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ABSTRACT

Graph neural networks have recently achieved great successes in predicting quan-
tum mechanical properties of molecules. These models represent a molecule as a
graph using only the distance between atoms (nodes) and not the spatial direction
from one atom to another. However, directional information plays a central role in
empirical potentials for molecules, e.g. in angular potentials. To alleviate this limi-
tation we propose directional message passing, in which we embed the messages
passed between atoms instead of the atoms themselves. Each message is associated
with a direction in coordinate space. These directional message embeddings are
rotationally equivariant since the associated directions rotate with the molecule.
We propose a message passing scheme analogous to belief propagation, which uses
the directional information by transforming messages based on the angle between
them. Additionally, we use spherical Bessel functions to construct a theoretically
well-founded, orthogonal radial basis that achieves better performance than the
currently prevalent Gaussian radial basis functions while using more than 4x fewer
parameters. We leverage these innovations to construct the directional message
passing neural network (DimeNet). DimeNet outperforms previous GNNs on
average by 77 % on MD17 and by 41 % on QM9.

1 INTRODUCTION

In recent years scientists have started leveraging machine learning to reduce the computation time
required for predicting molecular properties from a matter of hours and days to mere milliseconds.
With the advent of graph neural networks (GNNs) this approach has recently experienced a small
revolution, since they do not require any form of manual feature engineering and significantly
outperform previous models (Gilmer et al., 2017; Schütt et al., 2017). GNNs model the complex
interactions between atoms by embedding each atom in a high-dimensional space and updating these
embeddings by passing messages between atoms. By predicting the potential energy these models
effectively learn an empirical potential function. Classically, these functions have been modeled as
the sum of four parts: (Leach, 2001)

E = Ebonds + Eangle + Etorsion + Enon-bonded, (1)

where Ebonds models the dependency on bond lengths, Eangle on the angles between bonds, Etorsion on
bond rotations, i.e. the dihedral angle between two planes defined by pairs of bonds, and Enon-bonded
models interactions between unconnected atoms, e.g. via electrostatic or van der Waals interactions.
The update messages in GNNs, however, only depend on the previous atom embeddings and the
pairwise distances between atoms – not on directional information such as bond angles and rotations.
Thus, GNNs lack the second and third terms of this equation and can only model them via complex
higher-order interactions of messages. Extending GNNs to model them directly is not straightforward
since GNNs solely rely on pairwise distances, which ensures their invariance to translation, rotation,
and inversion of the molecule, which are important physical requirements.

In this paper, we propose to resolve this restriction by using embeddings associated with the directions
to neighboring atoms, i.e. by embedding atoms as a set of messages. These directional message
embeddings are equivariant with respect to the above transformations since the directions move
with the molecule. Hence, they preserve the relative directional information between neighboring
atoms. We propose to let message embeddings interact based on the distance between atoms and
the angle between directions. Both distances and angles are invariant to translation, rotation, and
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inversion of the molecule, as required. Additionally, we show that the distance can be represented
in a principled and effective manner by using spherical Bessel functions of order 0, i.e. the sinc
function. We leverage these innovations to construct the directional message passing neural network
(DimeNet). DimeNet can learn both molecular properties and atomic forces. It is twice continuously
differentiable and solely based on the atom types and coordinates, which are essential properties for
performing molecular dynamics simulations. DimeNet outperforms previous GNNs on average by
77 % on MD17 and by 41 % on QM9. Our paper’s main contributions are:

1. Directional message passing, which allows GNNs to incorporate directional information by
connecting recent advances in the fields of equivariance and graph neural networks as well as
ideas from belief propagation and empirical potential functions such as Eq. 1.

2. Theoretically principled orthogonal radial basis functions based on the spherical Bessel functions
of order 0. They achieve better performance than Gaussian radial basis functions while reducing
the basis dimensionality by 4x or more.

3. The Directional Message Passing Neural Network (DimeNet): A novel GNN that leverages
these innovations to set the new state of the art for molecular predictions and is suitable both for
predicting molecular properties and for molecular dynamics simulations.

