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ABSTRACT

Consistency regularization describes a class of approaches that have yielded
ground breaking results in semi-supervised classification problems. Prior work
has established the cluster assumption — under which the data distribution con-
sists of uniform class clusters of samples separated by low density regions — as
key to its success. We analyze the problem of semantic segmentation and find that
the data distribution does not exhibit low density regions separating classes and
offer this as an explanation for why semi-supervised segmentation is a challeng-
ing problem. We then identify the conditions that allow consistency regularization
to work even without such low-density regions. This allows us to generalize the
recently proposed CutMix augmentation technique to a powerful masked variant,
CowMix, leading to a successful application of consistency regularization in the
semi-supervised semantic segmentation setting and reaching state-of-the-art re-
sults in several standard datasets.

1 INTRODUCTION

Semi-supervised learning offers the tantalizing promise of training a machine learning model with
limited amounts of labelled training data and large quantities of unlabelled data. These situations of-
ten arise in practical computer vision problems where large quantities of images are readily available
and generating ground truth labels acts as a bottleneck due to the cost and labour required.

Consistency regularization (Sajjadi et al., 2016b; Laine & Aila, 2017; Miyato et al., 2017; Oliver
et al., 2018) describes a class of semi-supervised learning algorithms that have yielded state-of-
the-art results in semi-supervised classification, while being conceptually simple and often easy to
implement. The key idea is to encourage the network to give consistent predictions for unlabeled
inputs that are perturbed in various ways.

The effectiveness of consistency regularization is often attributed to the smoothness assumption
(Miyato et al., 2017; Luo et al., 2018) or cluster assumption (Chapelle & Zien, 2005; Sajjadi et al.,
2016a; Shu et al., 2018; Verma et al., 2019). The smoothness assumption states that samples close to
each other are likely to have the same label. The cluster assumption — a special case of the smooth-
ness assumption — states that decision surfaces should lie in low density regions, not crossing high
density regions. This typically holds in classification tasks, where most successes of consistency
regularization have been reported so far.

On a high level, semantic segmentation is classification, where each pixel is classified based on its
neighborhood. It is therefore intriguing that consistency regularization has not been clearly ben-
eficial in this context. We make the observation that the distance between patches centered on
neighboring pixels varies smoothly even when the class of the center pixel changes, and thus there
are no low-density regions on class boundaries. This alarming observation leads us to investigate
the conditions that can allow consistency regularization to operate even in these conditions. Our key
insight is that this is indeed possible, and that previous attempts have yielded little success primarily
because the perturbations they used were not strong enough, and especially not high-dimensional
enough.

We show that a flexibly masked variant of CutMix (Yun et al., 2019), which we call CowMix based
on the mask appearance, does realize significant gains in semi-supervised semantic segmentation.
This result clearly signposts a direction where further improvements are likely to be available.
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2 BACKGROUND

Our work relates to prior art in three areas: recent regularization techniques for classification, semi-
supervised classification with a focus on consistency regularization, and semantic segmentation.

2.1 MIXUP, CUTOUT, AND CUTMIX

The MixUp regularizer of Zhang et al. (2018) improves the performance of supervised image, speech
and tabular data classifiers by using interpolated samples during training. The inputs and target labels
of two randomly chosen examples are blended using the same randomly chosen factor.

The Cutout regularizer of DeVries & Taylor (2017) augments an image by masking a rectangular
region to zero. The recently proposed CutMix regularizer of Yun et al. (2019) combines aspects of
MixUp and Cutout, cutting a rectangular region from B and pasting it over A. MixUp, Cutout, and
CutMix improve supervised classification performance, with CutMix outperforming the other two.

2.2 SEMI-SUPERVISED CLASSIFICATION

The Π-model of Laine & Aila (2017) passes each unlabeled sample through a classifier twice, ap-
plying two realizations of a stochastic perturbation process, and minimizes the difference between
the resulting class probability predictions. Their temporal model maintains a per-sample moving
average of historical predictions and encourages subsequent predictions to be consistent with the
average. Sajjadi et al. (2016b) similarly encourage consistency between the current and historical
predictions. Miyato et al. (2017) improve the results by replacing the stochastic perturbations with
adversarial directions, thus focusing on perturbations that are closer to the decision boundaries.

The mean teacher model of Tarvainen & Valpola (2017) encourages consistency between predictions
of a student network and a teacher network. The teacher’s weights are an exponential moving
average (Polyak & Juditsky, 1992) of those of the student, leading to a faster convergence and
improved results. French et al. (2018) adapt the mean teacher approach for domain adaptation.

Interpolation consistency training (ICT) (Verma et al., 2019) and MixMatch (Berthelot et al., 2019)
both combine MixUp (Zhang et al., 2018) with consistency regularization. ICT uses the mean
teacher model and applies MixUp to unsupervised samples, blending input images along with
teacher class predictions to produce a blended input and target to train the student. MixMatch
stochastically perturbs each sample multiple times and averages the predictions to produce unsuper-
vised targets; MixUp is applied to labeled as well as unlabeled samples.

2.3 SEMANTIC SEGMENTATION

Long et al. (2015) finetune a pre-trained VGG-16 (Simonyan & Zisserman, 2014) image classifier
to produce a dense set of predictions for overlapping input windows. They effectively transform
the image classifier into a fully convolutional network that can be used to segment input images of
arbitrary size. Various methods were proposed for increasing the localization accuracy of the results
(Long et al., 2015; Chen et al., 2014; Mostajabi et al., 2014) until the introduction of encoder-
decoder networks (Badrinarayanan et al., 2015; Ronneberger et al., 2015) led to a solution where
the output resolution natively matches the input. In these recent methods the encoder downsamples
the input progressively, similarly to image classifiers, the decoder performs progressive upsampling,
and skip connections route data between the matching resolutions of the two networks, improving
the ability to accurately segment fine details.

