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ABSTRACT

State-of-the-art neural machine translation methods employ massive amounts of
parameters. Drastically reducing computational costs of such methods without af-
fecting performance has been up to this point unsolved. In this work, we propose
a quantization strategy tailored to the Transformer (Vaswani et al.,2017)) architec-
ture. We evaluate our method on the WMT14 EN-FR and WMT 14 EN-DE trans-
lation tasks and achieve state-of-the-art quantization results for the Transformer,
obtaining no loss in BLEU scores compared to the non-quantized baseline. We
further compress the Transformer by showing that, once the model is trained, a
good portion of the nodes in the encoder can be removed without causing any loss
in BLEU.

1 INTRODUCTION

Neural machine translation methods have achieved impressive results lately (Ahmed et al., 2017} Ott
et al |2018; [Edunov et al.,|2018). Having been proposed only recently (Kalchbrenner & Blunsom,
2013 [Sutskever et al., 2014; (Cho et al.,[2014), many great work have led the field to move forward
quickly. Bahdanau et al.| (2014)) introduced an attention mechanism, allowing the decoder to attend
to any hidden state generated by the encoder. Multiple improvements to their approach have been
proposed, such as multiplicative attention (Luong et al.| [2015) and more recently multi-head self-
attention (Vaswani et al.,[2017). The latter’s novel Transformer architecture achieved state-of-the-art
results on the WMT 2014 English-to-French and WMT 2014 English-to-German corpus. Inspiring a
new wave of work, state-of-the-art of numerous natural language processing tasks have reached new
heights (Devlin et al., 2018 Liu et al.,|2019). Unfortunately, these Transformer networks make use
of an enormous amount of parameters, resulting in impractical inference on more limited hardware
such as edge-devices is impractical.

A solution to reduce the computational burden of these neural networks is to lower numerical pre-
cision, which allows the representation of numerical values with fewer bits (Tang & Kwan, [1993;
Marchest et al.,|1993). This method called quantization has the advantage of providing good com-
pression rates with minimal accuracy loss and is supported by a great number of different hardware.
Properly quantizing the Transformer would thus allow computational speed gains at inference, as
well as deployment on more limited hardware.

Recently, simple quantization solutions have been applied to the Transformer. Tierno| (2019) uses
8-bit fixed and linear quantization schemes on both the weights and inputs of Transformer layers.
Cheong & Daniel| (2019) apply k-means quantization and binarization with two centroids over the
weights of the Transformer network. [Fan| (2019) uses binary and range based linear quantization on
the Transformer. Bhandare et al.|(2019) quantize some of the MatMul operations of the Transformer
and use the KL divergence to estimate the most suited parameters for each quantization range. So
far, all proposed methods have failed to avoid any loss in translation quality and omit quantizing the
whole Transformer architecture, resulting in suboptimal computational efficiency.

In this work, we propose a custom quantization strategy of the entire Transformer architecture,
where quantization is applied throughout the whole training. Our method is easy to implement and
results are consistent with the non-quantized Transformer. We test our approach on the WMT 14
EN-FR and WMT14 EN-DE translation tasks and obtain state-of-the-art quantization results. We
are, to the best of our knowledge, the first to fully quantize the Transformer architecture to 8-bit
while maintaining the translation quality on par with the non-quantized baseline and even achieve
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higher BLEU scores than the latter on some tasks. We also show that, once models are trained,
a great number of nodes in the encoder can be removed without affecting translation quality. Our
pruning scheme is adaptive, meaning it estimates the right ratio of nodes to prune per layer. It also
requires no extra training and provides additional compression when combined with quantization.

2 RELATED WORK

In this section, we review a broad spectrum of quantization and pruning methods for neural network
compression.

2.1 QUANTIZATION

Over the years, a broad range of methods have been proposed to quantize neural networks. These
include, among many others, binary (Courbariaux et al. [2016), ternary (Lin et al.l [2015; L1 et al.,
2016), uniform affine (Jacob et al.,2017) and learned (Zhang et al.,|2018]) quantization.