2 RELATED WORK

ML for molecules. The classical way of using machine learning for predicting molecular properties
is combining an expressive, hand-crafted representation of the atomic neighborhood (Bartók et al.,
2013) with Gaussian processes (Bartók et al., 2010; 2017; Chmiela et al., 2017) or neural networks
(Behler & Parrinello, 2007). Recently, these methods have largely been superseded by graph neural
networks, which do not require any hand-crafted features but learn representations solely based on the
atom types and coordinates molecules (Duvenaud et al., 2015; Gilmer et al., 2017; Schütt et al., 2017;
Unke & Meuwly, 2019). Our proposed message embeddings can also be interpreted as directed edge
embeddings. (Undirected) edge embeddings have already been used in previous GNNs (Jørgensen
et al., 2018; Chen et al., 2019). However, these GNNs use both node and edge embeddings and do
not leverage any directional information.

Graph neural networks. GNNs were first proposed in the 90s (Baskin et al., 1997; Sperduti & Starita,
1997) and 00s (Gori et al., 2005; Scarselli et al., 2009). General GNNs have been largely inspired
by their application to molecular graphs and have started to achieve breakthrough performance in
various tasks at around the same time the molecular variants did (Kipf & Welling, 2017; Klicpera
et al., 2019; Zambaldi et al., 2019). Some recent progress has been focused on GNNs that are more
powerful than the 1-Weisfeiler-Lehman test of isomorphism (Morris et al., 2019; Maron et al., 2019).
However, for molecular predictions these models are significantly outperformed by GNNs focused
on molecules (see Sec. 7).

Equivariant neural networks. Group equivariance as a principle of modern machine learning was
first proposed by Cohen & Welling (2016). Following work has generalized this principle to spheres
(Cohen et al., 2018), molecules (Thomas et al., 2018), volumetric data (Weiler et al., 2018), and
general manifolds (Cohen et al., 2019). Equivariance with respect to continuous rotations has been
achieved so far by switching back and forth between Fourier and coordinate space in each layer
(Cohen et al., 2018) or by using a fully Fourier space model (Kondor et al., 2018; Anderson et al.,
2019). The former introduces major computational overhead and the latter imposes significant
constraints on model construction, such as the inability of using non-linearities. Our proposed
solution does not suffer from either of those limitations.

3 REQUIREMENTS FOR MOLECULAR PREDICTIONS

In recent years machine learning has been used to predict a wide variety of molecular properties, both
low-level quantum mechanical properties such as potential energy, energy of the HOMO, or dipole
moment and high-level properties such as toxicity, permeability, and adverse drug reactions (Wu
et al., 2018). In this work we will focus on scalar regression targets, i.e. targets t ∈ R. A molecule is
uniquely defined by the atomic numbers z = {z1, . . . , zN} and positions X = {x1, . . . ,xN}. Some
models additionally use auxiliary information Θ such as bond types or electronegativity of the atoms.

2



Under review as a conference paper at ICLR 2020

We do not include auxiliary features in this work since they are hand-engineered and non-essential. In
summary, we define an ML model for molecular prediction with parameters θ via fθ : {X, z} → R.

Symmetries and invariances. All molecular predictions must obey some basic laws of physics,
either explicitly or implicitly. One important example of such are the fundamental symmetries of
physics and their associated invariances. In principle, these invariances can be learned by any neural
network via corresponding weight matrix symmetries (Ravanbakhsh et al., 2017). However, not
explicitly incorporating them into the model introduces duplicate weights and increases training time
and complexity. The most essential symmetries are translational and rotational invariance (follows
from homogeneity and isotropy), permutation invariance (follows from the indistinguishability of
particles), and symmetry under parity, i.e. under sign flips of single spatial coordinates.

Molecular dynamics. Additional requirements arise when the model should be suitable for molecular
dynamics (MD) simulations and predict the forces Fi acting on each atom. The force field is a
conservative vector field since it must satisfy conservation of energy (the necessity of which follows
from homogeneity of time (Noether, 1918)). The easiest way of defining a conservative vector
field is via the gradient of a potential function. We can leverage this fact by predicting a potential
instead of the forces and then obtaining the forces via backpropagation to the atom coordinates, i.e.
Fi(X, z) = − ∂

∂xi
fθ(X, z). We can even directly incorporate the forces in the training loss and

directly train a model for MD simulations (Pukrittayakamee et al., 2009):

LMD(X, z) =
∣∣fθ(X, z)− t̂(X, z)