A number of approaches for semi-supervised semantic segmentation use additional data. Kalluri
et al. (2018) use data from two datasets from different domains, maximizing the similarity between
per-class embeddings from each dataset. Stekovic et al. (2018) use depth images and enforced ge-
ometric constraints between multiple views of a 3D scene. Relatively few approaches operate in a
strictly semi-supervised setting. Hung et al. (2018) employ adversarial learning, using a discrimina-
tor network that distinguishes real from predicted segmentation maps to guide learning. Perone &
Cohen-Adad (2018) apply consistency regularization to a MRI volume dataset and their method is
the only successful application of consistency regularization to segmentation that we are aware of.
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(a) Example image (b) Avg. distance to neighbor, (c) Avg. distance to neighbor,
patch size 15×15 patch size 225×225

Figure 1: In a segmentation task, low-density regions rarely correspond to class boundaries. (a) An
image from Camvid dataset. (b) Average L2 distance between a patch centered at pixel and its four
immediate neighbors, using 15×15 pixel patches. (c) Same for a more realistic receptive field size
of 225×225 pixels. Dark blue indicates large inter-patch distance and therefore a low density region,
white indicates a distance of 0. The red lines indicate segmentation ground truth boundaries.

3 CONSISTENCY REGULARIZATION FOR SEMANTIC SEGMENTATION

Consistency regularization adds a consistency loss term Lcons to the loss that is minimized during
training (Oliver et al., 2018). In a classification task, Lcons measures a distance d(·, ·) between the
predictions resulting from applying a neural network fθ to an unsupervised sample x and a perturbed
version x̂ of the same sample, i.e., Lcons = d(fθ(x), fθ(x̂)). The perturbation used to generate x̂
depends on the variant of consistency regularization used. A variety of distance measures d(·, ·)
have been used, e.g., squared distance (Laine & Aila, 2017) or cross-entropy (Miyato et al., 2017).

Athiwaratkun et al. (2019) analyze a simplified version of the Π-model (Laine & Aila, 2017) in
which perturbation consists of additive Gaussian noise so that x̂ = x+ εh, where h ∼ N (0, I) and
d(·, ·) is a squared Euclidean distance. For small constant ε, the expected value of the consistency
loss term Lcons is approximately proportional to the square of the Frobenius norm of the Jacobian
Jfθ (x) of the networks outputs with respect to its inputs:

E[Lcons ] = E
[∥∥fθ(x+ εh)− fθ(x)

∥∥2 ] ≈ ε2∥∥Jfθ (x)
∥∥2
F

. (1)

Thus, minimizing Lcons directly flattens the decision function in the vicinity of unsupervised sam-
ples. This illustrates clearly the mechanism by which consistency regularization encourages the
network to move the decision boundary — and its surrounding region of high gradient — into re-
gions of low sample density.

3.1 WHY SEMI-SUPERVISED SEMANTIC SEGMENTATION IS CHALLENGING

We attribute the infrequent success of consistency regularization in semantic segmentation problems
to the observation that low density regions in input data do not align well with class boundaries. As
illustrated in Figure 1, the cluster assumption is clearly violated: how much the contents of the
receptive field of one pixel differ from the contents of the receptive field of a neighboring pixel has
effectively no correlation with whether the patches’ center pixels belong to the same class or not.
For the cluster assumption to hold, we would require the distances between the contents of receptive
fields to be large between classes and small within classes, which is not the case here.

The lack of variation in the patchwise distances is easy to explain from a signal processing per-
spective. With patch shape B, the L2 distance between two patches centered at, say, horizontally
neighboring pixels can be written as

√
B ∗ (∆xx)2, where ∗ denotes convolution and ∆xx is the

horizontal gradient of the input image x. The squared gradient image is thus low-pass filtered by a
B-shaped box filter, which suppresses any fine details and leads to smoothly varying sample density
across the image.
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Isotropic perturbation Constrained perturbation

(a) Gap between (b) No gap (c) Distance map (d) Constrain to dist.
classes and contours map contours

Figure 2: 2D semi-supervised classification experiments. Blue and red circles indicate supervised
samples from class 0 and 1 respectively. The field of small black dots indicate unsupervised samples.
The learned decision function is visualized by rendering the probability of class 1 in green; the
soft gradation represents the gradual change in predicted class probability. (a, b) Semi-supervised
learning with and without a low density region separating the classes. The dotted orange line in
(a) shows the decision boundary obtained with plain supervised learning. (c) Rendering of the
distance to the true class boundary with distance map contours. (d) Decision boundary learned when
samples are perturbed along distance contours. The magenta line indicates the true class boundary.
Appendix A explains the setup in detail.

3.2 CONSISTENCY REGULARIZATION WITHOUT CLUSTER ASSUMPTION

Let us analyze a simple toy example of learning to classify 2D points in a semi-supervised fashion.
Figure 2a illustrates the setup where cluster assumption holds and there is a gap between the unsu-
pervised samples belonging to the two different classes. The perturbation used for the consistency
loss is a simple Gaussian nudge to both coordinates, and as expected, the learned decision boundary
settles neatly between the two clusters.

In Figure 2b, the cluster assumption is violated and there are no density differences in the set of
unsupervised samples. In this case, the consistency loss does more harm than good — even though
it successfully flattens the neighborhood of the decision function, it does so also across the true class
boundary. In order for the consistency regularization to be a net win, it would have to perturb the
samples as much as possible, but at the same time avoid crossing the true class boundary.

In Figure 2c, we plot the contours of the distance to the true class boundary, suggesting a potentially
better mechanism for perturbation. Indeed, when perturbations are done only along these contours,
the probability of crossing the true class boundary is negligible compared to the regularization po-
tential in the remaining dimension. Figure 2d shows that the resulting learned decision boundary
aligns well with the true class boundary.