Quantization has been applied to RNNs (Jordan, 1990), LSTMs (Hochreiter & Schmidhuber, |1997)
and GRUs (Cho et al.||2014). [Ott et al.|(2016) propose an exponential quantization method for RNN
weights. They compare their method with binary and ternary quantization on language modelling
and speech recognition and show binary weights to be ineffective for RNNs, while ternary and
exponential quantization to work well. Hubara et al.| (2016) quantize weights and activations of
RNNs and LSTMs to 2, 4 and 6 bits, while keeping gradients in full precision. He et al.| (2016)
propose modifications to the gates and interlinks of quantized LSTM and GRU cells, as well as a
balanced quantization method for weights. Wu et al.|(2016) successfully quantize the GNMT neural
machine translation model to 8-bit without any loss in translation quality. [Wang et al.|(2018)) propose
to use different quantization methods for different RNN components.

With regards to CNNs (LeCun et al.,|1989), various works have explored quantizing the architecture.
Gong et al.| (2014) compare matrix factorization, binarization, k-means clustering, product quanti-
zation and residual quantization on CNNs. [Wu et al.| (2015) apply quantization to both kernels and
fully connected layers of convolutional neural networks. Rastegari et al.|(2016) evaluate the use of
binary weights on AlexNet (Krizhevsky et al., 2012). [Zhou et al.| (2016) use low bitwidth weights,
activations and gradients on CNNss.

Quantization has also been jointly used with other compression methods. |[Han et al.| (2015)) combine
pruning, quantization, weight sharing and Huffman coding, while |Polino et al.| (2018) use quantiza-
tion with knowledge distillation (Hinton et al., 2015) for superior compression rates.

2.2 PRUNING

LeCun et al.[(1990) were the first to propose a Hessian based method to prune neural net weights,
with Hassibi et al|(1994) later improving the method. More recently, See et al.| (2016) show that
pruning a fully trained model and then retraining it can increase performance over the original non-
pruned model. Gradually pruning in tandem with training has also been shown to increase perfor-
mance (Zhu & Gupta, [2017). [Liu et al.|(2017) prune nodes instead of weights by applying a penalty
in the loss on the ~y parameters of batch normalization layers. [Narang et al|(2017b) make better
use of hardware by applying pruning and weight decay in blocks to minimize the number of loaded
weight matrix chunks. |Chen et al.| (2018)) combine quantization with block based low-rank matrix
approximation of embeddings.

For pruning methods applied to specific architectures, [Liu et al.| (2015) propose an efficient sparse
matrix multiplication algorithm for CNNs. For RNNs, |[Narang et al.|(2017a) show sparse pruning
to work on the architecture. In order to maintain dimension consistency, Wen et al.|(2017)) propose
to prune all basic LSTM structures concurrently. |Park et al.|(2018) introduce simple recurrent units
(SRUs) for easy pruning of RNNs.

3  QUANTIZATION STRATEGY

In this section, we describe our custom quantization scheme for the Transformer.
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3.1 QUANTIZATION METHOD

We use the uniform quantization method described by [Jacob et al.[(2017). Uniform quantization has
the advantage of being easy to implement and is supported by most hardware.

At inference, given an element x of a tensor X, we apply the quantization function Q:

Qr) = ——mn (1)
Tmaz — Tmin
=" -1 (2)

where Zin, and X4, are respectively min(X) and max(X) for weight quantization and running
estimates for activation quantization. The running estimates are computed during training, where for
every forward pass, the variables x,,;, and x,,,, are updated with an exponential moving average
with a momentum of 0.9. In the context of 8-bit quantization, k is set to 8.

At training time, we simulate quantization by first quantizing and then rescaling to the original
domain:

\‘clamp(x; Tmin, xmaaz) — Tmin
S

W*s+$mm 3)

where the clamp function clamps all values outside the [Zin, Tmaz] Tange and || the rounding to
the nearest integer operator. During backpropagation, we use the straight-through estimator (Hinton,
2012) and set the gradients of clamped values to zero. The only exception is for the LayerNorm’s
denominator, for which gradients are never zeroed, even though values can still be clamped. Once
training is finished, s, x,,;, and x,,, are frozen along with the weights.