∣∣+
ρ

3N

N∑
i=1

3∑
α=1

∣∣∣∣−∂fθ(X, z)

∂xiα
− F̂iα(X, z)

∣∣∣∣ , (2)

where the target t̂ = Ê is the ground-truth energy, which is usually available as well, F̂ are the
ground-truth forces, and the hyperparameter ρ sets the forces’ loss weight. For stable simulations Fi
must be continuously differentiable and the model fθ itself therefore twice continuously differentiable.
We hence cannot use discontinuous transformations such as ReLU non-linearities. Furthermore, since
the atom positions X can change arbitrarily we cannot use pre-computed auxiliary information Θ
such as bond types.

4 DIRECTIONAL MESSAGE PASSING

Graph neural networks. Graph neural networks treat the molecule as a graph, in which the nodes
are atoms and edges are defined either via a predefined molecular graph or simply by connecting
atoms that lie within a cutoff distance c. Each edge is associated with a pairwise distance between
atoms dij = ‖xi−xj‖2. GNNs implement all of the above physical invariances by construction since
they only use pairwise distances and not the full atom coordinates. However, note that a predefined
molecular graph or a step function-like cutoff cannot be used for MD simulations. GNNs represent
each atom i via an atom embedding hi ∈ RH . The atom embeddings are updated in each layer by
passing messages along the molecular edges. Messages are usually transformed based on an edge
embedding e(ij) ∈ RHe and summed over the atom’s neighbors Ni, i.e. the embeddings are updated
in layer l via

h
(l+1)
i = fupdate(h

(l)
i ,

∑
j∈Ni

fint(h
(l)
j , e

(l)
(ij))), (3)

with the update function fupdate and the interaction function fint, which are both commonly imple-
mented using neural networks. The edge embeddings e(l)(ij) usually only depend on the interatomic
distances, but can also incorporate additional bond information (Gilmer et al., 2017) or be recursively
updated in each layer using the neighboring atom embeddings (Jørgensen et al., 2018).

Directionality. In principle, the pairwise distance matrix contains the full geometrical information
of the molecule. However, GNNs do not use the full distance matrix since this would mean passing
messages globally between all pairs of atoms, which increases computational complexity and can
lead to overfitting. Instead, they usually use a cutoff distance c, which means they cannot distinguish
between certain molecules (Xu et al., 2019). E.g. at a cutoff of roughly 2 Å a regular GNN would
not be able to distinguish between a hexagonal (e.g. Cyclohexane) and two triangular molecules
(e.g. Cyclopropane) with the same bond lengths since the neighborhoods of each atom are exactly
the same for both (see Appendix, Fig. 5). This problem can be solved by modeling the directions
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to neighboring atoms instead of just their distances. A principled way of doing so while staying
invariant to a transformation group G (such as described in Sec. 3) is via group-equivariance (Cohen
& Welling, 2016). A function f : X → Y is defined as being equivariant if f(ϕXg (x)) = ϕYg (f(x)),
with the group action in the input and output space ϕXg and ϕYg . However, equivariant CNNs only
achieve equivariance with respect to a discrete set of rotations (Cohen & Welling, 2016). For a precise
prediction of molecular properties we need continuous equivariance with respect to rotations, i.e. to
the SO(3) group.

Directional embeddings. We solve this problem by noting that an atom by itself is rotationally
invariant. This invariance is only broken by neighboring atoms that interact with it, i.e. those inside
the cutoff c. Since each neighbor breaks up to one rotational invariance they also introduce additional
degrees of freedom, which we need to represent in our model. We can do so by generating a separate
embedding mji for each atom i and neighbor j by applying the same learned filter in the direction
of each neighboring atom (in contrast to equivariant CNNs, which apply filters in fixed, global
directions). These directional embeddings are equivariant with respect to global rotations since the
associated directions rotate with the molecule and hence conserve the relative directional information
between neighbors.

