
Under review as a conference paper at ICLR 2020

ATTACKING GRAPH CONVOLUTIONAL NETWORKS
VIA REWIRING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have boosted the performance of many graph re-
lated tasks such as node classification and graph classification. Recent researches
show that graph neural networks are vulnerable to adversarial attacks, which de-
liberately add carefully created unnoticeable perturbation to the graph structure.
The perturbation is usually created by adding/deleting a few edges, which might
be noticeable even when the number of edges modified is small. In this paper, we
propose a graph rewiring operation which affects the graph in a less noticeable
way compared to existing operators. We then use reinforcement learning to learn
the attack strategy based on the proposed rewiring operation. Experiments on real
world graphs demonstrate the effectiveness of the proposed framework. To under-
stand the proposed framework, we further analyze how its generated perturbation
to the graph structure affects the output of the target model and the advantages of
the rewiring operation.

1 INTRODUCTION

Graph structured data are ubiquitous in many real world applications. Various data from different
domains, such as social networks, molecular graphs and transportation networks can all be modeled
as graphs. Recently, increasing effort has been devoted towards developing deep neural networks on
graph structured data. This stream of works, which is known as Graph Neural Networks (GNN) has
shown to enhance the performance in many graph related tasks such as node classification (Kipf &
Welling, 2016; Hamilton et al., 2017) and graph classification (Bruna et al., 2013; Defferrard et al.,
2016; Ying et al., 2018; Zhang et al., 2018).

Recent researches have shown that deep neural networks are highly vulnerable to adversarial at-
tacks (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016; Carlini & Wagner, 2017).
In computer vision, performing an adversarial attack is to add deliberately created, but unnoticeable,
perturbation to a given image such that the deep model misclassifies the perturbed image. Unlike
image data, which can be represented in the continuous space, graph structured data is discrete.
Few efforts have been made to investigate the robustness of graph neural networks against adver-
sarial attacks. Only recently, such researches about adversarial attacks on graph structured data
started to emerge. A greedy algorithm is proposed to attack the semi-supervised node classification
task (Zügner et al., 2018). The method deliberately tries to modify the graph structure and node
features such that the label of a targeted node can be changed. A reinforcement learning based algo-
rithm is proposed to attack both node classification and graph classification task by only modifying
the graph structure(Dai et al., 2018). A meta-learning based attack method is designed to impair the
overall performance of the node classification task(Zgner & Gnnemann, 2019). For the majority of
existing works, the graph structure is modified by adding or deleting edges.

To ensure that the difference between the attacked graph and the original graph is “unnoticeable”,
the number of actions (adding/deleting edges) that can be taken by the attacking algorithms is usu-
ally constrained by a budget. However, even when this budget is small, adding or deleting edges
can still make “noticeable” changes to the graph structure. For example, it is evident that many
important graph properties are based on eigenvalues and eigenvectors of the Laplacian matrix of the
graph (Chan & Akoglu, 2016); while adding or deleting an edge can make remarkable changes on
the eigenvalues/eigenvectors of the graph Laplacian Ghosh & Boyd (2006). Thus, in this work, we
propose a new operation based on graph rewiring. A single rewiring operation involves three nodes

1

Under review as a conference paper at ICLR 2020

(vfir, vsec, vthi), where we remove the existing edge between vfir and vsec and add edge between
vfir and vthi. Note that vthi is constraint to be the 2-hop neighbor of vfir in our setting. It is obvious
that the proposed rewiring operation preserves some basic properties of the graph such as number
of nodes and edges, total degrees of the graph and etc, while operations like adding and deleting
edges cannot. Furthermore, the proposed rewiring operation affects some of the important mea-
sures based on graph Laplacian such as algebraic connectivity in a smaller way than adding/deleting
edges, which is theoretically demonstrated in Section 4.1. In addition, the rewiring operation is a
more natural way to modify the graph. For example, in biology, the evolution of DNA and amino
acid sequences can lead to pervasive rewiring of proteinprotein interactions (Zitnik et al., 2019).

In this paper, we aim to construct adversarial examples by performing rewiring operations for the
task of graph classification. More specifically, we treat the process of applying a series of rewiring
operations to a given graph as a discrete Markov decision process (MDP) and use reinforcement
learning to learn how to make these decisions. We demonstrate the effectiveness of the proposed
algorithm on real-world graphs. Then we further analyze how the adversarial changes in the graph
structure affect both the graph embedding learned by the graph neural network model and the output
label and illustrate the advantages of the rewiring operation.

2 BACKGROUND

In this section, we introduce notations and the target graph convolutional model we seek to attack.
We denote a graph as G = {V, E}, where V = {v1, . . . , v|V|} and E = {e1, . . . , e|E|} are the sets
of nodes and edges, respectively. The edges describe the relations between nodes, which can be
described by an adjacency matrix A ∈ {0, 1}|V|×|V|. Aij = 1 means vi and vj are connected, 0
otherwise. Each node in the graph has some features that are associated with it. These features are
represented as a matrix X ∈ R|V|×d, where the i-th row of X denotes the node features of node vi
and d is the dimension of features. Thus, an attributed graph can be represented as G = {A,X}.