3.2 WHAT TO QUANTIZE

We choose to quantize all operations which will provide a computational speed gain at inference. In
this regard, we quantize all matrix multiplications, meaning that the inputs and weights of MatMuls
will both be 8-bit quantized. The other operation we quantize are divisions, but only if both the
numerator and denominator are matrices or tensors, then we quantize them to 8-bit. For all other
operations, such as sums, the computational cost added by the quantization operation outweighs the
benefit of performing the operation with 8-bit inputs. Hence, we do not quantize such operations.

More precisely, we quantize all weights of the Transformer, excluding biases. The latter are summed
with the INT32 output of matrix multiplications and thus provide no computational efficiency from
being quantized. Furthermore, the memory space of biases is also insignificant in comparison to
the weight matrices, representing less than 0.1% of total weights. For positional embeddings, mem-
ory gain is also minimal, but since these will be summed with the quantized input embeddings, we
likewise quantize them. The v weights of LayerNorms are also quantized. As for activations, we
quantize the sum of the input embeddings with the positional encodings in both the encoder and
decoder. In the Multi-Head Attention, we quantize the (Q, K, V') input, the softmax’s numerator,
the softmax’s denominator, the softmax’s output and the Scaled Dot-Product Attention’s output. To
be precise, in the Scaled Dot-Product Attention, we compute the softmax’s denominator with the un-
quantized softmax’s numerator and then quantize the numerator. For the position-wise feed-forward
networks, we quantize the output of the ReL.Us and of the feed-forward networks themselves. Fi-
nally, for all LayerNorms, we quantize the numerator x — u, the denominator /o2 + ¢, their quotient
and the output of the LayerNorm.

3.3 BUCKETING

Instead of using a single set of (S, Zymin, Tmaz) PEr quantized tensor, we can quantize subsets of a
tensor using a set of (S, Zin, Tmaz) per subset (Alistarh et al., 2016). Even though this adds more
scalars, the memory cost is insignificant overall and the added flexibility can greatly alleviate the
precision loss obtained by trying to fit all values of a single tensor into a single domain with lower
numerical precision.

We use this bucketing method for all weight matrices, where we bucket on the output dimension.
That is, we have one set of (8, Zymin, Tmae) for every element of the output. For activations, we use
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Table 1: Our quantization strategy achieves better BLEU scores than all other quantization methods
for the Transformer on the WMT14 EN-DE, WMT14 EN-FR and WMT17 EN-DE test set.

. BLEU
Model Fully Quantized g\ bE (2014) EN-FR  EN-DE (2017)
Vaswani et al.| (2017) (base) No quantization 27.3 38.1 -
Cheong & Daniel| (2019) - - 27.38
Bhandare et al.[|(2019) 27.33 - -
Fan| (2019) 26.94 - -
Our method (base) v 27.60 39.12 27.60

bucketing when quantizing: the sum of input embeddings with the positional encoding, the ), K,V
inputs, the Scaled Dot-Product Attention’s output, the feed-forward’s output, the LayerNorm’s nu-
merator, the LayerNorm’s quotient and the LayerNorm’s output.

3.4 DEALING WITH ZEROS

Unlike Jacob et al.| (2017)), we do not need to nudge the domain so that the zero value gets perfectly
mapped. The only zero values which we have to deal with are the padding, the output of ReLU
layers and dropouts. Since padding has no effect on the final output, we completely ignore these
values when quantizing and when computing the running estimates x,,;, and ,,q,. For ReLUs, we
fix the x,,;, estimate of those quantization layers to 0, which guarantees the perfect mapping of the
value. Finally, quantization is applied before any dropout operation. Even though the zeros added
to the output of the quantization layer might not be part of the domain, this only happens during
training time. At inference, no dropout is performed and thus quantization is not affected.

4 EXPERIMENTS

In this section, we present the results of our full quantization scheme as well as the effect of apply-
ing quantization to individual Transformer operations. We also compare translation quality when
starting to apply our quantization method at different moments during training. Finally, we show the
result of node pruning on the trained models.

4.1 FULL QUANTIZATION

We apply our 8-bit quantization strategy on both the base and big Transformer (Vaswani et al., 2017)
and follow the same training setup as in the original paper, except for the dropout ratio, which we
set to 0.1 in all cases. We test our models on the WMT 2014 English-to-German and WMT 2014
English-to-French translation tasks. Reported perplexity is per token and BLEU was measured with
multi-bleu. plE]on the newstest2014|test set. We used beam search with a beam size of 4
and a length penalty of 0.6, as in (Vaswani et al.| 2017). No checkpoint averaging was performed.