Low-density regions provide an effective signal that guides consistency regularization by providing
areas into which a decision boundary can settle. This illustrative toy example demonstrates an al-
ternative mechanism; the orientation of the decision boundary can be constrained to lie parallel to
the directions of perturbation. We therefore argue that consistency regularization can be successful
even when the cluster assumption is violated, if the following guidelines are observed: 1) the per-
turbations must be varied and high-dimensional in order to cover as much of the input space in the
same class as possible, 2) the probability of a perturbation crossing the true class boundary must be
very small compared to the amount of exploration in other dimensions, and 3) the perturbed inputs
should be plausible, i.e., they should not be grossly outside the manifold of real inputs.

3.3 CUTOUT AND CUTMIX FOR SEMANTIC SEGMENTATION

If we consider the classical augmentation-like perturbations such as translation, rotation, scaling,
and brightness/contrast changes, it is evident that these have a low chance of confusing the output
class (Athiwaratkun et al., 2019) but they also provide very little variation. Note that in context of
semantic segmentation, all geometric transformations need to be applied in reverse for the result
image before computing the loss (Ji et al., 2018). As such, translation turns into a no-op, unlike
in classification tasks where it remains a useful perturbation. Adding noise is another questionable
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Figure 3: Illustration of mixing regularization for semi-supervised semantic segmentation with the
mean teacher framework. θs and θt denote the weights of the student and teacher networks, respec-
tively. The arbitrary mask M is omitted from the argument list of function mix for legibility.

perturbation strategy — although high-dimensional, such perturbations are very unlikely to lie on
the manifold of natural images.

Out of previously proposed perturbation methods for consistency regularization, we identify CutOut
and CutMix as promising candidates for semantic segmentation as they provide a large variety of
possible outputs and are class preserving. Both approaches use a mask M with a randomly chosen
rectangular region. Our masks have M = 1 inside the rectangle, and M = 0 otherwise.

CutOut. To apply CutOut in a semantic segmentation task, we mask the input pixels with M and
disregard the consistency loss for pixels masked to 0 by M . Using square distance as the metric, we
have Lcons = ||M� (fθ(M� x)− fθ(x))||2, where � denotes an elementwise product.

CutMix. CutMix requires two input images that we shall denote xa and xb that we mix with
the mask M . Following ICT (Verma et al. (2019)) we run both input images as well as the mixed
variant through the network. The consistency loss is then taken between the segmentation of the
mixed image and the mix between the segmented input images. To simplify the notation, let us
define function mix (a, b,M) = (1−M)� a+M � b that selects the output pixel based on mask
M . We can now write the consistency loss for segmentation CutMix as

Lcons =
∣∣∣∣mix

(
fθ(xa), fθ(xb),M

)
− fθ

(
mix (xa, xb,M)

)∣∣∣∣2. (2)

So far we have assumed that both original and perturbed images are segmented using the same
network fθ. In this sense, our approach is similar to the Π-network Laine & Aila (2017), although
mean teacher (Tarvainen & Valpola, 2017) is known to outperform it in image classification tasks.
Our preliminary tests indicated that the same is true for semantic segmentation, and therefore all the
experiments in this paper use the mean teacher framework. Specifically, in CutOut, we segment the
unperturbed image x using the teacher network and the perturbed image M � x using the student
network. In CutMix — following Verma et al. (2019) — we similarly segment the original images xa
and xb using the teacher network, and the mixed image using the student network. The computation
is illustrated in Figure 3.

To analyze how much variation these perturbations provide, we note that the original CutOut al-
ways masks out a fixed-size square at a random position, so the resulting mask has only two degrees
of freedom. The original CutMix has three degrees of freedom in choosing the position and size
of the rectangle (the aspect ratio is fixed), and in addition it replaces the contents of the rectangle
from another training image, providing one further degree of freedom. Probably more importantly,
the CutOut-perturbed images are rather implausible because real data rarely contains axis-aligned
constant-color rectangles, whereas the content-filled rectangles of CutMix are not nearly as conspic-
uous. In semantic segmentation, we deviate from the original methods in that we choose all four
parameters of the rectangle at random in order to obtain as much variation as possible.
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σ = 2 σ = 4 σ = 8 σ = 16 σ = 32 σ = 64

Figure 4: Example CowOut/CowMix masks with p = 0.5 and varying σ in a 384×384 pixel image.

3.4 COWOUT AND COWMIX

The use of a rectangular mask restricts the dimensionality of the perturbations that CutOut and
CutMix can produce. Intuitively, a more complex mask that has more degrees of freedom should
provide better exploration of the plausible input space. We propose combining the semantic CutOut
and CutMix regularizers introduced above with a novel mask generation method, giving rise to two
regularization methods that we dub CowOut and CowMix due to the Friesian cow -like texture of
the masks.

To generate a mask with a given proportion p of pixels having M = 0, we start by sampling a
Gaussian noise image N (0, I), convolve it with a Gaussian smoothing kernel, and threshold the
result at τ = erf−1(2p− 1)

√
2Sσ + Sµ, where Sµ and Sσ are the mean and standard deviation

of the smoothed noise, respectively. The standard deviation σ of the Gaussian smoothing kernel
determines the average size of features in the mask and is drawn from a log-uniform distribution:
σ ∼ logU(σmin , σmax ). Figure 4 shows example masks with varying values of σ.

To estimate how much variation these masks contain, we first observe that if no smoothing were
performed before thresholding, we would obtain a binary per-pixel Bernoulli mask. This has an
exponential amount of variation with respect to the area of the receptive field: a receptive field with
area A has 2A possible masks. Applying the smoothing filter has a similar effect as zooming the
mask — if the smoothing constant σ is doubled, we can expect to obtain roughly 4× fewer “bits” of
variation (see, e.g., Figure 4, σ = 8 vs. σ = 16). The suitable value for σ is thus an empirical tradeoff
between the amount of variation, i.e., the strength of the resulting perturbation, and plausibility of
the masked/mixed image. If too little filtering is performed, we obtain a huge amount of variation
but the perturbed images are unrealistic, and with too much filtering the images are very realistic but
the amount of variation is small. As a geometric interpretation, we hypothesize that the more varied
masks help the network to cope with occlusions better than the rectangular masks that can mimic
occlusions only along horizontal and vertical edges.