2.1 GRAPH CLASSIFICATION

In the setting of graph classification, we are given a set of graphs G = {Gi}. Each of these graphs
Gi is associated with a label yi. The task is to build a good classifier using the given set of graphs
such that it can make correct predictions when new unseen graphs are fed into it. A graph classifier
parameterized by θ can be represented as f(G|θ) = yo, where yo denotes the label of a graph
G ∈ G predicted by the classifier. The parameters θ in the classifier f(·|θ) can be learned by solving
the following optimization problem minθ

∑
i L(f(Gi|θ), yi), where L(·, ·) is used to measure the

difference between the predicted and ground truth labels. Cross entropy is a commonly adopted
measurement for L(·, ·).

2.2 GRAPH CONVOLUTION NETWORKS

Recently, Graph Neural Networks have been shown to be effective in graph representation learning.
These models usually learn node representations by iteratively aggregating, transforming and prop-
agating node information. In this work, we adopt the graph convolutional networks (GCN) (Kipf &
Welling, 2016). A graph convolutional layer in the GCN framework can be represented as

Fj = ReLU(D−
1
2AD−

1
2Fj−1Wj) (1)

where Fj ∈ RN×dj is the output of the j-th layer and Wj represents the parameters of this layer.
A GCN model usually consists of J graph convolutional layers, with F0 = X. The output of the
GCN model is FJ , which is denote as F for convenience. To obtain a graph level embedding uG
for graph G to perform graph classification, we apply a global pooling over the node embeddings.

uG = pool(F) (2)

Different global pooling functions can be used, and we adopt the max pooling in this work. A mul-
tilayer perceptron (MLP) and softmax layer are then sequentially applied on the graph embedding
to predict the label of the graph

yo = argmax softmax(MLP (uG|WMLP)) (3)

2

Under review as a conference paper at ICLR 2020

where MLP (·|WMLP) denotes the multilayer perceptron with parameters as WMLP . A GCN-
based classifier for graph classification can be described using eq. equation 1, equation 2 and equa-
tion 3 as introduced above. For simplicity, we summarize it as yo = fGCN (G|θGCN), where θGCN
includes all the parameters in the model.

3 PROBLEM FORMULATION

In this work, we aim to build an attacker T that takes a graph as input and modify the structure of
the graph to fool a GCN classifier. Modifying a graph structure is equivalent to modify its adjacency
matrix. The function of the attacker can be represented as G̃ = T (G) = {T (A),X} = {Ã,X}.
Given a classifier f(·), the goal of the attacker is to modify the graph structure so that the classifier
outputs a different label from what it originally predicted. Note here, we neglect the θ inside f(·), as
the classifier is already trained and fixed. Mathematically, the goal of the attacker can be represented
as: f(T (G)) 6= f(G).

As described above, the attacker T is specifically designed for a given classifier f(·). To reflect this
in the notation, we now denote the attacker for the classifier f(·) as Tf . In our work, the attacker Tf
has limited knowledge of the classifier. The only information the attacker can get from the classifier
is the label of (modified) graphs. In other words, the classifier f(·) is treated as a black-box model
for the attacker Tf .

An important constraint to the attacker Tf is that it is only allowed to make “unnoticeble” changes
to the graph structure. To account for this, we propose the rewiring operation, which is supposed to
make more subtle changes than adding or deleting edges. We will show that the rewiring operation
can better preserve a lot of important properties of the graph compared to adding or deleting edges
in Section 4.1. We also empirically compare the rewiring operation with the deleting/adding edges
in Appendix C. The definition of the proposed rewiring is given below:
Definition 1. A rewiring operation a involves three nodes and it can be denoted as a =
{vfir, vsec, vthi}, where vsec ∈ N1(vfir) and vthi ∈ N2(vfir)/N

1(vfir). Nk(vfir) denotes the
k-th hop neighbors of vfir and the sign / stands for exclusion. The rewiring operation deletes the
existing edge between nodes vfir and vsec, while adding an edge to connect nodes vfir and vthi.

The attacker Tf is given a budget of K proposed rewiring operations to modify the graph structure.
A straightforward way to set K is choosing a small fix number. However, it is likely that graphs
in a given data set have various graph sizes. The same number of rewiring operations can affect
the graphs of different size in various magnitude. Hence, a more suitable way is to allow flexible
number of rewiring operations according to the graph size. Thus, we propose to use K = p · |E| for
a given graph G, where p ∈ (0, 1) is a ratio.