We compare our results with other 8-bit quantization methods in Table[I] Out of all the approaches,
we are the only one fully quantizing the Transformer architecture.

In Table [2] we show performance of our method on the WMT14 EN-DE and WMT14 EN-FR af-
ter a fixed amount of training steps. We compare our results with our two non-quantized baseline
Transformers (base and big variants). The baselines are trained with the same setup as the quan-
tized variants, without quantization, which is the same setup as|Vaswani et al.[(2017). Training with
quantization was about twice as slow as training the baselines. We also compare with two other
quantization approaches. The first one is the “default” approach, which is to naively quantize ev-
ery possible operation and the second approach applies our quantization strategy post-training (see

'https://github.com/moses—smt/mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl
“https://www.statmt.org/wmtl4/translation-task.html
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Table 2: Performance of our quantization method on the WMT14 EN-DE and WMT14 EN-FR test
set for a fixed number of training steps.

. Training . EN-DE EN-FR
Model Quantized Steps Compression PPL.  BLEU PPL BLEU
Base 100k 1x | 441 2582 320 3794
Default Approach v 100k 4x 74.04  0.21 nan 0
Post-Quantization v 100k 4x 445 2550 322 37.96
Our method v 100k 4x 4.67 2698 3.23 38.55
Big 300k 1x | 403 2685 272 40.17
Post-Quantization v 300k 4x 427 2655 278 39.78
Our method v 300k 4x 424 2795 280 40.17

section for details). For post-training quantization, the best BLEU score out of 20 trials was
picked, with scores varying by about 0.2 BLEU. For the big Transformer variants, we omitted to
bucket the Scaled Dot-Product Attention’s output and the sum of the decoder’s input embeddings
with the positional encoding. Bucketing these activations might provide better results than what we
have obtained.

In 3 out of 4 cases, our quantization strategy scores the highest BLEU even though the baselines
benefit from full precision. In the case of EN-FR, our method scored equal BLEU with the non-
quantized big variant. Generally, fully quantizing the Transformer seems to result in a loss in
perplexity while usually increasing translation accuracy. The reason for this might be the lower
numerical precision acting as a regularization effect. Indeed, when quantizing the big Transformer
on the WMT14 EN-DE task, a training corpus which the model can easily overfit, we saw a net gain
of 1.1 BLEU for the same amount of training.

As for the two other quantization approaches, post-quantization slightly increased the BLEU on the
WMT14 EN-FR for the base Transformer, but in every other case the translation quality diminished.
For the default approach, the method performed very poorly. By quantizing every operation, we lose
the numerical stability provided by the € in the LayerNorm’s denominator. This is why the default
approach got nan in the EN-FR task.

4.2 ABLATION STUDY

To compare the effect of bucketing and better understand which operation is more sensitive to quan-
tization, we evaluate the effect of quantizing single operations of the Transformer, with and without
bucketing. By single operation, we mean quantizing the operation of a module for all Transformer
layers. Table [3] shows results on the WMT14 EN-FR translation task. The only operations under-
performing our non-quantized baseline of 37.94 BLEU are the LayerNorm’s numerator when not
bucketed and the denominator. The latter cannot be bucketed because all dimensions of the variance
tensor vary per batch. Solely quantizing the LayerNorm’s denominator with no bucketing works,
but results are poor. To successfully quantize this element without causing performance issues, we
suspect quantizing prior elements in the network helps, as is the case in our quantization scheme.

We also tested quantizing solely the softmax output in the attention for a big Transformer variant on
the WMT 14 EN-DE task and saw an increase of 1.32 BLEU over the non quantized baseline at 300k
training steps. For the same setup, but on WMT14 EN-FR, we did not notice any gain in BLEU.

4.3 DELAYING QUANTIZATION

Our method’s goal is to increase computational efficiency when inferring with the Transformer. To
this end, our quantization scheme only requires us to learn s and z,,,;,. Although we do so with our
quantization scheme throughout the whole training, it is not a necessity. Quantization could also be
applied later on while training. Post-training quantization is also an option, where once the model
is fully trained, we keep the weights fixed, but compute the s, T, and z,,q, over a few hundred
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Table 3: Effect of quantizing single activations of the Transformer on the translation quality. Results
are on the WMT14 EN-FR test set.

