
Under review as a conference paper at ICLR 2020

SYMMETRIC-APL ACTIVATIONS: TRAINING IN-
SIGHTS AND ROBUSTNESS TO ADVERSARIAL AT-
TACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks with learnable activation functions have shown superior per-
formance over deep neural networks with fixed activation functions for many dif-
ferent problems. The adaptability of learnable activation functions adds expressive
power to the model which results in better performance. Here, we propose a new
learnable activation function based on Adaptive Piecewise Linear units (APL),
which 1) gives equal expressive power to both the positive and negative halves
on the input space and 2) is able to approximate any zero-centered continuous
non-linearity in a closed interval. We investigate how the shape of the Symmetric-
APL function changes during training and perform ablation studies to gain insight
into the reason behind these changes. We hypothesize that these activation func-
tions go through two distinct stages: 1) adding gradient information and 2) adding
expressive power. Finally, we show that the use of Symmetric-APL activations
can significantly increase the robustness of deep neural networks to adversarial
attacks. Our experiments on both black-box and open-box adversarial attacks
show that commonly-used architectures, namely Lenet, Network-in-Network, and
ResNet-18 can be up to 51% more resistant to adversarial fooling by only using
the proposed activation functions instead of ReLUs.

1 INTRODUCTION

Deep neural networks (DNNs) are a series of linear transformations followed by point-wise non-
linear functions. These non-linear functions are also referred to as activation functions. Activation
functions directly influence the training dynamics and, therefore, affect the final performance of the
DNN. For instance, activations such as Sigmoid and Tanh suffer from what is known as the “van-
ishing gradient” problem, when the inputs are in the saturation regions of these functions. This can
adversely affect network performance and cause slow convergence. Rectified linear units (ReLU)
(Nair & Hinton, 2010) have been shown to perform better than Sigmoid and Tanh in many scenar-
ios. Instead of using a fixed activation function, one can learn a parameterized activation function to
add expressive power to the model. Towards this goal, significant efforts have been made to intro-
duce different learnable activation functions (Agostinelli et al., 2014; He et al., 2015; Ramachandran
et al., 2017; Jin et al., 2016; Li et al., 2016). Although most of these adaptive activation functions
outperform fixed activation functions in multiple tasks, there is very little insight into why.

In this paper, we propose the Symmetric Adaptive Piecewise Linear unit (Symmetric-APL; pro-
nounced as Symmetric apple: "æp.@l) as a new adaptive activation function which builds upon the
adaptive piecewise linear unit (APL) (Agostinelli et al., 2014). Similar to APL units, S-APL has
multiple hinges which are connected by linear pieces. The S-APL activation is designed to give
the same expressive power to both the positive and negative sides of the x-axis. We show that S-
APL can approximate any continuous and zero-centered function, which encompasses many types
of learned and fixed activations functions. Using this flexible learned activation function, we can
then analyze how the shape changes during training and use ablation studies to investigate the role
that these changes play in optimization. This helps us better understand learned activation functions
and explain why they often provide increases in performance.

Finally, we evaluate the robustness of S-APL activated networks to adversarial attacks. Experiments
are done using both black-box and open-box adversarial attacks where we observe S-APL equipped

1

Under review as a conference paper at ICLR 2020

networks are more robust to attacks than their ReLU counterparts. Experiments show that the ro-
bustness improves against differential evolution attacks (Su et al., 2019b) by (up to) 51% on Lenet ,
47% on ResNet-18 (He et al., 2016), 43% on pure CNN, and 38% on Net in Net (Lin et al., 2013).
For open box adversarial attacks, the robustness also improves against FGSM (Goodfellow et al.,
2014) attack by (up to) 36%, 28%, and 25% for Lenet, pure CNN, and ResNet-18 architectures,
respectively using CIFAR-10 dataset.