The process of the attacker on a graph G can be now denoted as Tf (G) ↔ (a1, a2, . . . , aM)[G],
where the right hand part means to sequentially apply the rewiring operations a1, . . . , aM to the
graph G, and M is the number of rewiring operations taken with M ≤ K.

4 REWIRING-BASED ATTACK TO GRAPH CONVOLUTIONAL NETWORKS

Next, we first discuss the properties of the proposed rewiring operation to show its advantages.
We then introduce the proposed attacking framework ReWatt based on reinforcement learning and
rewiring.

4.1 PROPERTIES OF THE PROPOSED REWIRING OPERATION

The proposed rewiring operation has several advantages compared to simply adding or deleting
edges. More empirical discussions can be found in Appendix C. One obvious advantage of the
proposed rewiring operation is that it does not change the number of nodes, the number of edges
and the total degree of a graph. However, operations like “adding” or “deleting” edges may change
those properties.

Many important graph properties are based on the eigenvalues of the Laplacian matrix of a
graph (Chan & Akoglu, 2016) such as Algebraic Connectivity Fiedler (1973) and Effective Graph

3

Under review as a conference paper at ICLR 2020

Resistance Ellens et al. (2011). A detailed description of Algebraic Connectivity and Effective
Graph Resistance are given in Appendix A. Next, we demonstrate that the proposed rewiring oper-
ation is likely to make smaller changes to eigenvalues, which result in unnoticeable changes under
graph Laplacian based measures. For a graph G with A as its adjacency matrix, its Laplacian ma-
trix L is defined as L = D−A, where D is the diagonal degree matrix (Mohar et al., 1991).
Let λ1, . . . , λ|V| denote the eigenvalues of the Laplacian matrix arranged in the increasing order
with x1, . . . ,x|V| being the corresponding eigenvectors. We show how a single proposed rewiring
operation affects the eigenvalues. Our analysis is based on the following lemma:
Lemma 1. (Stewart, 1990) Let (αi,hi) be the eigen-pairs of a symmetric matrix M ∈ RN×N .
Given a perturbation ∆M to matrix M, its eigenvalues can be updated by ∆αi = hTi ∆Mhi.

The proof can be found in (Stewart, 1990). Using this lemma, we have the following corollary
Corollary 1. For a given graph G with Laplacian matrix L, one proposed rewiring operation
(vfir, vsec, vthi) affects the eigen-value λi by ∆λi, for i = 1, . . . , |V|, where

∆λi = (2xi[fir]− xi[thi]− xi[sec])(xi[sec]− xi[thi]) (4)

where xi[index] denotes the index-th value of the eigenvector xi.

The proof can be found in Appendix B.

Furthermore, each eigenvalue λi of the Laplacian matrix measures the “smoothness” of its corre-
sponding eigenvector xi (Shuman et al., 2012; Sandryhaila & Moura, 2014). The “smoothness” of
an eigenvector measures how different its elements are from their neighboring nodes. Thus, the first
few eigenvectors with relatively small eigenvalues are rather “smooth”. Note that in the proposed
rewiring operation, vsec is the direct neighbor of vfir and vthi is the 2-hop neighbor of vfir. Thus,
the difference xi[fir]−xi[thi] is expected to be smaller than the difference xi[fir]−xi[can], where
xi[can] can be any other node that is further away. This means that the proposed rewiring operation
(to 2-hop neighbors) is likely to make smaller changes to the first few eigenvalues than rewiring to
any further away nodes or adding an edge between two nodes that are far away from each other.

4.2 GRAPH ADVERSARIAL ATTACK WITH REINFORCEMENT LEARNING

Given a graph G, the process of the attacker T is a general decision making process M =
(S,A, P,R), where A = {at} is the set of actions, which consists of all valid rewiring opera-
tions, S = {st} is the set of states that consists of all possible intermediate and final graphs after
rewiring, P is the transition dynamics that describes how a rewiring action at changes the graph
structure p(st+1|, st, . . . , s1, at). R is the reward function, which gives the reward for the action
taken at a given state. Thus, the procedure of attacking a graph can be described by a trajectory
(s1, a1, r1, . . . , sM , aM , rM), where s1 = G. The key point for the attacker is to learn how to
make the decision of picking a suitable rewiring action when at the state st. This can be done by
learning a policy network to get the probability p(at|st, . . . , s1) and sample the rewiring operation
correspondingly. Modelling in this way, the decision making at a state st is dependant on all its
previous states, which could be difficult to model due to the long-term dependency. It is easy to
notice that the intermediate states st are all predicted to have the same label as the original graph.
Thus, we can treat each of the states as a brand new graph to be attacked regardless of what leads
to it. That is to say, the decision making at the state st can be solely dependant on the current state,
p(at|st, . . . , s1) = p(at|st). Thus, we model the process of attack as a Markov Decision Process
(MDP) Sutton & Barto (2018). Hence, we adopt reinforcement learning to learn how to make effec-
tive decisions. We name the proposed framework as ReWatt. The key elements of the environment
for the reinforcement learning are defined as follows:

State Space The state space of the environment consists of all the intermediate graphs generated
after the possible rewiring operations.
Action Space The action space consists of the valid rewiring operations as defined in Definition 1.
State Transition Dynamics Given an action (rewiring operation) at = {vfir, vsec, vthi} at state st.
The next state st+1 is achieved by deleting the edge between vfir and vsec in the current state st and
adding an edge to connect vfir with vthi.
Reward Design The main goal of the attacker is to make the classifier f(·) predict a different label
than originally predicted. We also encourage the attacker to take as few actions as possible so that

4

Under review as a conference paper at ICLR 2020

the modification to the graph structure is minimal. Thus, we assign a positive reward when the attack
is successful and assign a negative reward for each action step taken. The reward R(st, at) is given
as

R(st, at) =

{
1 if f(st) 6= f(s1);
nr if f(st) = f(s1).

where nr is the negative reward to penalize each step taken. Similar to how we set a flexible rewiring
budget K, here we propose to use nr = − 1

K = − 1
p·|E| , which depends on the size of the graph.

Termination The attack process will stop either when the number of actions reaches the budget K
or the attacker successfully “changed” the label of the slightly modified graph.

4.3 POLICY NETWORK

In this subsection, we introduce the policy network to learn the policy p(at|st) on top of the graph
representations learned by GCN. However, this GCN is different from the target classifier one, since
it has 2 convectional layers. To choose a valid proposed rewiring action, we decompose the rewiring
action to 3 steps: 1) choosing an edge et = (ve1 , ve2) from the set of edges of the intermediate graph
st; 2) determining vet1 or vet2 to be vfirt and the other to be vsect ; and 3) choosing the third node
vthit from N2

st(vfirt)/N
1
st(vfirt). Correspondingly, we decompose p(at|st) as follows

p(at|st) = pedge(et|st) · pfir(vfirt |et, st) · pthi(vthit |vfirt , et, st) (5)

We design three policy networks based on GCN to estimate the three distributions in the right
hand of the equation equation 5, which will be introduced next. To select an edge from the
edge set Est , we generate the edge representation from the node representations Fst ∈ R|Vst |×dF
learned by GCN. For an edge e = (ve1 , ve2), the edge representation can be represented as
e = concat(ust , h(Fst [e1, :],Fst [e2, :])), where ust is the graph representation of the state st,
h(·, ·) is a function to combine the two node representations and concat(·, ·) denotes the concatena-
tion operation. We include ust in the representation of the edge to incorporate the graph information
when making the decision. The representation of all the edges in Est can be represented as a matrix
Est ∈ R|Est |×2dF , where each row represents an edge. The probability distribution over all the
edges can be represented as

pedge(·|st) = softmax(MLP (Est |θedge)), (6)

where we use MLP (·|θedge) to denote a Multilayer Perceptron that maps Est ∈ R|Est |×2dF to a
vector in R|Est |, which, after going through the softmax layer, represents the probability of choosing
each edge. Let et = (vet1 , vet2) denote the edge sampled according to eq. equation 6. To decide
which node is going to be the first node, we estimate the probability distribution over these two
nodes as

pfir(·|et, st) = softmax(MLP ([vet1 ,vet2]T |θfir)) (7)

where veti = concat(et,Fst [eti, :]) ∈ R3dF for i = 1, 2. The first node can be sampled from
the two nodes vet1 , vet2 according to eq. equation 7. We then proceed to estimate the prob-
ability distribution p(·|vfirt , et, st). For any node vc ∈ N2(vfirt)/N

1(vfirt), we use v̂c =

concat(vet1 ,Fst [c, :]) to represent it. The representations for all the nodes in N2(vfirt)/N
1(vfirt)

can be represented by a matrix V̂st ∈ R|N2(vfirt
)/N1(vfirt

)|×4dF with each row representing a node.
The probability distribution of choosing the third node over all the candidate nodes can be modeled
as:

pthi(·|vfirt , et, st) = softmax(MLP (V̂st |θthi)) (8)

The third node vthit can be sampled from the set of candidate nodes N2(vfirt)/N
1(vfirt) accord-

ing to the probability distribution in eq equation 8. An action at can be generated by sequentially
estimating and sampling from the probability distributions in eq. equation 6, equation 7 and equa-
tion 8.

4.4 PROPOSED FRAMEWORK - REWATT

With the rewiring and the policy network defined above, our overall framework can be summarized
as follows. With State st, the Attacker uses GCN to learn node and edge embeddings, which are

5

Under review as a conference paper at ICLR 2020

used as input to Policy Networks to make decision about the next action. Once the new action is
sampled from the policy network, rewiring is performed on st and we arrive in the new state st+1.
We query the black-box classifier to get the prediction f(St+1), which is compared with f(s1) to
get reward. Policy gradient (Sutton & Barto, 2018) is adopted to learn the policies by maximizing
the rewards.