No Bucketing Bucketing
PPL  BLEU | PPL BLEU

Encoder (Input Embedding + Positional Encoding) | 3.20  38.61 | 3.20 39.08
Decoder (Input Embedding + Positional Encoding) | 3.20 39.35 | 320 39.36

Module Quantized Activation

Multi-Head  Input (Q, K, V) 321 39.06 | 321 39.29
Attention LayerNorm Output 321 39.09 | 320 38.78
Scaled Softmax Numerator 320 3932 | 321 39.01
Dotbroquet  Softmax Denominator 321 3935 | 321 39.11
Attention Softmax Output 322 3941 | 322 3887
Output 321 3873 | 321 39.02
ReLU Output 321 3943 | 322 3893
Feed-forward Feed-forward Output 3.54  38.03 | 3.20 39.27
LayerNorm Output 321 38.67 | 3.21 39.04
Numerator 353 3775 | 321 38.86

LayerNorm  Denominator 1748 0 - -
Quotient 322 3897 | 321 39.02

Table 4: Impact of delaying the learning of quantization parameters on translation quality. Results
are on the WMT14 EN-DE and WMT 14 EN-FR test set.

Quantization Start EN-DE EN-FR
(training step) | PPL BLEU PPL BLEU

Base (no quantization) | 4.41 2585 320 37.94

100 | 4.67 2698 323 38.55

10000 | 5.07 26.06 3.21 38.62

50000 | 5.04 2648 3.21 38.50

80000 | 5.10 26.11 3.21 38.43
Post-Quantization | 4.45 2550 3.22 3796

steps. We compare different starting points in Table[d] where we evaluate them on the WMT14 EN-
DE and WMT14 EN-FR translation tasks. From our observed results, quantizing the model early on
seems preferable, further reinforcing our belief that quantization helps training via regularization.

Learning quantization parameters adds a significant computational cost during training. A major
advantage to delaying quantization is to perform more training steps in the same given amount of
time. Therefore, when training time is a constraint, one possible strategy is to train a model without
quantization, to perform more training steps and then to post-quantize the model. Another advantage
of post-quantization is that iterations can be quickly performed to search for the best performing
candidate.

4.4 PRUNING USELESS NODES

Once the model is fully trained and quantized, we can further compress it by removing useless nodes.
By useless, we mean nodes which do not cause any loss in translation quality when removed. We
choose to prune nodes instead of independently pruning weights, to avoid the need of any special
hardware or software, which is usually the case when trying to leverage sparse weight matrices
obtained by the latter method. Pruning nodes results in concretely shrunken models. When getting
rid of a node, we remove its corresponding set of weights from the layer outputting it and the
following layer receiving the node as input.
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Figure 1: Histograms of the running estimates x,,,, of a ReLU layer in the encoder (left) and
decoder (right), one x,,,4, per output node of the layer.

The only nodes of the Transformer which can be removed without causing alterations to other com-
ponents of the network are the nodes in between the two layers of each feed-forward networks.
Fortunately, these consist of a substantial portion of the model’s weights. In the case of the base
Transformer, for a respective vocabulary of size 37000 and 32000, 39.96% and 41.65% of the total
weights are owned by the feed-foward networks. This number grows to 47.03% and 48.18% in the
big Transformer, for again, a respective vocabulary of size 37000 and 32000.

To evaluate which nodes can be safely pruned without affecting translation quality, we estimate the
maximum value x,,., for each node of the ReLLU output over a few hundred steps. This is done on
the training set, using the fully trained model and keeping all other weights frozen. The x,,,, are
computed before quantizing the ReLU output and do not replace the ones used by the quantization
process. Figure[I]shows the histogram of these running estimates for one ReLU layer in the encoder
and one in the decoder. All other ReLU layers share the same pattern, where in the encoder there
are always multiple x,,,, close to 0, while it is not the case for the decoder.