2 RELATED WORKS

ReLU and its variants such as Leaky-ReLU (Maas et al., 2013), P-ReLU (He et al., 2015), exponen-
tial linear units (ELU) (Clevert et al., 2015), and scaled exponential linear units (SELU) (Klambauer
et al., 2017) are believed to solve the vanishing gradient problem and some are shown to better nor-
malize the network. By changing the negative side of x-axis, these variants push the mean activations
of each unit closer to zero and accelerate learning.

Some of the pioneering attempts to learn activations in a neural network can be found in Poli (1996),
Weingaertner et al. (2002), and Khan et al. (2013) where the authors proposed novel approaches to
learning the best activation function per neuron among a pool of candidate activations by employing
genetic and evolutionary algorithms. Maxout (Goodfellow et al., 2013) has been introduced as an
activation function aimed at enhancing the model averaging properties of dropout (Srivastava et al.,
2014). However, not only is it limited to approximating convex functions, but it also requires a
significant increase in parameters. Neural architecture search (Ramachandran et al., 2017) uses a
combination of exhaustive and reinforcement learning based search. Although the authors discov-
ered multiple novel activation functions, of which f(x) = x ∗ sigmoid(βx) performed slightly
better than ReLU, the search space of activation functions is limited. S-ReLU (Jin et al., 2016) was
proposed as an adaptive activation function which can mimic both convex and non-convex func-
tions.

It is worth mentioning that, in Lin et al. (2013), the authors proposed the network in network ap-
proach where they replace activation functions in convolutional layers with small multi-layer per-
ceptrons. Theoretically, due to Universal Approximation Theorem, this is the most expressive acti-
vation; however, it requires many more parameters.

3 ADAPTIVE PIECEWISE ACTIVATION FUNCTION

3.1 ADAPTIVE PIECEWISE LINEAR UNITS

Agostinelli et al. (2014) proposed an adaptive activation function which consists of multiple linear
pieces. The formulation of this adaptive piecewise linear (APL) activation function is shown in
Equation 1.

hi(x) = max(0, x) +

S∑
s=1

asimax(0,−x+ bsi) (1)

Where hi is the non-linear transformation for the hidden unit i and S is a hyperparameter that
determines the number of hinges. ai is the slope of the linear piece and bi is the location of the
hinge.

3.2 SYMMETRIC ADAPTIVE PIECEWISE LINEAR UNITS (APL: "æp.@l)

To overcome the shortcomings of APL activation function, we define a new adaptive piecewise
linear activation function that gives the same expressive power to the positive and negative half of
the input space and uses fewer parameters by sharing parameters across layers. We formulate the
activation hi of the hidden unit i as the summation of symmetric hinge-shaped pieces.

hi(x, S) =

S∑
s=1

as
+

max(0, x− bs
+

) +

S∑
s=1

as
−
max(0,−x− bs

−
) (2)

2

Under review as a conference paper at ICLR 2020

Similar to APL units, S is a hyperparameter which determines the number of hinges (on each side
of the x-axis). as

+

and as
−

control the slope of linear pieces in both the positive and negative
sides of the x-axis, while bs

+

, bs
− ∈ [0,+∞) determine the location of hinge s. The total number

of additional parameters is 4S for a single layer. Because our networks are trained with batch
normalization (Ioffe & Szegedy, 2015), the distribution of input to the S-APL function will follow
that of a normal distribution. Therefore, we fix the hinges to be a pre-determined number of standard
deviations away from the mean, decreasing the number of parameters to 2S.

Based on Equation 2, S-APL activation is zero-centered which leads to more stable statistical be-
havior during training. Due to increasing the number of parameters, S-APL offers more flexibility
than the normal APL, however, in case of using a fixed set of hinges among all hidden units of a
layer, this increase is of O(constant) which is negligible. With the assumption of bs

+

i = bs
−

i , since
hsi (x) = hsi (−x), S-APL allows neurons to activate symmetrically. As it is mentioned in Zhao &
Griffin (2016), networks with symmetric activation functions are more robust to adversarial fooling.
We will delve into this property in later sections.