Considering potential future work, we note that it should be possible to improve the results further
with a more principled method for choosing σ so that its distribution is automatically adapted to the
training data.

4 EXPERIMENTS

We will now describe describe our experiments and main results. We will start by describing the
training setup, followed by an investigation of various perturbation methods in the context of semi-
supervised semantic segmentation, and conclude with a comparison against the state-of-the-art.

4.1 TRAINING SETUP

We use two segmentation networks in our experiments: 1) U-Net (Ronneberger et al., 2015) with a
ResNet-50 (He et al., 2016) based encoder that was pre-trained using ImageNet and a randomly ini-
tialized decoder (Appendix C.2), and 2) DeepLab v2 network (Chen et al., 2017) based on ResNet-
101 and pre-trained for semantic segmentation using the COCO (Lin et al., 2014) dataset, as used
by Hung et al. (2018).

Our implementation uses the PyTorch framework, Adam (Kingma & Ba, 2015) optimizer, and
the mean teacher algorithm (Tarvainen & Valpola, 2017), as detailed in Appendix C.3. We re-
place the sigmoidal ramp-up of the consistency regularization weight (Laine & Aila, 2017; Tar-
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Sup. baseline Std. aug(a) ICT Cutout CutMix(b) CowOut CowMix Fully sup.
48.66%± 1.80 46.24%± 2.21 48.29%± 2.01 53.09%± 2.56 50.95%± 2.49 52.93%± 1.35 55.06%± 1.74 64.19%± 0.41

Table 1: Measurements and ablation on CAMVID test set. Our results are mean intersection-over-
union (mIoU) presented as mean ± std .dev computed from 10 runs. Training was run for 300
epochs, except in (a) standard augmentation and (b) CutMix experiments where convergence failures
were observed. For those experiments, the results were taken after (a) 50 and (b) 100 epochs.

vainen & Valpola, 2017) using the average thresholded confidence of the teacher network (see Ap-
pendix C.3.4), which automatically increases as the training progresses (French et al., 2018). We
will make our implementation available.

4.2 COMPARISON OF PERTURBATION METHODS

The CAMVID (Brostow et al., 2008) training set consists of 367 images. We chose 10 subsets of
30 labeled images that were used for the supervised loss, while all training images were used to
compute the consistency loss. The U-net setup is used in this test.

The results for different perturbation methods are given in Table 1. Perturbations based on standard
data augmentation (flips, rotations, brightness, etc., see Appendix C.1) and Interpolation Consis-
tency Training (ICT) resulted in no measurable improvement in the mean IoU score compared to the
baseline of supervised training using only the labeled samples. The Cutout and CutMix experiments
used masks with a single random rectangle, and led to clear improvements over the baseline.

For CowOut and CowMix, we generated the masks using σ ∈ [4, 16]. For CowOut, we found that
choosing the masked pixel proportion randomly with p ∼ U(0, 1) produced the best results, whereas
for CowMix it was optimal to always use p = 0.5. CowMix led to the best result in this experiment,
bridging approximately half of the gap between the supervised baseline and the fully supervised
reference result.

We tuned all hyper-parameters using the CAMVID dataset due to its small size and fast run-time.
We found that these hyper-parameters also worked well for other, larger datasets.

4.3 RESULTS ON CITYSCAPES AND PASCAL VOC

We will now compare our results against the state-of-the-art in semi-supervised semantic segmenta-
tion, which is currently the adversarial training approach of Hung et al. (2018). We use two datasets
in our experiments. CITYSCAPES consists of urban scenery captured from the perspective of a vehi-
cle. Its training set consists of 2975 images. PASCAL VOC 2012 (Everingham et al., 2012) is more
varied, but includes only 1464 training images, and thus we follow the lead of Hung et al. and aug-
ment it using SEMANTIC BOUNDARIES (Hariharan et al., 2011), resulting in 10582 training images.
We note that we generated CowMix masks using σ ∈ [8, 32] due to the larger visual features present
in CITYSCAPES and PASCAL VOC.

Our results are given in Tables 2 and 3 as mean intersection-over-union (mIoU) percentages, where
higher is better. The supervised baseline results between Hung et al. and our DeepLab implementa-
tion are based on the same setup, provided by the authors, but differ slightly in practice due to the
different choice of optimizer, etc.

We can see that using the same DeepLab setup, CowMix outperforms the adversarial training ap-
proach in both datasets, with the exception of PASCAL when using a large number of labeled sam-
ples. The difference is particularly significant when only a small number of labeled samples is
available, e.g., 52% vs 38% mIoU with 100 labeled samples in PASCAL.

When using our U-Net architecture — in which the decoder has not been pre-trained — we were un-
able to successfully apply the adversarial approach. U-Net improves the performance of CowMix on
CITYSCAPES and continues to yield significant gains relative to the supervised baseline in the case
of PASCAL. While the performance on the more varied PASCAL dataset significantly benefits the
pre-training of DeepLab v2, it also provides a good test environment for semi-supervised learning
algorithms when the decoder is randomly initialized.
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Labeled samples 100 372 (12.5%) 744 (25%) 1488 (50%) 2975 (All)
Hung et al. (2018): Adversarial training with DeepLab v2 network and COCO-pretrained decoder

Baseline — 55.5% 59.9% 64.1% 66.4%
Semi-supervised — 58.8% 62.3% 65.7% —
Delta — 3.5 2.4 1.6 —

Our results: Same DeepLab v2 network and COCO-pretrained decoder
Baseline 44.34%± 1.61 56.02%± 0.80 60.90%± 0.70 65.05%± 0.71 67.79%± 0.32

CowMix 49.01%± 2.58 60.53%± 0.29 64.10%± 0.82 66.51%± 0.45 69.03%± 0.27

Delta 4.67 4.51 3.20 1.46 1.24
Our results: U-Net and randomly initialized decoder

Baseline 43.83%± 0.99 54.76%± 0.50 60.35%± 0.93 64.93%± 0.32 68.34%± 0.76

CowMix 51.98%± 2.76 61.48%± 1.84 64.85%± 0.26 66.90%± 0.22 69.57%± 0.43

Delta 8.15 6.72 4.50 1.97 1.23

Table 2: Performance (mIoU) on CITYSCAPES validation set, each computed from 5 runs. The
results for Hung et al. (2018) are from their paper.