5 EXPERIMENT

In this section, we conduct experiments to evaluate the performance of the proposed framework
ReWatt. We also carry out a study to analyze how the trained attacker works. Some empirical
investigation on the advancements of the rewiring operation can be found in Appendix C.

5.1 ATTACK PERFORMANCE

To demonstrate the effectiveness of ReWatt, we conduct experiments on three widely used social net-
work data sets (Kersting et al., 2016) for graph classification, i.e., REDDIT-MULTI-12K, REDDIT-
MULTI-5K and IMDB-MULTI (Yanardag & Vishwanathan, 2015). The statistics can be found in
Appendix D. Note that the rewiring operation (as well as the other operations such as deleting/adding
edges) may lead to abnormal structure of some certain kinds of graphs, which can make the graphs
invalid, especially for chemical molecules. So in this paper, We avoid chemical related datasets
but only use social networks datasets. In the social domain, if the changes are subtle, it is most
likely that we will not introduce abnormal structures. Meanwhile, it is straightforward to extend our
framework to datsets from the other domains if we have expertise in them. For example, if we know
what structures are abnormal, we can use such knowledge to constraint the the state space of the RL
framework. We leave it as one future work.

In this work, the classifier we target to attack is the GCN-based classifier as introduced in Section 2.
We set the number of layers to 3. We need to train the classifier using a fraction of the data and then
treat the classifier as a black box to be attacked. We then use part of the remaining data to train the
attacker and use the rest of the data to test the performance of the attacker. Thus, for each data set,
we split it into three parts with the ratio of a% : b% : c%, where a% of the data set is used to train
the classifier, b% of the data set is used to train the attacker and the remaining c% of the data set is
used to test the performance of the attacker. For the REDDIT-MULTI-12K and REDDIT-MULTI-
5K data sets, we set a = 90, b = 8 and c = 2. As the size of the IMDB-MULTI data set is quite
small, to have enough data for testing, we set a = 50, b = 30 and c = 20.

We compare the attacking performance of the proposed framework with the RL-S2V proposed
in (Dai et al., 2018), random selection method and some variants of our proposed framework. We
briefly describe these baselines: 1) RL-S2V is a reinforcement learning based attack framework (Dai
et al., 2018), which allows adding and deleting edges to the graph with a fixed budget for all the
graphs; 2) Random denotes an attacker that performs the proposed rewiring operations randomly;
3) Random-s is also based on random rewiring. Note that ReWatt can terminate before using all
the budget. We record the actual number of rewiring actions made in our method and only allow the
Random-s to take exactly the same number of rewiring actions as ReWatt; 4) ReWatt-n denotes a
variant of the ReWatt, where the negative reward is fixed to−0.5 for all the graphs in the testing set;
and 5) ReWatt-a is a variant of ReWatt, where we allow any nodes in the graph to be the third node
vthit instead of only 2-hop neighbors.

As RL-S2V only allows a fixed budget for the all the graphs, when comparing to it, for ReWatt, we
also fix the number of proposed rewiring operations to a fixed number K for all the graphs. Note
that a single proposed rewiring operation involves two edges, thus, for a fair comparison, we allow
the RL-S2V to take 2K actions (adding/deleting edges). We set K = 1, 2, 3 in the experiments. To
compare with the random selection method and the variants of ReWatt, we use flexible budget, more
specially, we allow at most p · |Ei| proposed rewiring operations for graph Gi. Here, p is a fixed
percentage and we set it to p = 1%, 2%, 3% in our experiments. We use the success rate as measure
to evaluate the performance of the attacker. A graph is said to be successfully attacked if its label is
changed when it is modified within the given budget.

The results are shown in Table 1. From the table, we can make the following observations: 1)
Compared to RL-S2V, ReWatt can perform more effective attacks. Especially, in the IMDB-MULTI

6

Under review as a conference paper at ICLR 2020

REDDIT-MULTI-12K REDDIT-MULTI-5K IMDB-MULTI
K 1 2 3 1 2 3 1 2 3

ReWatt 14.4% 21.6% 23.4% 8.99% 16.9% 18.0% 23.0% 23.3% 23.3%
RL-S2V 9.46% 18.5% 21.1% 4.49% 16.9% 18.0% 2.00% 6.00% 3.33%

p 1% 2% 3% 1% 2% 3% 1% 2% 3%
ReWatt 25.2% 32.9% 38.7% 11.2% 20.2% 27.0% 23.0% 23.0% 23.3%