S-APL can better handle the limits. It could be inferred from the definition that, in contrast to normal
APL, increasing the absolute value of the input xwill also increase the number of terms affecting the
hi(x). However, normal APL requires the rightmost linear section in all the component functions to
have a unit slope and bias 0, which is not an appropriate constraint and undermines its representation
ability.

The following theorem shows that S-APL can approximate any non-linear, zero-centered, and Lips-
chitz continuous function in a closed interval of real numbers. It is worth mentioning that APL was
not flexible enough to do so.

Theorem 3.1 For any function f : [A,B]→ R and ε ∈ R, ∃S ∈ N, where |f(x)− S-APL(x)| ≤ ε,
assuming:

• A and B are finite real numbers.

• f is M-Lipschitz continuous.

Proof: First we define g : R→ R as follows:

g(x, S) =

S∑
i=1

{
aix+ bi Ai ≤ x ≤ Bi,
0 otherwise.

(3)

It’s clear that any piecewise linear function, including S-APL can be written in the form of g(x).
Now, if we divide [A,B] into S smaller windows [Ai, Bi], due to the Lipschitz continuity for any x1
and x2 ∈ [Ai, Bi], we have:

|f(x1)− f(x2)| ≤
M(B −A)

S
(4)

Due to the continuity of f , ∃xmini and xmaxi such that xmini = argmin(f(x)) and xmaxi =
argmax(f(x)) in [Ai, Bi]. Using xmini and xmaxi we can define g(x) as follows:

g(x) =


(x−Ai) f(x

max
i)−f(xmin

i)
Bi−Ai

+

f(xmini) xmini ≤ xmaxi

(x−Ai) f(x
min
i)−f(xmax

i)
Bi−Ai

+

f(xmaxi) xmaxi ≤ xmini

(5)

Using the defined g in equation 4, we have:
∀x ∈ [A,B] :

|f(x)− g(x)| ≤ M(B −A)
S

(6)

3

Under review as a conference paper at ICLR 2020

Thus, in order to satisfy |f(x)− g(x)| ≤ ε :

M(B −A)
ε

≤ S (7)

The inequality 7 implies that if S is set to be greater than M(B−A)
ε then the error of approximation

would be lower than ε. �

4 COMPARISON TO COMMONLY USED ACTIVATION FUNCTIONS

In order to show that S-APL unit is beneficial for deep neural networks, we compare it with well-
known activation functions in different architectures. We employed five different neural networks
trained on three different datasets, MNIST, CIFAR-10, and CIFAR-100. We used S = 4 and set the
hinges at positions x = −2.5,−2,−1, 0,+1,+2,+2.5 (0 considered as two hinges). Slope of as

+

1
is initialized to 1 and the remaining slopes are initiazlied to 0. With this initialization, the initialized
S-APL mimics the shape of ReLU.

The results of the experiments are shown in Table 1. The table shows that S-APL leads to a better
validation accuracy in almost all architectures.

Table 1: ReLU, leaky-ReLU, PReLU, tanh, sigmoid, ELU, maxout (nine features), swish:
x.sigmoid(βx) and S-APL activations are compared in three different tasks. The performance
of S-APL in comparison to the best of the other activations. For the sake of brevity, D-A refers to
Data Augmentation. The values in the tables are error-rates and are reported in percentage.

Activation MNIST CIFAR-10 CIFAR-100
- - D-A - D-A

Lenet5 (best: PReLU) 1.11 31.93 27.42 46.31 45.39
Lenet5 (S-APL) 1.03 30.83 27.02 45.74 44.81
MLP (best: swish) 1.55
MLP (S-APL) 1.71
pure CNN (best: maxout) 12.01 10.92 35.02 35.33
pure CNN (S-APL) 11.81 10.32 34.42 34.10
Net-in-Net(ReLU) 10.41 8.81 33.72 31.63
Net-in-Net(APL) 9.59 7.51 32.40 30.83
Net-in-Net(S-APL) 9.41 7.20 32.12 30.33

It is necessary to mention that pure CNN architecture consists of nine 2d convolutional layers, fol-
lowed by one global average pooling prior to the output layer. The first seven convolution layers
have kernels of size 3x3 with padded inputs, while the kernel size in the last two layers is reduced to
1x1 and the corresponding input is not padded. After every two convolution layers, a drop out layer
with p = 0.25 is applied.