Interaction via cosine basis. We use the directional information associated with each embedding
by leveraging the angle α(kj,ji) = ∠xkxjxi when aggregating the neighboring embeddings mkj

of mji. We use a cosine basis representation a
(kj,ji)
CBF ∈ RNCBF for these angles, whose elements are

a
(kj,ji)
CBF,n = cos(ωnα(kj,ji)) = cos((n− 1)α(kj,ji)). The cosine basis is purely real-valued, forms an

orthogonal basis on the interval [0, π], and enables us to bound the highest-frequency component by
NCBF
2π , which is an effective form of regularization and ensures that predictions are stable to small

perturbations. We found empirically that this basis representation provides a better inductive bias
than the raw angle. It is inspired by Cheng et al. (2019), who have shown that using the angles
between directional embeddings and representing them with a Fourier basis performs on par with
regular equivariant CNNs while significantly reducing the number of parameters.

α2

α1 α3

mji

mk1j

mk2j
mk3j

j

i
k1

k2

k3

Figure 1: Aggregation
scheme for message em-
beddings.

Message embeddings. The directional embedding mji associated with
the atom pair ji can be thought of as a message being sent from atom
j to atom i. Hence, in analogy to belief propagation, we embed each
atom i using a set of incoming messages mji, i.e. hi =

∑
j∈Ni

mji,
and update the message mji based on the incoming messages mkj

(Yedidia et al., 2003). Hence, as illustrated in Fig. 1, we define the
update function and aggregation scheme for message embeddings as

m
(l+1)
ji = fupdate(m

(l)
ji ,

∑
k∈Nj\{i}

fint(m
(l)
kj , e

(kj)
RBF ,a

(kj,ji)
CBF )), (4)

where e
(kj)
RBF denotes the radial basis function representation of the interatomic distance dkj , which

will be discussed in Sec. 5. We found this aggregation scheme to not only have a nice analogy to
belief propagation, but also to empirically perform better than alternatives. Note that since fint now
incorporates the angle between atom pairs, or bonds, we have enabled our model to directly learn the
angular potential Eangle, the second term in Eq. 1. Moreover, the message embeddings are essentially
embeddings of atom pairs, as used by the provably more powerful GNNs based on higher-order
Weisfeiler-Lehman tests of isomorphism. Our model can therefore provably distinguish molecules
that a regular GNN cannot (e.g. the previous example of a hexagonal and two triangular molecules)
(Morris et al., 2019).

5 BESSEL FUNCTIONS AS A RADIAL BASIS

Distance representation. The interaction function fint(m
(l)
kj , e

(kj)
RBF ,a

(kj,ji)
CBF ) in Eq. 4 depends on

both the angle α(kj,ji) between message embeddings and the pairwise distance dkj = ‖xk − xj‖2.
So far we have only discussed the angle’s cosine basis representation a

(kj,ji)
CBF , but the distance

representation e
(kj)
RBF remains open. Earlier works have used a set of Gaussian radial basis functions

for this purpose, with tightly spaced means that are distributed e.g. uniformly (Schütt et al., 2017) or
exponentially (Unke & Meuwly, 2019). Similar in spirit to the functional bases used by steerable
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CNNs (Cohen & Welling, 2017) we propose to use an orthogonal basis instead, which reduces
redundancy and thus improves parameter efficiency. Furthermore, a basis chosen according to the
properties of the modeled system can even provide a helpful inductive bias. We therefore derive a
proper radial basis representation for quantum systems next.

From Schrödinger to Bessel. To construct the radial basis in a principled manner we first consider
the space of possible solutions. Our model aims at approximating results of density functional theory
(DFT) calculations, i.e. results given by an electron density 〈Ψ(d)|Ψ(d)〉, with the electron wave
function Ψ(d) and d = xk−xj . The corresponding solution space is defined by the time-independent

Schrödinger equation
(
− ~2

2m∇
2 + V (d)

)
Ψ(d) = EΨ(d), with constant mass m and energy E. We

do not know the potential V (d) and so choose it in an uninformative way by simply setting it to 0
inside the cutoff distance c (up to which we pass messages between atoms) and to∞ outside. Hence,
we arrive at the Helmholtz equation (∇2 + k2)Ψ(d) = 0, with the wave number k =

√
2mE
~ and the

boundary condition Ψ(c) = 0 at the cutoff c. Separation of variables in polar coordinates (d, θ, ϕ)
yields

Ψ(d, θ, ϕ) =

∞∑
l=0

l∑
m=−l

(almjl(kd) + blmyl(kd))Y ml (θ, ϕ), (5)
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ẽ
R

B
F
(d
/c

)

Figure 2: Radial Bessel ba-
sis for NRBF = 5.