ReWatt-a 26.1% 35.1% 42.8% 5.60% 21.3% 30.3% 24.3% 25.0% 25.6%
ReWatt-n 17.6% 25.7% 31.1% 5.60% 14.6% 19.1% 21.3% 21.3% 21.6%
random 10.3% 15.7% 21.6% 3.30% 12.4% 16.9% 1.33% 1.33% 1.66%

random-s 6.30% 6.70% 9.45% 5.60% 6.74% 11.0% 1.00% 1.33% 1.66%
Table 1: Performance comparison in terms of success rate

data set, where ReWatt outperforms the RL-S2V with a large margin; 2) ReWatt outperforms the
Random method as expected. Especially, ReWatt is much more effective than Random-s which
performs exactly the same number of proposed rewiring operations ReWatt. This also indicates that
the Random method uses more rewiring operations for successful attacking than ReWatt; 3) The
variant ReWatt-a outperforms ReWatt, which means if we do not constraint the rewiring operation
to 2-hop neighbors, the performance of ReWatt can be further improved. However, as we discussed
in earlier sections, this may lead to more “noticeable” changes of the graph structure; and 4) ReWatt-
n performs worse than our ReWatt, which shows the advancement of using a flexible reward design.

5.2 ATTACKER ANALYSIS

In this subsection, we carry out experiments to analyze how ReWatt’s change in graph structure
affects the graph representation u calculated by eq. equation 2 and the logits P (the output immedi-
ately after the softmax layer of the classifier). For convenience, we denote the original graph as Go
and the attacked graph as Ga in this section. Correspondingly, the graph representation and logits
for the original (attacked) graph are denoted as uo (ua) and Po (Pa), respectively. To measure
the difference in graph representation, we used the relative difference in terms of 2-norm defined as
RC(uo,ua) = ‖ua−uo‖2

‖uo‖2 . The logits denote the probability distribution that the given graph belongs
to each of the classes. Thus, we use the KL-divergence Kullback (1997) to measure the difference

between the logits of the original and attacked graphs KL(Po,Pa) =
C∑
i=1

Po[i] log
(

Po[i]
Pa[i]

)
, where C

is the number of classes in the data set and P[i] denotes the logit for the i-th class.

We perform the experiments on the REDDIT-MULTI-12K data set under the setting of allowing at
most 3% · |E| proposed rewiring operations. The results for the graph representation and logits are
shown in Figure 1 and Figure 2, respectively. The graphs in the testing set are separated in two
groups, one group contains all the graphs successfully attacked by ReWatt (shown in Figure 1a and
Figure 2a), and the other one contains those survived from ReWatt’s attack (shown in Figure 1b and
Figure 2b). Note that, for comparison, we also include the results of Random-s on these two groups
of graphs. In these figures, a single point represents a testing graph, the x-axis is the ratio M

|E| , where
M is the number of rewiring operations ReWatt used before the attacking process terminating. Note
that M can be smaller than the budget as the process terminates once the attack successes.

As we can observed from the figures, compared with the Random-s, ReWatt can make more changes
to both the graph representation and logits, using exactly the same number of proposed rewiring
operations. Comparing Figure 1a with Figure 1b, we find that the perturbation generated by ReWatt
affects the graph representation a lot even when it fails to attack the graph. This means our attack is
perturbing the graph structure in a right way to fool the classifier, although it fails potentially due to
the limited budget. Similar observation can be made when we compare Figure 2a with Figure 2b.

6 RELATED WORK

In recent years, adversarial attacks on deep learning models have attracted increasing attention in
the area of computer vision. Many deep models are found to be easily fooled by adversarial sam-
ples, which are generated by adding deliberately designed unnoticeable perturbation to normal im-

7

Under review as a conference paper at ICLR 2020

0.00 0.01 0.02 0.03
#actions/#edges

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RC
(u

o ,
ua)

Ours
Random-s

(a) Succeeded graphs

0.010 0.015 0.020 0.025 0.030 0.035
#actions/#edges

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RC
(u

o ,
ua)

Ours
Random-s

(b) Failed graphs
Figure 1: The change of graph representation after attack

0.00 0.01 0.02 0.03
#actions/#edges

0.0

0.5

1.0

1.5

2.0

2.5

 K
L(

Po ,
Pa)

Ours
Random-s

(a) Succeeded graphs

0.010 0.015 0.020 0.025 0.030 0.035
#actions/#edges

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

KL
(P

o ,
Pa)

Ours
Random-s

(b) Failed graphs
Figure 2: The change of logits after attack

ages (Szegedy et al., 2013; Goodfellow et al., 2014). More algorithms with different level access
to the target classifier have been proposed, including white-box attack models, which have access
to the gradients (Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016; Carlini & Wagner, 2017) and
black-box attack model, which have limited access to the target classifier (Chen et al., 2017; Cheng
et al., 2018; Ilyas et al., 2018).