5 HOW S-APL CHANGES DURING TRAINING AND POSSIBLE REASONS
WHY

Figures 1 and 2 show how the shape of S-APL changes for each layer during training. From these
figures, we can see that during the early stages of training, the shape of S-APL looks similar to that
of leaky ReLU: having a negative output for x < 0 and a positive output for x ≥ 0. During the
later stages of training, the activation function has a positive output for both x < 0 and x ≥ 0. In
addition, the slope of the output decreases as the magnitude of x increases.

We hypothesize that there are two distinct stages during the optimization of these learned activation
functions. In the first stage, the function returns negative values for x < 0 and in the second stage,
the function returns positive values for x < 0. To investigate this hypothesis, we train S-APL under

4

Under review as a conference paper at ICLR 2020

two different conditions where we: 1) force the output to only be negative for x < 0 (S-APL-
negative) and 2) force the output to only be positive for x < 0 (S-APL-positive). We accomplish
this by taking the absolute value of all as

−
and multiplying by +1 or −1.

Figure 2 shows that, although S-APL-positive has the ability to mimic the final learned shape of the
S-APL function, it barely deviates from the ReLU initialization. This shows that the ability to give a
negative output for negative inputs is crucial for S-APLs. Figure 2 shows that S-APL-negative does
initially go negative in the 4th layer and then returns to the ReLU shape. To gain further insight,
we compare the loss of these activation functions in Figure 3. We see that S-APL has a lower loss
compared to S-APL-positive and S-APL-negative. Furthermore, S-APL-negative has a lower loss
compared to S-APL-positive which has a lower loss than ReLU.

These results lead us to believe that it is possible that the first stage, S-APL-negative, adds gradient
information by giving negative output for negative inputs. It is possible that S-APL-positive is not
capable of doing so because giving positive outputs for negative inputs creates an identifiability
issue. In other words, outputs for x < 0 and x ≥ 0 look the same. However, we can see that
this property is useful for the S-APL function in the later stages of training. It is possible that
this is because the DNN has adapted its parameters such that outputs on both the negative and
positive sides capture a similar concept, adding expressive power to the model. Furthermore, one
cannot achieve the final S-APL shape without the first stage of having negative outputs for negative
inputs. To conclude, it appears that the S-APL units first go through two stages: 1) adding gradient
information and 2) adding expressive power and that the second stage depends on the first stage.
This information can be used to inform the design of learnable activation functions and even DNN
optimization techniques.

Figure 1: Shape of S-APL activation during training a simple network of MLPs on MNIST dataset.

6 ROBUSTNESS TO ADVERSARIAL ATTACKS

DNNs have been shown to be vulnerable to many types of adversarial attacks (Szegedy et al., 2013;
Goodfellow et al., 2014). Research suggests that activation functions are a major cause of this
vulnerability (Zantedeschi et al., 2017). Zhang et al. (2018) bounds a given activation function with
a few linear and quadratic functions and allows it to tackle general activation functions. This adds
up with applying a different activation for each neuron so the resulting network shows efficiency and
robustness to adversarial foolings. Wang et al. (2018) proposed a data-dependent activation function
and empirically shows its robustness to both black-box and gradient-based adversarial attacks. Other
studies such as Rakin et al. (2018), Dhillon et al. (2018), and Song et al. (2018) focused on other

5

Under review as a conference paper at ICLR 2020

Figure 2: Shape of S-APL during training a Lenet5 architecture on CIFAR-10 dataset.

Figure 3: Training loss trajectory for different S-APL initializations compared to fixed ReLU and
leaky ReLU.

additional properties of activation such as quantization and pruning and showed they can improve
the robustness of DNNs against adversarial examples.