# Labels 100 200 400 800 2646 (25%) 10582 (All)
Hung et al. (2018): Adversarial training with DeepLab v2 network and COCO-pretrained decoder

Baseline 39.22%± 2.08 46.57%± 1.34 55.65%± 0.88 62.54%± 0.45 68.41%± 0.29 72.50%± 0.27

Semi-sup. 38.82%± 3.91 49.40%± 1.00 60.29%± 2.25 66.45%± 0.69 71.27%± 0.26 —
Delta 0.40 2.83 4.64 3.91 2.86 —

Our results: Same DeepLab v2 network and COCO-pretrained decoder
Baseline 41.17%± 1.96 48.96%± 1.70 58.18%± 1.16 64.51%± 0.85 70.16%± 0.35 73.32%± 0.19

CowMix 52.10%± 1.35 57.84%± 1.55 64.18%± 1.79 67.84%± 0.88 70.99%± 0.41 73.43%± 0.06

Delta 10.93 8.88 6.00 3.33 0.83 0.11
Our results: U-Net and randomly initialized decoder

Baseline 24.91%± 2.13 33.66%± 1.64 41.80%± 1.15 49.18%± 1.61 60.58%± 0.77 65.97%± 1.11

CowMix 41.00%± 2.70 49.42%± 1.74 54.20%± 1.12 54.67%± 5.66 63.48%± 0.26 65.54%± 4.99

Delta 16.09 15.76 12.4 5.49 2.90 -0.43

Table 3: Performance (mIoU) on augmented PASCAL VOC validation set, each computed from 5
runs.

4.4 DISCUSSION

We attribute the fact that the adversarial approach (Hung et al. (2018)) is ineffective with small num-
bers of labeled samples to the requirements imposed by its discriminator network. A small set of
ground truth labels lacks the variation necessary to effectively train the discriminator to distinguish
ground truth from predicted segmentation maps, preventing it from effectively guiding the segmen-
tation network. In contrast, consistency regularization minimizes variation in prediction over class
preserving perturbation, effectively propagating labels between unlabelled samples. It therefore does
not impose similar requirements on the size of the labeled data set.

5 CONCLUSIONS

We have shown that consistency regularization is a viable solution for semi-supervised semantic
segmentation, despite the lack of low-density regions between classes. The proposed CowMix reg-
ularization leads to very high-dimensional perturbations that enable state-of-the-art results, while
being considerably easier to implement and use than the previous methods based on adversarial
training. Even better and more varied perturbation strategies are an obvious avenue for future work.
Additionally, it could be fruitful to investigate when the CowMix approach could also be beneficial
in the context of classification.
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A 2D TOY EXPERIMENTS

The neural networks used in our 2D toy experiments are simple classifiers in which samples are 2D
x, y points ranging from -1 to 1. Our networks are multi-layer perceptrons consisting of 3 hidden
layers of 512 units, each followed by a ReLU non-linearity. The final layer is a 2-unit classification
layer. We use the mean teacher (Tarvainen & Valpola, 2017) semi-supervised learning algorithm
with binary cross-entropy as the consistency loss function, a consistency loss weight of 10 and
confidence thresholding (French et al., 2018) with a threshold of 0.97. The ground truth decision
boundary was derived from a hand-drawn 512×512 pixel image.

The constrained consistency regularization experiment described in Section 3.2 required that a sam-
ple x should be perturbed to x̂ such that they are at the same — or similar — distance to the ground
truth decision boundary. This was achieved by drawing isotropic perturbations from a normal dis-
trubtion x̂ = x + h where h ∼ N (0, 0.117) (0.117 ≈ 30 pixels in the source image), deter-
mining the distances m(x) and m(x̂) from x and x̂ to the ground truth boundary (using a pre-
computed distance map) and discarding the perturbation – by masking consistency loss for x to 0 –
if |m(x̂)−m(x)| > 0.016 (0.016 ≈ 4 pixels in the source image).

B PSEUDOCODE

The mask generation function is given in the form of Python/PyTorch code in Listing 1, and the
training functions for semi-supervised CutOut and CutMix are given in Listings 2 and 3, respectively.
The latter incorporate the mean teacher framework (Tarvainen & Valpola, 2017) and confidence
thresholding (French et al., 2018) as used in our experiments. In keeping with Yun et al. (2019);
DeVries & Taylor (2017); Verma et al. (2019), our mask generator allows the proportion of pixels
that come from each source image to vary. Although we found via experimentation that for CowMix
the best proportion was always p = 0.5, varying the proportion is beneficial for CowOut as detailed
in Section 4.2.