Most of the aforementioned works are focusing in the computer vision domain, where the data sam-
ple can be represented in the continues space. Few attention has been payed into the discrete data
structure such as graphs. Graph Neural Networks have been shown to bring impressive advance-
ments to many different graph related tasks such as node classification and graph classification.
Recent researches show that the graph neural networks are also venerable to adversarial attacks.
(Zügner et al., 2018) proposed a greedy algorithm to perform adversarial attack to node classifica-
tion task. Their algorithm tries to change the label of a target node by modifying both the graph
structure and node features. (Dai et al., 2018) proposed a deep reinforcement learning based at-
tacker to attack both the node classification and the graph classification task. (Zgner & Gnnemann,
2019) designed an algorithm to impair the overall performance of node classification based on meta
learning. All the three mentioned methods modify the graph structure by adding or deleting edges.
A more recent work Wang et al. (2018) on attacking node classifications proposed to modify the
graph structure by adding fake nodes. In this work, we propose to modify the graph structure using
rewiring, which is shown to make less noticeable changes to the graph structure.

7 CONCLUSION

In this paper, we proposed a graph rewiring operation, which affect the graph structure in a less
noticeable way than adding/deleting edges. The rewiring operation preserves some basic graph
properties such as number of nodes and number of edges. We then designed an attacker ReWatt
based on the rewiring operations using reinforcement learning. Experiments in 3 real world data
sets show the effectiveness of the proposed framework. Analysis on how the graph representation
and logits change while the graph being attacked provide us with some insights of the attacker.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Hau Chan and Leman Akoglu. Optimizing network robustness by edge rewiring: a general frame-
work. Data Mining and Knowledge Discovery, 30(5):1395–1425, 2016.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM,
2017.

Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-
efficient hard-label black-box attack: An optimization-based approach. arXiv preprint
arXiv:1807.04457, 2018.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In International Conference on Machine Learning, pp. 1123–1132, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Wendy Ellens, FM Spieksma, P Van Mieghem, A Jamakovic, and RE Kooij. Effective graph resis-
tance. Linear algebra and its applications, 435(10):2491–2506, 2011.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2):
298–305, 1973.

Arpita Ghosh and Stephen Boyd. Growing well-connected graphs. In Proceedings of the 45th IEEE
Conference on Decision and Control, pp. 6605–6611. IEEE, 2006.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. arXiv preprint arXiv:1804.08598, 2018.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.
de.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Bojan Mohar, Y Alavi, G Chartrand, and OR Oellermann. The laplacian spectrum of graphs. Graph
theory, combinatorics, and applications, 2(871-898):12, 1991.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574–2582, 2016.

9

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

Under review as a conference paper at ICLR 2020

Aliaksei Sandryhaila and Jose MF Moura. Discrete signal processing on graphs: Frequency analysis.
IEEE Transactions on Signal Processing, 62(12):3042–3054, 2014.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains. arXiv preprint arXiv:1211.0053, 2012.

Gilbert W Stewart. Matrix perturbation theory. 1990.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ali Sydney, Caterina Scoglio, and Don Gruenbacher. Optimizing algebraic connectivity by edge
rewiring. Applied Mathematics and computation, 219(10):5465–5479, 2013.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Xiaoyun Wang, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional networks by
adding fake nodes. arXiv preprint arXiv:1810.10751, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning withdifferentiable pooling. arXiv preprint
arXiv:1806.08804, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Marinka Zitnik, Rok Sosič, Marcus W. Feldman, and Jure Leskovec. Evolution of resilience in
protein interactomes across the tree of life. Proceedings of the National Academy of Sciences,
116(10):4426–4433, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1818013116. URL https:
//www.pnas.org/content/116/10/4426.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2847–2856. ACM, 2018.

Daniel Zgner and Stephan Gnnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=Bylnx209YX.

A GRAPH LAPLACIAN BASED MEASURES

Many important graph properties are based on the eigenvalues of the Laplacian matrix of a
graph (Chan & Akoglu, 2016). Here we list few:

• Algebraic Connectivity The algebraic connectivity of a graph G is the second-smallest eigen-
value of its Laplacian matrix (Fiedler, 1973). Note that we only consider connected graphs in this
work, so it is always larger than 0. The larger the algebraic connectivity is, the more difficult it
is to separate the graph into components (i.e., more edges need to be removed). The algebraic
connectivity has previously been applied to measure network robustness Sydney et al. (2013).

