆x2
.

We implemented this wave simulator in DiffSim to simulate shallow water. We used a grid of
resolution 128× 128 and 256 time steps. The loss function is defined as

L =
∑
i,j

∆x2(uT,i,j − ûi,j)2

where T is the final time step, and û is the target height field. 200 gradient descent iterations are
then used to optimize the initial height field. We set û to be the pattern “Taichi", and Fig. 5b shows
the unoptimized and optimized wave evolution.
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E FIXING GRADIENTS WITH TIME OF IMPACT AND CONTINUOUS
COLLISION DETECTION

Here is a naive time integrator in the mass-spring system example:
@ti.kernel
def advance(t: ti.i32):

for i in range(n_objects):
s = math.exp(-dt * damping)
new_v = s * v[t - 1, i] + dt * gravity * ti.Vector([0.0, 1.0])
old_x = x[t - 1, i]
depth = old_x[1] - ground_height
if depth < 0 and new_v[1] < 0:
# assuming a sticky ground (infinite coefficient of friction)
new_v[0] = 0
new_v[1] = 0

# Without considering time of impact, we assume the whole dt uses new_v
new_x = old_x + dt * new_v

v[t, i] = new_v
x[t, i] = new_x

Implementing TOI in this system is relative straightforward:
@ti.kernel
def advance_toi(t: ti.i32):

for i in range(n_objects):
s = math.exp(-dt * damping)
old_v = s * v[t - 1, i] + dt * gravity * ti.Vector([0.0, 1.0])
old_x = x[t - 1, i]
new_x = old_x + dt * old_v
toi = 0.0
new_v = old_v
if new_x[1] < ground_height and old_v[1] < -1e-4:
# The 1e-4 safe guard is important for numerical stability
toi = -(old_x[1] - ground_height) / old_v[1] # Compute the time of impact
new_v = ti.Vector([0.0, 0.0])

# Note that with time of impact, dt is divided into two parts,
# the first part using old_v, and second part using new_v
new_x = old_x + toi * old_v + (dt - toi) * new_v

v[t, i] = new_v
x[t, i] = new_x

In rigid body simulation, the implementation follows the same idea yet is slightly more complex.
Please refer to rigid_body.py for more details.

F ADDITIONAL TIPS ON GRADIENT BEHAVIORS

Initialization matters: flat lands and local minima in physical processes A trivial example
of objective flat land is in billiards. Without proper initialization, gradient descent will make no
progress since gradients are zero (Fig. 11). Also note the local minimum near (−5, 0.03).

75 50 25 0 25 50 75
Angle of velocity

0.02

0.03

0.04

0.05

0.06

Ob
je

ct
iv

e

Billiard Scene Objective

20 10 0 10 20
Angle of velocity

0.02

0.03

0.04

0.05

0.06

Ob
je

ct
iv

e

Billiard Scene Objective

Figure 11: Left: Scanning initial velocity in the billiard example. Middle: Most initial angles
yield a flat objective (final distance between the blue ball and black destination) of 0.065, since the
white ball does not collide with any other balls and imposes no effect on the pink ball via the chain
reaction. Right: A zoomed-in view of the middle figure. The complex collisions lead to a lot of
local minimums. [Reproduce: python3 billiards.py 1.0/0.23]
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In mass_spring and rigid_body, once the robot falls down, gradient descent will quickly become
trapped. A robot on the ground will make no further progress, no matter how it changes its controller.
This leads to a more non-trivial local minimum and zero gradient case.

Ideal physical models are only “ideal”: discontinuities and singularities Real-world macro-
scopic physical processes are usually continuous. However, building upon ideal physical models,
even in the forward physical simulation results can contain discontinuities. For example, in a rigid
body model with friction, changing the initial rotation of the box can lead to different corners hitting
the ground first, and result in a discontinuity (Fig. 12). In electric and mass_spring, due to the 1

r2

and 1
r terms, when r → 0, gradients can be very inaccurate due to numerical precision issues. Note

that d(1/r)/dr = −1/r2, and the gradient is more numerically problematic than the primal for a
small r. Safeguarding r is critically important for gradient stability.
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Figure 12: Friction in rigid body with collision is a common source of discontinuity. In this
scene a rigid body hits the ground. Slightly rotating the rigid body changes which corner (A/B)
hits the ground first, and different normal/friction impulses will be applied to the rigid body.
This leads to a discontinuity in its final position (loss=final y coordinate). [Reproduce: python3
rigid_body_discontinuity.py] Please see our supplemental video for more details.
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