1 import numpy as np
2 from scipy.ndimage.filter import gaussian_filter
3 from scipy.special import erfinv
4

5 def generate_mixing_mask(img_size, sigma_min, sigma_max, p_min, p_max):
6 # Randomly draw sigma from log-uniform distribution
7 sigma = np.exp(np.random.uniform(np.log(sigma_min), np.log(sigma_max)))
8 p = np.random.uniform(p_min, p_max) # Randomly draw proportion p
9 N = np.random.normal(size=img_size) # Generate noise image

10 Ns = gaussian_filter(N, sigma) # Smooth with a Gaussian
11 # Compute threshold
12 t = erfinv(p*2 - 1) * (2**0.5) * Ns.std() + Ns.mean()
13 return (noise_smooth > t).astype(float) # Apply threshold and return

Listing 1: Python/NumPy code for cow mask generation

1 def cutout_loss(x, mask, teacher_model, student_model):
2 """x is input image of shape (batch, chan, H, W), mask is mixing mask

of shape (batch, 1, H, W)"""
3 # Apply teacher model and softmax to get per-pixel class probability
4 y_t = softmax(teacher_model(x), dim=1)
5 # Apply student model to masked image
6 y_s = softmax(student_model(x * mask), dim=1)
7 # Confidence thresholding factor
8 confidence = y_t.max(dim=1) # Dimension 1 is class prob.
9 conf_fac = (confidence > 0.97).mean()

10 # Consistency is squared error between student and teacher preds for
masked pixels only, modulated with confidence factor

11 return (squared_diff(ym_t, ym_s) * m).mean() * conf_fac

Listing 2: PyTorch code for CutOut / CowOut for segmentation

1 def cutmix_loss(xa, xb, mask, teacher_model, student_model):
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Figure 5: ResNet-50 based U-Net decoder architecture.

2 """xa, xb are input image pair each of shape (batch, chan, H, W), mask
is mixing mask of shape (batch, 1, H, W)"""

3 # Apply teacher model and softmax to get per-pixel class probability
4 ya_t = softmax(teacher_model(xa), dim=1)
5 yb_t = softmax(teacher_model(yb), dim=1)
6 # Mix images and teacher predictions
7 xm = xa * (1 - mask) + xb * mask
8 ym_t = ya_t * (1 - mask) + yb_t * mask
9 # Apply student model to mixed image

10 ym_s = softmax(student_model(xm), dim=1)
11 # Confidence thresholding factor
12 confidence = ym_t.max(dim=1) # Dimension 1 is class prob.
13 conf_fac = (confidence > 0.97).mean()
14 # Consistency is squared error between student and teacher preds,

modulated with confidence factor
15 return squared_diff(ym_t, ym_s).mean() * conf_fac

Listing 3: PyTorch code for CutMix / CowMix for segmentation

C SEMANTIC SEGMENTATION EXPERIMENTS

C.1 DATA AUGMENTATION

Our data augmentation scheme that we used for standard augmentation based perturbation consists
of an affine transformation composed of horizontal flips, translation in the range [−4, 4] pixels,
uniform scaling in the range [0.8, 1.25] and rotation in the range [−15◦, 15◦]. We also modify the
brightness and contrast by adding a value b ∼ N (0, 0.1) and scaling by a factor c ∼ eN (0,ln(1.1)).

C.2 U-NET NETWORK ARCHITECTURE

Our U-Net network is shown in Figure 5 and Table 4.

C.3 TRAINING DETAILS

C.3.1 EXPERIMENTS USING U-NET ARCHITECTURE

In keeping with Long et al. (2015) we use a batch size of 1. We freeze the batch normalization layers
within the ResNet encoder, using the pre-trained running mean and variance rather than computing
per-batch mean and variance during training. We use the Adam Kingma & Ba (2015) optimization
algorithm with a learning rate of 1× 10−4. As per the mean teacher algorithm Tarvainen & Valpola
(2017), after each iteration the weights wt of the teacher network are updated to be the exponential
moving average of the weights ws of the student: wt = αtwt + (1− αt)ws, where αt = 0.99.

The Cityscapes images were downsampled to half resolution (1024× 512) prior to use, as in Hung
et al. (2018). When using Cityscapes we trained for 100,000 iterations using a batch size of 1.
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Description Resolution × channels
ResNet-50 layer conv5 x 1

32
res, 2048 chn 1

32
× 2048

Conv 3× 3× 192 1
32

× 192
TransposeConv 4× 4× 128 1

16
× 128

Concat with ResNet-50 layer conv4 x 1
16

res, 1024 chn 1
16

× 1152
Conv 3× 3× 128 1

16
× 128

TransposeConv 4× 4× 96 1
8
× 96

Concat with ResNet-50 layer conv3 x 1
8

res, 512 chn 1
8
× 608

Conv 3× 3× 96 1
8
× 96

TransposeConv 4× 4× 64 1
4
× 64

Concat with ResNet-50 layer conv2 x 1
4

res, 256 chn 1
4
× 320

Conv 3× 3× 64 1
4
× 64

TransposeConv 4× 4× 48 1
2
× 48

Conv 3× 3× 48 1
2
× 48

TransposeConv 4× 4× 32 1× 32
Conv 3× 3× 32 1× 32
Conv 1× 1× C 1× C

Table 4: ResNet-50 based U-Net decoder. C is the number of target classes.

We tuned our approach and selected hyper-parameters using the CAMVID dataset due to its small
size and fast run-time, after which we applied the same hyper-parameters to Cityscapes. We did
not run the augmentation based perturbation experiments on the Cityscapes dataset due to the long
run-time involved.

C.3.2 EXPERIMENTS USING DEEPLAB V2 ARCHITECTURE

We found that we had to decrease the learning rate to 1 × 10−5 to get good performance with
DeepLab v2. We note that the PyTorch implementation of DeepLab v3 worked best with 1× 10−4.
We believe that this is because the U-Net and DeepLab v3 networks accept input images with zero-
mean unit-variance, where DeepLab v2 accepts images whose values are in the range 0 to 255 with
only mean subtraction.

For the PASCAL VOC experiments, we extracted 321 × 321 random crops and used a batch size of
10, in keeping with Hung et al. (2018). For the CITYSCAPES experiments we used full image crops
and a batch size of 2.

C.3.3 ABLATION

The augmentation based perturbation experiments performed on the CAMVID dataset were trained
for 50 epochs. The CutMix and CowOut experiments were trained for 100.