Recently, Zhao & Griffin (2016) theoretically showed that DNNs with symmetric activations are
less likely to get fooled. The authors proved that “symmetric units suppress unusual signals of
exceptional magnitude which result in robustness to adversarial fooling and higher expressibility.”
Due to the symmetric convergence of S-APL units and also their hinges’ locations (b+i = b−i) which
result in h(x) = h(−x), S-APL units are capable of increasing the robustness of DNNs against
adversarial attacks.

In this section, relying on the properties of S-APL such as data dependency, piecewise linearity, non-
injective behavior, better handling of extreme values, and most importantly, symmetric shape, we
show that adding S-APL to a DNNs greatly improves the robustness against adversarial attacks. This
claim is verified through a wide range of experiments with the CIFAR-10 dataset under both black-
box and open-box methods, including one-pixel-attack and Fast Gradient Sign Method.

Figure 4 provides an intuition for the robustness of S-APL activated network in comparison to ReLU
activated ones. For each of the two networks, we take 100 random samples of frog and ship images
and visualize the pre-softmax representations using tSNE visualization (Maaten & Hinton, 2008) in
Figure 4. As it is depicted, for S-APL activated networks, the two classes are better separated. We

6

Under review as a conference paper at ICLR 2020

suspect that red samples such as those that are lying on the outer circle in the left plot of Figure 4
might be somewhere on the manifold of the data where the network is more susceptible. As one can
see, there is no red point on the outer circle of the right plot which might be showing the robustness
of S-APL networks. For other samples on the inner circle and the cloud next to circles, we can see
better separation by the S-APL network.

Figure 4: tSNE visualization of the pre-softmax layer’s outputs. Left: a ReLU activated Lenet5
architecture trained on CIFAR-10. Right: same network trained with S-APL activation functions.

6.1 BLACK BOX ADVERSARIAL ATTACK

For black-box attacks against a DNN, we assume the adversary has no information about the struc-
ture or parameters of the DNN and does not have access to any large training dataset. The adversary’s
only capability is to observe labels assigned by the DNN for chosen inputs in a manner analog to
a cryptographic oracle. A successful attacking technique of this type is Su et al. (2019a) which is
based on differential evolution. We can iteratively generate adversarial images to try to minimize
the confidence (probability) of the network’s classification.

The process starts with random modifications of a few pixels to generate adversarial examples. At
each step, one feeds several adversarial images to the DNN and only observes the output as the
probability of different classes. Examples that lowered the confidence of the true class will be kept
to generate the next generation of adversaries. The next generation modifications are then evolved
through a certain mutation scheme to generate new adversarial images. By repeating these steps for
a few iterations, the adversarial modifications generate more and more misleading images. The last
step returns an adversarial modification that reduces the confidence of the true class the most. This
means that the confidence of the true class would be reduced so much that a new incorrect category
now has the highest classification confidence. This technique is called untargeted attack since we
don’t specify the labels of the modified images.

In the following experiment, we modify one, three, and five pixels of images to generate adversarial
examples. The mutation scheme we used for this experiment is as follows:

xl+1
i = xlr1 + 0.5(xlr2 + xlr3) (8)

Where r1, r2, and r3 are three non-equal random indices of the modifications at level l. xl+1
i will be

an element of a new candidate modification.

To evaluate the effect of S-APL activation on the robustness of DNNs, we employ commonly-
used architectures, namely, Lenet5, Network-in-Network (Lin et al., 2013), pure CNN (ours), and
ResNet-18 (He et al., 2016). Each architecture is trained once with ReLU activation functions and
once with S-APL activation functions. The results in Table 2 show that Lenet5 and ResNet-18
architectures are 51% and 47.8% more resistant to back-box adversarial attacks. As authors in Zhao
& Griffin (2016) theoretically proved, that one can be robust to adversarial examples with symmetric
behavior.