Once the running estimates are computed, we prune its corresponding node if x,,,, < zo where 2
is a hyperparameter and o the standard deviation of the x,,,, of the layer. We empirically found
z = 0.025 to work best, with higher thresholds causing BLEU to quickly decay. No retraining of
the model is performed after nodes have been pruned.

Using this pruning method, we can compress and even slightly increase the BLEU scores of the
non-pruned models. Table[5]shows results of our pruning method. Our approach has the advantage
of being adaptive, meaning the number of nodes pruned per layer will differ as opposed to a fixed
pruning ratio method. For example, in the case of the big Transformer trained on WMT14 EN-FR,
169 nodes were pruned in the first ReLU of the encoder, while in the second, 1226 were pruned.
Nodes in the decoder rarely got pruned, at most 4 in the whole decoder.

The threshold allows us to find the right ratio of nodes to prune per layer instead of the usual: decide
the ratio first and then prune. We compared with two such methods, where for each task, we fix the
ratio to the global percentage of nodes pruned in the encoder by our method. The first fixed pruning
method uses L1 norm to sort nodes to prune in ascending order, while the second sorts nodes using
the x,,42, also in ascending order.

With x4, being running estimates, results varied per trial. Though with the method only taking a
few hundred training steps to perform, running many trials is not an issue. We had to run at most
four trials per task to improve BLEU score. When not improving, BLEU would either be the same
or decreased by about 0.01—0.02.

5 CONCLUSION

We proposed a quantization strategy for the Transformer, quantizing all operations which could
provide a computational speed gain for a fully quantized architecture. We also proposed pruning
unimportant nodes in the Transformer’s encoder for further compression of the network. All of our
design decisions were aimed at maximizing computational efficiency while making sure our method
would benefit as many different types of hardware as possible.
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Table 5: Comparison of our adaptive pruning scheme versus fixed rate pruning methods for equal
pruning proportions. Total compression is of quantization combined with pruning.

. Nodes Pruned Total
Pruning Method Task PPL BLEU in Bncoder FF  Compression
No pruning (base) EN-DE | 439 27.60 0% 4x
Fixed pruning, L1 norm sort EN-DE | 557 23.99 13.57% 4.12x
Fixed pruning, x4, sort EN-DE | 4.57 27.33 13.57% 4.12x
Adaptive pruning, ., threshold EN-DE | 4.40 27.61 13.57% 4.12x
No pruning (big) EN-DE \ 424 2795 0% 4x
Fixed pruning, L1 norm sort EN-DE | 5.80 22.65 26.39% 4.27x
Fixed pruning, z,,,4. sort EN-DE | 447 2743 26.39% 4.27x
Adaptive pruning, =, threshold EN-DE | 4.25 27.97 26.39% 4.27x
No pruning (base) EN-FR | 2.90 39.12 0% 4x
Fixed pruning, L1 norm sort EN-FR | 425 25.97 10.92% 4.09x
Fixed pruning, x4, sort EN-FR | 3.10 3842 10.92% 4.09x
Adaptive pruning, ., threshold EN-FR | 290 39.12 10.92% 4.09x
No pruning (big) EN-FR | 2.80 40.17 0% 4x
Fixed pruning, L1 norm sort EN-FR | 4.16 28.85 28.41% 4.29x
Fixed pruning, x4, sort EN-FR | 291 3940 28.41% 4.29x
Adaptive pruning, ., threshold EN-FR | 2.80  40.18 28.41% 4.29x

With our method, we achieve higher BLEU scores than all other quantization methods for the Trans-
former on both the WMT14 EN-DE and WMT14 EN-FR translation tasks and avoid any loss in
BLEU compared to our non-quantized baseline Transformer, even obtaining higher BLEU than the
latter. Our work shows that it is possible to fully quantize the Transformer to 8-bit and outperform
the full precision model.

Previous work on Transformer quantization are unspecific in the details of their implementation.
This makes it difficult for us to compare differences between methods. In our case, we aimed at
minimizing the loss of information when quantizing every single operation. We found bucketing,
careful handling of zeros and not clamping gradients of the quantized LayerNorm’s denominator
crucial for our method to work.

We are very excited about the possibilities this opens and plan on applying our method to other tasks.
We also intend to extend our work to variations of the Transformer as well as further exploring the
compression of these networks.
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