C.3.4 CONFIDENCE THRESHOLDING

French et al. (2018) apply confidence thresholding, in which they mask consistency loss to 0 for
samples whose confidence as predicted by the teacher network is below a threshold of 0.968. In the
context of segmentation, we found that this masks pixels close to class boundaries as they usually
have a low confidence. These regions are often large enough to encompass small objects, preventing
learning and degrading performance. Instead we modulate the consistency loss with the proportion
of pixels whose confidence is above the threshold. This values grows throughout training, taking the
place of the sigmoidal ramp-up used in Laine & Aila (2017); Tarvainen & Valpola (2017).

C.4 DETAILED PERFORMANCE TABLES

The detailed per-class performance on the CITYSCAPES dataset are presented in Table 5 and visual-
ized in Figure 6, ad on the augmented PASCAL VOC dataset are presented in Table 6 and visualized
in Figure 7.
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Figure 6: Visualization of semi-supervised segmentation on CITYSCAPES, 100 supervised samples
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OVERALL Road Sidewalk Building
DeepLab Baseline 44.34%± 1.61 94.21%± 0.18 60.29%± 1.09 83.06%± 0.09
DeepLab CowMix 49.01%± 2.58 95.69%± 0.24 68.62%± 1.11 85.47%± 0.30
DeepLab Full 67.79%± 0.32 97.13%± 0.09 77.74%± 0.36 89.29%± 0.07
U-net Baseline 43.83%± 0.99 95.12%± 0.25 65.94%± 1.74 83.78%± 0.34
U-net CowMix 51.98%± 2.76 96.61%± 0.20 74.59%± 1.57 86.81%± 0.27
U-net Full 68.34%± 0.76 97.57%± 0.02 80.26%± 0.16 90.54%± 0.12

Wall Fence Pole Traffic light
DeepLab Baseline 13.51%± 3.39 14.86%± 2.63 33.31%± 0.49 22.20%± 5.68
DeepLab CowMix 15.85%± 4.84 19.82%± 4.89 36.66%± 0.79 28.14%± 7.10
DeepLab Full 46.12%± 1.51 45.09%± 0.88 43.91%± 0.14 49.49%± 0.73
U-net Baseline 10.65%± 2.28 12.84%± 1.67 39.59%± 1.09 26.29%± 4.40
U-net CowMix 13.91%± 5.01 18.87%± 3.07 46.25%± 0.50 36.94%± 5.18
U-net Full 44.22%± 2.36 47.52%± 0.69 56.29%± 0.47 58.68%± 1.28

Traffic sign Vegetation Terrain Sky
DeepLab Baseline 39.65%± 2.08 84.42%± 0.40 37.48%± 1.94 87.30%± 0.75
DeepLab CowMix 45.30%± 1.48 86.60%± 0.20 40.82%± 3.46 90.88%± 0.24
DeepLab Full 62.67%± 0.39 89.42%± 0.04 57.59%± 0.79 92.80%± 0.08
U-net Baseline 40.83%± 3.27 86.54%± 0.27 41.02%± 3.02 87.47%± 1.40
U-net CowMix 55.89%± 3.44 88.73%± 0.05 45.08%± 4.41 91.12%± 1.31
U-net Full 70.43%± 0.55 90.96%± 0.12 59.19%± 0.80 94.05%± 0.18

Person Rider Car Truck
DeepLab Baseline 55.76%± 0.93 17.59%± 3.70 83.70%± 1.14 17.46%± 8.96
DeepLab CowMix 61.39%± 0.39 23.38%± 3.80 86.33%± 1.50 23.15%± 13.60
DeepLab Full 69.89%± 0.24 47.37%± 0.76 91.52%± 0.08 67.77%± 1.65
U-net Baseline 57.75%± 1.81 14.69%± 2.56 85.13%± 0.49 5.86%± 2.83
U-net CowMix 66.86%± 0.90 26.85%± 4.78 88.42%± 1.57 17.77%± 10.13
U-net Full 75.18%± 0.40 50.23%± 0.96 92.23%± 0.27 54.06%± 2.89

Bus Train Motorcycle Bicycle
DeepLab Baseline 24.11%± 12.62 14.49%± 7.71 7.40%± 5.63 51.69%± 1.24
DeepLab CowMix 24.52%± 20.60 28.07%± 14.68 13.86%± 11.17 56.69%± 1.10
DeepLab Full 78.46%± 0.86 65.02%± 4.88 50.41%± 1.75 66.36%± 0.13
U-net Baseline 15.42%± 5.23 7.65%± 3.57 6.31%± 3.76 49.90%± 1.60
U-net CowMix 25.80%± 16.62 20.02%± 9.65 24.43%± 10.97 62.63%± 0.88
U-net Full 68.56%± 3.08 51.44%± 6.32 46.26%± 1.31 70.74%± 0.41

Table 5: Per-class performance on CITYSCAPES dataset, 100 supervised samples

C.5 HYPER-PARAMETER CHOICE

We explored the hyper-parameters for CowMix using the CAMVID dataset. We present our results
in the form of bar plots. Black and green bars at left and right end are the performance of the baseline
and fully supervised setups respectively while blue bars show response to hyper-parameter values.
The performance is strong when consistency weight has a value in the range of 3 to 30, with 10
being the optimum choice, as seen in Figure 8.

The EMA α value used to update the teacher network had little effect, as seen in Figure 9.