with the spherical Bessel functions of the first and second kind jl and yl
and the spherical harmonics Y ml . As common in physics we only use
the regular solutions, i.e. those that do not approach −∞ at the origin,
and hence set blm = 0. Remember that our goal is to construct a radial
basis, i.e. a function that only depends on d and not on the angles θ
and ϕ. Hence, we set l = 0 and obtain Ψ(d) = aj0(kd). The boundary
conditions are satisfied by setting k = nπ

c with n ∈ N. Normalizing
the resulting functions on [0, c] and using j0(d) = sin(d)/d gives the
radial basis˜̃eRBF ∈ RNRBF , which is illustrated in Fig. 2 and defined by

ẽRBF,n(d) =

√
2

c

sin(nπc d)

d
. (6)

We also confirmed experimentally that adding spherical Bessel functions of the second kind or of
higher orders does not improve performance. Note that the basis functions are sinc-functions, whose
Fourier transform is the rectangular function. By choosing NRBF we can thus limit the frequencies of
the radial basis representation to ω ≤ NRBF

c . This limit is an effective way of regularizing the model
and ensures that predictions are stable to small perturbations. We found NRBF = 16 radial basis
functions to be more than sufficient, which are 4x fewer than PhysNet’s 64 (Unke & Meuwly, 2019)
and 20x fewer than SchNet’s 300 basis functions (Schütt et al., 2017). Note furthermore that we can
construct a radial basis for fully Fourier space models such as Cormorant (Anderson et al., 2019) in
the same way by additionally considering functions with l 6= 0.

Continuous cutoff. ẽRBF(d) is not twice continuously differentiable due to the step function cutoff
at c. To alleviate this problem we introduce an envelope function u(d) that causes the final function
eRBF(d) = u(d)ẽRBF(d) and its first and second derivatives to go to 0 at d = c. We achieve this with
the polynomial

u(d) = 1− (p+ 1)dp + pdp+1, (7)
where p ∈ N0. We did not find the model to be sensitive to different choices of envelope functions and
chose p = 3. Note that using an envelope function causes the Bessel basis to lose its orthonormality,
which we did not find to be a problem in practice. We furthermore fine-tune both the Bessel wave
numbers kn = nπ

c and the cosine frequencies ωn = n− 1 via backpropagation after initializing them
to these values, which we found to give a small boost in prediction accuracy.

6 DIRECTIONAL MESSAGE PASSING NEURAL NETWORK (DIMENET)

The Directional Message Passing Neural Network’s (DimeNet) design is based on a streamlined
version of the PhysNet architecture (Unke & Meuwly, 2019), in which we have integrated directional
message passing and spherical Bessel functions. DimeNet generates predictions that are invariant to
atom permutations and translation, rotation and inversion of the molecule. DimeNet is suitable both
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Figure 3: The DimeNet architecture. � denotes the layer’s input and ‖ denotes concatenation.
Distances are represented using spherical Bessel functions, angles using a cosine basis. An embedding
block generates the inital message embeddings mji. These embeddings are updated in multiple
interaction blocks via directional message passing, which uses the neighboring messages mkj , k ∈
Nj \ {i}, the angle representations a(kj,ji)

CBF , and the distance representations e(kj)RBF . Each block passes
the resulting embeddings to an output block, which transforms them using the radial basis e(ji)RBF and
sums them up per atom. Finally, the outputs of all layers are summed up to generate the prediction.

for the prediction of various molecular properties and for molecular dynamics (MD) simulations. It is
twice continuously differentiable and able to learn and predict atomic forces via backpropagation,
as described in Sec. 3. The predicted forces fulfill energy conservation by construction and are
equivariant with respect to permutation and rotation. Model differentiability in combination with basis
representations that have bounded maximum frequencies furthermore guarantees smooth predictions
that are stable to small deformations. Fig. 3 gives an overview of the architecture.

Embedding block. Atomic numbers are represented by learnable, randomly initialized atom type em-
beddings h(0)

i ∈ RF that are shared across molecules. The first layer generates message embeddings
from these and the distance between atoms via

m
(1)
ji = σ([h

(0)
j ‖h

(0)
i ‖e

(ji)
RBF]W + b), (8)

where ‖ denotes concatenation and the weight matrix W and bias b are learnable.