After observing adversarial samples which are deceiving to both networks, we found that S-APL
activated network still assigns high confidence to the true labels of the perturbed images. In other
words, the difference between the confidence of the true label and the confidence of adversarially
wrong label is much smaller in S-APL network than ReLU network. More precisely, we measure

7

Under review as a conference paper at ICLR 2020

Table 2: 100 images are randomly chosen from CIFAR-10 test set to generate adversarial examples.
We attacked each architecture five times and report the average number of successful attacks. The
maximum number of iterations for all attacks is set to 40.

Model Lenet5 Net in Net pure CNN ResNet18
ReLU S-APL ReLU S-APL ReLU S-APL ReLU S-APL

one-pixel 61 29 29 18 16 9 23 12
three-pixels 88 58 69 39 53 34 63 37
five-pixels 92 67 80 58 64 41 71 49

avg(|Ztrue − Zadv|) 0.721 0.401 0.411 0.281 0.483 0.243 0.501 0.334

the average of |Z(x′)true label − Z(x′)adversarial label| over all adversarial samples where each network
is fooled. Z(.) is the post-softmax output and x′ is the adversarial sample. The avg(|Z(x′)true label−
Z(x′)adversarial label|) for each model is also included in Table 2. Due to the reported averages, we can
conclude that S-APL is much more robust against being adversarially deceived.

(a) Upper: 0.99
Lower: 0.14

(b) Upper: 0.81
Lower: 0.19

(c) Upper: 0.56
Lower: 0.08

(d) Upper: 0.92
Lower: 0.13

Figure 5: First row: samples of successful attacks (one pixel) to ReLU activated network. Second
row: samples of successful attacks to S-APL activated network. The differences in confidence of
the true label and adversarially classified label is shown for each sample.

6.2 OPEN BOX ADVERSARIAL ATTACK

To further explore the robustness of S-APL activated networks, in this section, we consider one
of the popular benchmarks of open box adversarial attacks: Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2014). For this attacking strategy, we consider four different architectures and
compare the rate of successful attacks for each of the networks with both ReLU and S-APL activa-
tion functions. The dataset and architectures are same as those were used for black-box adversarial
attacks.

6.2.1 FGSM

Fast Gradient Sign Method generates an adversarial image x′ from the original image x by maxi-
mizing the loss L(x′, y), where y is the true label of the image x. This maximization problem is
subjected to ||x − x′||∞ ≤ ε where ε is considered as the attack strength. Approximating with the
first term of Taylor expansion, we have:

8

Under review as a conference paper at ICLR 2020

L(x′, y) = L(x, y) +∇xL(x, y)T .(x− x′) (9)
So the adversarial image x′ would be:

x′ = x+ ε.sign(∇xL(x, θ)) (10)

Where the ε is considered as the power of the attack. This form of FGSM is considered to be an
untargeted attack where there is no pre-specified label t that x′ should be classified as. This method
only yields an adversary x′ which will not be classified as y.

To see how S-APL increases the robustness against FGSM attack, we employ three architectures all
trained to classify CIFAR-10 dataset. For different range if ε the results are summarized in Table 3.
In the best case, for Lenet architecture and ε = 0.02, S-APL activated network is 36% more robust

Table 3: Similar to the black-box attack experiment, 100 images are randomly chosen from CIFAR-
10 test set to generate adversarial examples. For each architecture, four different ε is used to FGSM
attack. All S-APL activations are set as symmetric-shared S-APL with four hinges on each side of
the x-axis.

Model Lenet5 pure CNN ResNet18
ReLU S-APL ReLU S-APL ReLU S-APL

ε = 0.02 57 36 35 25 36 27
ε = 0.04 64 44 36 28 38 29
ε = 0.06 69 62 38 33 39 35
ε = 0.08 73 68 42 38 43 40

than the ReLU activated one. The robustness also improves by 28% and 25% for pure CNN and
ResNet-18 respectively. We can see the overall increase in the robustness over all networks and ε
values. However, one can conclude that for smaller values of ε the robustness of S-APL activated
network is higher in comparison to ReLU activated networks. As we increase the attack strength (ε),
the robustness of S-APL networks gets closer to the robustness of ReLU activated networks.