The σ used for Gaussian smoothing yielded good results when between 4 and 8, but was best when
drawn from σ ∼ logU(4, 16), as seen in Figure 10.
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OVERALL Background Person Bird
Adv. Baseline 39.22%± 2.08 87.00%± 0.89 55.00%± 9.88 24.40%± 5.46
Adv. Semi-sup. 38.82%± 3.91 88.00%± 0.63 66.00%± 9.70 25.60%± 12.22
Adv. Full 72.50%± 0.27 93.00%± 0.00 87.00%± 0.63 39.80%± 0.40
DeepLab Baseline 41.17%± 1.96 89.18%± 0.51 57.57%± 7.40 31.07%± 2.66
DeepLab CowMix 52.10%± 1.35 91.27%± 0.43 75.01%± 4.77 34.73%± 1.90
DeepLab Full 73.32%± 0.19 93.39%± 0.03 86.13%± 0.39 39.36%± 0.39
U-net Baseline 24.91%± 2.13 86.85%± 0.57 37.48%± 9.01 18.15%± 4.85
U-net CowMix 41.00%± 2.70 89.99%± 0.32 67.28%± 5.26 32.59%± 4.92
U-net Full 65.97%± 1.11 92.50%± 0.19 80.44%± 1.45 37.74%± 1.01

Cat Cow Dog Horse
Adv. Baseline 44.80%± 18.54 27.40%± 8.64 40.80%± 16.27 53.40%± 27.22
Adv. Semi-sup. 58.80%± 26.95 7.80%± 8.47 25.20%± 21.17 59.80%± 30.72
Adv. Full 85.20%± 0.98 60.40%± 1.62 78.40%± 0.49 90.00%± 0.63
DeepLab Baseline 53.06%± 12.50 29.79%± 3.06 40.19%± 11.65 52.14%± 26.38
DeepLab CowMix 75.49%± 2.11 51.59%± 6.62 58.94%± 2.76 53.47%± 29.03
DeepLab Full 85.84%± 0.91 63.73%± 0.52 76.76%± 0.44 91.58%± 0.17
U-net Baseline 26.02%± 10.70 11.06%± 0.69 17.34%± 10.69 28.56%± 15.70
U-net CowMix 58.26%± 7.16 32.37%± 6.23 44.96%± 4.58 47.54%± 24.69
U-net Full 77.76%± 1.16 60.25%± 1.48 64.85%± 1.60 80.54%± 2.36

Sheep Aeroplane Bicycle Boat
Adv. Baseline 60.00%± 5.76 62.40%± 4.45 10.60%± 3.01 26.80%± 14.23
Adv. Semi-sup. 73.80%± 1.72 56.40%± 22.29 1.20%± 1.17 18.00%± 20.94
Adv. Full 84.40%± 0.49 87.80%± 0.40 33.40%± 0.49 81.20%± 0.40
DeepLab Baseline 57.98%± 7.31 60.11%± 3.79 14.76%± 2.50 24.58%± 15.00
DeepLab CowMix 72.81%± 8.10 74.37%± 4.38 19.83%± 2.28 28.86%± 17.15
DeepLab Full 84.97%± 0.46 87.92%± 0.42 34.19%± 0.94 81.80%± 0.78
U-net Baseline 28.57%± 6.63 40.27%± 6.37 9.18%± 3.09 7.68%± 5.95
U-net CowMix 60.13%± 10.67 49.20%± 19.50 20.10%± 2.95 13.99%± 13.67
U-net Full 76.83%± 3.57 83.25%± 0.81 30.99%± 2.60 58.35%± 8.13

Bus Car Motorbike Train
Adv. Baseline 9.60%± 10.59 53.80%± 6.91 37.40%± 5.57 46.60%± 5.99
Adv. Semi-sup. 1.60%± 3.20 58.40%± 16.80 38.60%± 26.44 68.40%± 2.94
Adv. Full 51.60%± 1.20 81.00%± 0.63 78.20%± 0.75 79.40%± 0.49
DeepLab Baseline 15.86%± 10.62 49.61%± 6.59 36.08%± 5.83 52.30%± 6.91
DeepLab CowMix 25.41%± 14.08 67.77%± 5.12 52.66%± 10.88 67.04%± 3.32
DeepLab Full 52.38%± 1.46 81.93%± 0.46 80.22%± 0.61 79.96%± 0.46
U-net Baseline 4.00%± 4.00 33.70%± 3.04 13.26%± 6.16 24.99%± 8.00
U-net CowMix 14.15%± 8.28 47.94%± 10.07 27.13%± 8.12 57.67%± 4.95
U-net Full 36.78%± 11.81 73.91%± 1.66 64.44%± 3.96 73.71%± 0.78

Bottle Chair Dining table Potted plant
Adv. Baseline 68.80%± 0.75 4.20%± 5.38 29.60%± 24.42 8.00%± 7.67
Adv. Semi-sup. 79.40%± 0.80 0.60%± 0.80 33.00%± 28.93 1.00%± 1.10
Adv. Full 83.00%± 0.00 57.40%± 0.80 79.80%± 0.75 43.60%± 1.62
DeepLab Baseline 70.93%± 2.15 9.44%± 9.85 28.80%± 23.68 12.51%± 9.71
DeepLab CowMix 78.10%± 0.39 14.53%± 17.63 32.57%± 28.15 16.88%± 15.62
DeepLab Full 84.45%± 0.11 56.66%± 1.03 82.06%± 0.46 46.21%± 1.11
U-net Baseline 61.96%± 1.97 7.75%± 8.12 13.44%± 11.28 5.69%± 5.38
U-net CowMix 75.26%± 2.51 12.34%± 10.32 17.43%± 14.52 12.55%± 12.38
U-net Full 82.71%± 0.54 53.68%± 5.34 70.51%± 2.05 40.19%± 2.09

Sofa TV/monitor
Adv. Baseline 34.40%± 28.58 39.80%± 8.13
Adv. Semi-sup. 35.00%± 29.45 18.20%± 12.51
Adv. Full 82.20%± 0.75 64.60%± 2.50
DeepLab Baseline 34.95%± 28.67 43.72%± 9.62
DeepLab CowMix 39.51%± 32.95 63.18%± 1.10
DeepLab Full 81.98%± 0.13 68.15%± 1.80
U-net Baseline 17.64%± 16.75 29.58%± 7.32
U-net CowMix 33.16%± 27.70 46.93%± 6.07
U-net Full 75.06%± 1.67 70.86%± 1.11

Table 6: Per-class performance on augmented PASCAL VOC dataset, 100 supervised samples
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