Interaction block. The embedding block is followed by multiple stacked interaction blocks. This
block implements fint and fupdate of Eq. 4 as shown in Fig. 3. Note that the angular representation
a
(kj,ji)
CBF is first transformed into an Nangle-dimensional representation via a linear layer. The main

purpose of this is to make the dimensionality of a(kj,ji)
CBF independent of the subsequent bilinear

layer, which uses a comparatively large Nangle × F × F -dimensional weight tensor. We have also
experimented with using a bilinear layer for the radial basis representation, but found that the
element-wise multiplication e

(kj)
RBFW �mkj performs better, which suggests that angular information

requires more complex transformations than radial information. The interaction block transforms
each message embedding mji using multiple residual blocks, which are inspired by ResNet (He
et al., 2016) and consist of two stacked dense layers and a skip connection.

Output block. The message embeddings after each block (including the embedding block) are
passed to an output block. The output block transforms each message embedding mji using the
radial basis e

(ji)
RBF, which ensures continuous differentiability and slightly improves performance.

Afterwards the incoming messages are summed up per atom i to obtain hi =
∑
jmji, which is then

transformed using multiple dense layers to generate the atom-wise output t(l)i . These outputs are then
summed up to obtain the final prediction t =

∑
i

∑
l t

(l)
i .
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Table 1: MAE on QM9. DimeNet sets the state-of-the-art on 5 targets and outperforms the second-best
model on average by 41 % (mean std. MAE).

Target Unit SchNet PhysNet PPGN MEGNet-s Cormorant DimeNet
µ D 0.033 0.0554 0.0934 0.05 0.13 0.0354
α a0

3 0.235 0.0908 0.318 0.081 0.092 0.0649
εHOMO meV 41 33.8 47.3 43 36 24.1
εLUMO meV 34 29.1 57.1 44 36 21.9
∆ε meV 63 45.9 78.9 66 60 34.0〈
R2
〉

a0
2 0.073 1.18 3.78 0.302 0.673 0.549

ZPVE meV 1.7 2.27 10.9 1.43 1.43 1.60
U0 meV 14 8.24 599 12 28 14.2
U meV 19 26.7 1370 13 - 13.6
H meV 14 21.9 800 12 - 14.2
G meV 14 23.6 653 12 - 14.0
cv

cal
molK 0.033 0.0359 0.144 0.029 0.031 0.0286

std. MAE % 1.75 1.54 5.65 1.78 2.11 1.09
logMAE - −5.18 −4.94 −3.06 −5.18 −4.78 −5.29

Continuous differentiability. Multiple model choices were necessary to achieve twice continuous
model differentiability. First, DimeNet uses the self-gated Swish activation function σ(x) = x ·
sigmoid(x) (Ramachandran et al., 2018) instead of a regular ReLU activation function. Second, we
multiply the radial basis functions ẽRBF(d) with an envelope function u(d) whose value and first and
second derivatives go to 0 at the cutoff c. Finally, DimeNet does not use any auxiliary data but relies
on atom types and positions alone.

7 EXPERIMENTS

Models. For hyperparameter choices and training setup see Appendix B. We use 6 state-of-the-art
models for comparison: SchNet (Schütt et al., 2017), PhysNet (whose results we have generated
ourselves using the reference implementation) (Unke & Meuwly, 2019), provably powerful graph
networks (PPGN) (Maron et al., 2019), MEGNet-simple (the variant without auxiliary information)
(Chen et al., 2019), Cormorant (Anderson et al., 2019), and sGDML (Chmiela et al., 2018). Note that
sGDML cannot be used for QM9 since it can only be trained on a single molecule.

QM9. We test DimeNet’s performance for predicting molecular properties using the common QM9
benchmark (Ramakrishnan et al., 2014). It consists of roughly 130 000 molecules in equilibrium
with up to 9 heavy C, O, N, and F atoms. We use 110 000 molecules in the training, 10 000 in the
validation and 13 885 in test set. We only use the atomization energy for U0, U , H , and G, i.e.
subtract the atomic reference energies, which are constant per atom type. In Table 1 we report the
mean absolute error (MAE) of each target and the overall mean standardized MAE (std. MAE) and
mean standardized logMAE (for details see Appendix D). The model was trained on each target
separately (single-task) and we predict ∆ε simply by taking εLUMO − εHOMO, since it is calculated in
exactly this way by DFT calculations. DimeNet sets the new state of the art on 5 out of 12 targets and
decreases mean std. MAE by 41 % and mean logMAE by 0.1 compared to the second-best model.