7 CONCLUSION AND FUTURE WORKS

We extend the idea of piecewise linear activation functions by introducing S-APL as a learnable and
potentially symmetric activation function. We investigate the properties of S-APL and their evolu-
tion during training to understand how these functions accelerate learning and increase expressive
power in DNNs. Finally, we show that S-APL networks show more robustness to adversarial at-
tacks than ReLU networks. One can potentially design a hybrid defense method that combines other
defense techniques and S-APL units.

REFERENCES

Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning activation func-
tions to improve deep neural networks, 2014.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus), 2015.

Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy Bernstein, Jean Kossaifi,
Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial de-
fense, 2018.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. arXiv preprint arXiv:1302.4389, 2013.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

9

Under review as a conference paper at ICLR 2020

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. 2015 IEEE International Conference on
Computer Vision (ICCV), Dec 2015. doi: 10.1109/iccv.2015.123. URL http://dx.doi.
org/10.1109/ICCV.2015.123.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng Yan. Deep
learning with s-shaped rectified linear activation units. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

Maryam Mahsal Khan, Arbab Masood Ahmad, Gul Muhammad Khan, and Julian F Miller. Fast
learning neural networks using cartesian genetic programming. Neurocomputing, 121:274–289,
2013.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in neural information processing systems, pp. 971–980, 2017.

Hongyang Li, Wanli Ouyang, and Xiaogang Wang. Multi-bias non-linear activation in deep neural
networks. In International conference on machine learning, pp. 221–229, 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural net-
work acoustic models. In Proc. icml, volume 30, pp. 3, 2013.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Riccardo Poli. Parallel distributed genetic programming. University of Birmingham, Cognitive
Science Research Centre, 1996.

Adnan Siraj Rakin, Jinfeng Yi, Boqing Gong, and Deliang Fan. Defend deep neural networks against
adversarial examples via fixed anddynamic quantized activation functions, 2018.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Sibo Song, Yueru Chen, Ngai-Man Cheung, and C. C. Jay Kuo. Defense against adversarial attacks
with saak transform, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation, pp. 1–1, 2019a. ISSN 1941-
0026. doi: 10.1109/tevc.2019.2890858. URL http://dx.doi.org/10.1109/TEVC.
2019.2890858.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation, 2019b.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

10

http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/TEVC.2019.2890858
http://dx.doi.org/10.1109/TEVC.2019.2890858

Under review as a conference paper at ICLR 2020

Bao Wang, Alex T. Lin, Zuoqiang Shi, Wei Zhu, Penghang Yin, Andrea L. Bertozzi, and Stanley J.
Osher. Adversarial defense via data dependent activation function and total variation minimiza-
tion, 2018.

Daniel Weingaertner, Victor K Tatai, Ricardo R Gudwin, and Fernando J Von Zuben. Hierarchical
evolution of heterogeneous neural networks. In Proceedings of the 2002 Congress on Evolution-
ary Computation. CEC’02 (Cat. No. 02TH8600), volume 2, pp. 1775–1780. IEEE, 2002.

Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient defenses against adver-
sarial attacks. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
pp. 39–49. ACM, 2017.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions, 2018.

Qiyang Zhao and Lewis D Griffin. Suppressing the unusual: towards robust cnns using symmetric
activation functions, 2016.

11

	Introduction
	Related Works
	Adaptive Piecewise Activation Function
	Adaptive Piecewise Linear Units
	Symmetric Adaptive Piecewise Linear Units (APL: "æp.@l)

	Comparison to Commonly Used Activation Functions
	How S-APL Changes During Training and Possible Reasons Why
	Robustness to Adversarial Attacks
	Black Box Adversarial Attack
	Open Box Adversarial Attack
	FGSM

	Conclusion and Future Works