• Effective Graph Resistance The effective graph resistance is a graph measure derived from the
field of electric circuit analysis, where it is defined as the summation of effective resistance over
all node pairs (Ellens et al., 2011). The effective graph resistance can be represented using the
eigenvalues of Laplacian matrix as follows (Ellens et al., 2011)

Re = |V| ·
|V|∑
i=2

λi. (9)

10

https://www.pnas.org/content/116/10/4426
https://www.pnas.org/content/116/10/4426
https://openreview.net/forum?id=Bylnx209YX
https://openreview.net/forum?id=Bylnx209YX

Under review as a conference paper at ICLR 2020

By Corollary 2, we can represent the change of the algebraic connectivity λ2 as:

∆λ2 = (2x2[fir]− x2[thi]− x2[sec])(x2[sec]− x2[thi]) (10)

According to the above discussion, ∆λ2 is expected to be smaller for the operation of rewiring to
2-hop neighbor. Thus, the rewiring to 2-hop neighbor operation is expected to perturb the algebraic
connectivity less compared with adding an edge between two nodes that are far away from each
other. A similar argument can be built for effective graph resistance.

B PROOF OF COLLARY 1

Corollary 2. For a given graph G with Laplacian matrix L, one proposed rewiring operation
(vfir, vsec, vthi) affects the eigen-value λi by ∆λi, for i = 1, . . . , |V|, where

∆λi = (2xi[fir]− xi[thi]− xi[sec])(xi[sec]− xi[thi]) (11)

where xi[index] denotes the index-th value of the eigenvector xi.

Proof. Let ∆L denotes the change in the Laplacian matrix after applying the rewiring operation
(vfir, vsec, vthi) to graph G. Then we have ∆L[fir, sec] = ∆L[sec, fir] = 1, ∆L[fir, thi] =
∆L[thi, fir] = −1, ∆L[sec, sec] = −1, ∆L[thi, thi] = 1 and 0 elsewhere. Thus

∆λi = xTi ∆Lxi

= 2xi[fir]xi[sec]− xi[sec]
2 + xi[thi]

2 − 2xi[fir]xi[thi]

= xi[thi]
2 − xi[sec]

2 + 2xi[fir](xi[sec]− xi[thi])

= (2xi[fir]− xi[thi]− xi[sec])(xi[sec]− xi[thi])

which completes the proof.

C EMPIRICAL INVESTIGATION OF THE REWIRING OPERATION

In this section, we conduct experiments to empirically show the advancements of the proposed
rewiring operator compared with the adding/deleting edge operator. We compare them from two
perspectives: 1) connectivity after the attack and 2) change in eigenvalues after the attack. The ex-
periments are carried out on the REDDIT-MULTI-12K dataset. On each of the graph that is success-
fully attacked by ReWatt, we perform exactly the same number of deleting/adding edge operations
on it. For connectivity, the average number of components over the original clean graphs is 2.6, this
number becomes 3.02 after the rewiring attack while it becomes 5.2 after the deleting/adding edges
attack. On the other hand, only 20% of the graphs get more disconnected (having more components)
after ReWattattack than the original ones, while 87% of the graphs get more disconnected after the
adding/deleting edges attack. Clearly, the rewiring operator is less likely to disconnect the graph.
The comparison of the change in eigenvalues is shown in Figure 3, where we compare the change
in different eigenvalues (the first 20 eigenvalues) of the graphs after these two attacks. Specifically,
we first compute the average relative change in the i-th eigenvalue after both attacks as follows:

rλi
=
|λorii − λattacki |

λorii
, (12)

where λorii denotes the i-th eigenvalue of the clean graph while λattacki denotes the i-th eigenvalue
of the attacked graph. We then take the average of the above value over all the succeeded graphs,
which we denoted as r̂λi

. Specially, we use r̂reλi
to denote the average change ratio after ReWatt

while using r̂d/aλi
to denote the average change ratio after deleting/adding edge attack. To compare

the these two attacks, we calculate r̂d/aλi
/r̂reλi

and the results are shown in Figure 3. The results show
that for most of the first 20 eigenvalues, the deleting/adding edges attack makes much more changes
to them as the value r̂d/aλi

/r̂reλi
is way larger than 1.

By conducting these two experiments, we empirically conclude that the proposed re-wiring operator
makes more subtle changes to graphs than existing methods.

11

Under review as a conference paper at ICLR 2020

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
i-th eigenvalue

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

rd/
a i
/rre i

Figure 3: Comparison in the change of eigenvalues

D STATISTICS OF THE DATASETS

The statistics of the datasets are given in Table 2.

graphs # labels
REDDIT-MULTI-12K 11,929 12
REDDIT-MULTI-5K 4,999 5

IMDB-MULTI 1,500 3

Table 2: Statistics of the data sets

12

	Introduction
	Background
	Graph Classification
	Graph Convolution Networks

	Problem Formulation
	Rewiring-based Attack to Graph Convolutional Networks
	Properties of the Proposed Rewiring Operation
	Graph Adversarial Attack with Reinforcement Learning
	Policy Network
	Proposed Framework - ReWatt

	Experiment
	Attack Performance
	Attacker Analysis

	Related Work
	Conclusion
	Graph Laplacian Based Measures
	Proof of Collary 1
	Empirical Investigation of the Rewiring Operation
	Statistics of the Datasets