MD17. We use MD17 (Chmiela et al., 2017) to test model performance in molecular dynamics
simulations. This benchmark contains the energy and atomic forces of eight small organic molecules.
A separate model is trained for each molecule, with the goal of providing highly accurate individual
predictions. This dataset is commonly used with 50 000 training and 10 000 validation and test
samples. We found that DimeNet can match state-of-the-art performance in this setup. E.g. for
Benzene, depending on the force weight ρ, DimeNet achieves 0.035 kcal mol−1 MAE for the energy
or 0.07 kcal mol−1 and 0.17 kcal mol−1 Å

−1
for energy and forces, matching the results reported by

Anderson et al. (2019) and Unke & Meuwly (2019). However, since the currently achieved accuracy
is two orders of magnitude below the DFT calculation’s accuracy (approx. 2.3 kcal mol−1 for energy
(Faber et al., 2017)) we suspect that the remaining error is due to DFT peculiarities and not the ML
model. Reaching better accuracy than DFT can only be achieved with more precise ground-truth
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Table 2: MAE on MD17 using 1000 training samples
(energies in kcal

mol , forces in kcal
mol Å

). DimeNet outper-
forms SchNet by a large margin and performs roughly
on par with sGDML.

sGDML SchNet DimeNet

Aspirin Energy 0.19 0.37 0.209
Forces 0.68 1.35 0.500

Benzene Energy 0.10 0.08 0.077
Forces 0.06 0.31 0.186

Ethanol Energy 0.07 0.08 0.062
Forces 0.33 0.39 0.228

Malonaldehyde Energy 0.10 0.13 0.105
Forces 0.41 0.66 0.419

Naphthalene Energy 0.12 0.16 0.132
Forces 0.11 0.58 0.186

Salicylic acid Energy 0.12 0.20 0.133
Forces 0.28 0.85 0.354

Toluene Energy 0.10 0.12 0.108
Forces 0.14 0.57 0.201

Uracil Energy 0.11 0.14 0.116
Forces 0.24 0.56 0.289

std. MAE (%) Energy 2.53 3.32 2.53
Forces 1.01 2.38 1.08

Figure 4: Examples of DimeNet filters. They
exhibit both a clear radial and angular depen-
dence. For details see Appendix C.

Table 3: Ablation studies using multi-task
learning on QM9. All of our contributions
have a significant impact on performance.

Variation MAE
MAE DimeNet ∆logMAE

Gaussian RBF 110 % 0.10
NCBF = 1 126 % 0.11
Node embeddings 168 % 0.45

data, which requires far more expensive methods (e.g. CCSD(T)) and thus ML models that are more
sample-efficient (Chmiela et al., 2018). We therefore instead test our model on the harder task of using
only 1000 training samples. As shown in Table 2 DimeNet outperforms SchNet by a large margin
and performs roughly on par with sGDML. However, sGDML uses hand-engineered descriptors that
provide a strong advantage for small datasets, can only be trained on a single molecule (a fixed set of
atoms), and does not scale well with the number of atoms or training samples.

Ablation studies. To test whether directional message passing and the radial Bessel basis are the
actual reason for DimeNet’s improved performance, we ablate them individually and compare the
mean standardized MAE and logMAE for multi-task learning on QM9. Table 3 shows that both
of our contributions have a significant impact on the model’s performance. Using 64 Gaussian
RBFs instead of 16 Bessel basis functions increases the error by 10 %, which shows that this basis
not only reduces the number of parameters but also provides a helpful inductive bias. DimeNet’s
error increases by around 26 % when we ignore the angles between messages by setting NCBF = 1,
showing that directly incorporating directional information does indeed improve performance. Using
node embeddings instead of message embeddings (and hence also ignoring directional information)
has the largest impact and increases MAE by 68 %, at which point DimeNet performs worse than
SchNet. Furthermore, Fig. 4 shows that the filters exhibit a clear angular dependence, e.g. often
showing a sharp change at the geometrically important 120◦ angle (found e.g. in a benzene ring).
This further demonstrates that the model learns to leverage directional information.

8 CONCLUSION

In this work we have introduced directional message passing, a more powerful and expressive
interaction scheme for molecular predictions. Directional message passing enables graph neural
networks to leverage directional information in addition to the interatomic distances that are used
by normal GNNs. Additionally, we have shown that interatomic distances can be represented in a
principled and more effective manner using Bessel functions. We have leveraged these innovations to
construct DimeNet, a GNN suitable both for predicting molecular properties and for use in molecular
dynamics simulations. We have demonstrated DimeNet’s performance on QM9 and MD17 and shown
that our contributions are the essential ingredients that enable DimeNet’s state-of-the-art performance.
DimeNet directly models the first two terms in Eq. 1, which are known as the “hard” degrees of
freedom in molecules (Leach, 2001). Future work should aim at also incorporating the third and
fourth terms of this equation. This could improve predictions even further and enable the application
to molecules much larger than those used in common benchmarks like QM9.
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A INDISTINGUISHABLE MOLECULES

Figure 5: A standard non-directional GNN cannot distinguish between a hexagonal (left) and two
triangular molecules (right) with the same bond lengths, since the neighborhood of each atom is
exactly the same. An example of this would be Cyclohexane and two Cyclopropane molecules
with slightly stretched bonds, when the GNN either uses the molecular graph or a cutoff distance
of c ≤ 2.5 Å. Directional message passing solves this problem by considering the direction of each
bond.

B EXPERIMENTAL SETUP

The model architecture and hyperparameters were optimized using the QM9 validation set. We use
embeddings of size F = 128 throughout the model. For the basis functions we choose NCBF =
NRBF = 16 and Nangle = 12 for the weight tensor in the interaction block. We did not find the model
to be very sensitive to these values as long as they were chosen large enough (i.e. at least 8).

We found the cutoff c = 5 Å and the learning rate 1× 10−3 to be rather important hyperparameters.
We optimized the model using AMSGrad (Reddi et al., 2018) with 32 molecules per mini-batch.
We use a linear learning rate warm-up over 3000 steps and an exponential decay with ratio 0.1
every 2 000 000 steps. The model weights for validation and test were obtained using an exponential
moving average (EMA) with decay rate 0.999. For MD17 we use the loss function from Eq. 2 with
force weight ρ = 100, like previous models Schütt et al. (2017). Note that ρ presents a trade-off
between energy and force accuracy. It should be chosen rather high since the forces determine the
dynamics of the chemical system (Unke & Meuwly, 2019).
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C DIMENET FILTERS

To illustrate the filters learned by DimeNet we separate the spatial dependency in the interaction
function fint via

fint(m, d, α) =
∑
i

[σ(Wm + b)]i ffilter,i(d, α). (9)

The filter ffilter,i : R+ × [0, 2π]→ RF is given by

ffilter,i(d, α) = (WRBFeRBF(d))� ((WCBFaCBF(α))TWi), (10)

where WRBF, WCBF, and W are learned weight matrices/tensors, eRBF(d) = u(d)ẽRBF(d) is the
radial basis representation, and aCBF,n(α) = cos(ωnα) is the angle representation. Fig. 4 shows how
the first 15 elements of ffilter,i(d, α) vary with d and α when choosing the tensor slice i = 1 (with
α = 0 at the top of the figure).

D SUMMARY STATISTICS

We summarize the results across different targets using the mean standardized MAE

std. MAE =
1

M

M∑
m=1

(
1

N

N∑
i=1

|f (m)
θ (Xi, zi)− t̂(m)

i |
σm

)
, (11)

and the mean standardized logMAE

logMAE =
1

M

M∑
m=1

log

(
1

N

N∑
i=1

|f (m)
θ (Xi, zi)− t̂(m)

i |
σm

)
, (12)

with target index m, number of targets M = 12, dataset size N , ground truth values t̂(m), model
f
(m)
θ , inputs Xi and zi, and standard deviation σm of t̂(m). Std. MAE reflects the average error

compared to the standard deviation of each target. Since this error is dominated by a few difficult
targets (e.g. εHOMO) we also report logMAE, which reflects every relative improvement equally but is
sensitive to outliers, such as SchNet’s result on

〈
R2
〉
.
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