
IMPROVED GENERALIZATION BOUND OF
PERMUTATION INVARIANT DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We theoretically prove that a permutation invariant property of deep neural networks largely im-
proves its generalization performance. Learning problems with data that are invariant to permuta-
tions are frequently observed in various applications, for example, point cloud data and graph neural
networks. Numerous methodologies have been developed and they achieve great performances,
however, understanding a mechanism of the performance is still a developing problem. In this pa-
per, we derive a theoretical generalization bound for invariant deep neural networks with a ReLU
activation to clarify their mechanism. Consequently, our bound shows that the main term of their
generalization gap is improved by

√
n! where n is a number of permuting coordinates of data. More-

over, we prove that an approximation power of invariant deep neural networks can achieve an optimal
rate, though the networks are restricted to be invariant. To achieve the results, we develop several
new proof techniques such as correspondence with a fundamental domain and a scale-sensitive met-
ric entropy.

1 INTRODUCTION

A learning task with permutation invariant data frequently appears in various situations in data analysis. A typical
example is learning on sets such as a point cloud, namely, the data are given as a set of points and permuting the
points in the data does not change a result of its prediction. Another example is learning with graphs which contain a
huge number of edges and nodes. Such the tasks are very common in various scientific fields (Ntampaka et al., 2016;
Ravanbakhsh et al., 2016; Faber et al., 2016), hence, numerous deep neural networks have been developed to handle
such the data with invariance (Zaheer et al., 2017; Li et al., 2018a; Su et al., 2018; Li et al., 2018b; Yang et al., 2018;
Xu et al., 2018). The succeeding methods show that their networks for invariance can greatly improve the accuracy
with a limited size of networks and data.

An important question with invariant data is to understand a reason for the empirical high accuracy from its theoreti-
cal aspect. Since invariant data are high-dimensional in general, learning theory claims that the high-dimensionality
reduces its generalization performance. However, the methods for invariant data achieve better accuracy, thus it contra-
dicts the theoretical principle. To tackle the question, several theoretical studies (Maron et al. (2019) and Sannai et al.
(2019)) prove a universal approximation property of neural networks for invariant data and guarantee that invariant
deep neural networks have sufficient expressive power. Despite the novel analysis for approximation, a generalization
power of the invariant deep neural networks is left as an open question.

In this paper, we prove a theoretical bound for generalization of invariant deep neural networks. To show an overview
of our result, we provide a simplified version as follows. We consider a supervised-learning problem with m pairs
of observations (Xi, Yi) where Xi are regarded as p-dimensional vectors, and Xi can divided to n coordinates and
each of them have D = p/n dimension. Also, let fSn denote a function by a deep neural network which satisfies an
invariant property, f(x) = f(σ · x) holds for any x ∈ Rn×D where σ is an arbitrary permutation of D-dimensional
coordinates in x. Also, we define Rm(f) = m−1

∑m
i=1 L(Yi, f(Xi)) and R(f) = E[L(Y, f(X))] as an empirical and

expected loss value L(Y, f(X)). Then, we show that following:
Theorem 1 (Informal version of Theorem 2). Let fSn be a function by a deep neural network which takes p-
dimensional inputs and invariant to any permutations of n coordinates. Then, for sufficiently small ε > 0, we obtain

R(fSn) ≤ Rm(fSn) +

√
C

n! mεp
+O(log(1/ε)),

1

with probability at least 1−O(ε). Here, C > 0 is a constant independent of m and n.

As a consequence of Theorem 1, the term the generalization bound is improved by
√
n! by the invariant property. Since

the number of coordinates n is huge in practice, e.g. there are n ≥ 1, 000 points in the point cloud data in Zaheer
et al. (2017) and hence

√
n! ≥ 101,000 holds, we show that the derived generalization bound is largely improved by

invariance. Further, we also derive a rate of approximation of neural networks with invariance (Theorem 4) and its
optimality, thus we show that an invariance property for deep neural networks does not reduce an expressive power.

From a technical aspect, we develop mainly three proof technique to obtain the improved bound in Theorem 1. Firstly,
we introduce a notion of a fundamental domain to handle invariance of functions and evaluate the complexity of the
domain (Lemma 1). Secondly, we show a one-to-one correspondence between a function by invariant deep neural
networks and a function on the fundamental domain (Proposition 2). Thirdly, we develop a scale-sensitive covering
number to control a volume of invariant functions with neural networks (Proposition 5). Based on the techniques, we
can connect a generalization analysis to the invariance of deep neural networks.

We summarize the contributions of this paper as follow:

• We investigate the generalization bound of deep neural networks which are invariant to permutation of n
coordinates, then we show that the bound is improved by

√
n!.

• We derive a rate of approximation of invariant deep neural networks. The result shows that the approximation
rate is optimal.

• We develop several proof techniques to achieve the bound such as a complexity analysis for a fundamental
domain and a scale-sensitive metric entropy.

1.1 NOTATION

For a vector b ∈ RD, its d-th element is denoted by bd. Also, b−d := (b1, ..., bd−1, bd+1, ..., bD) ∈ RD−1 is a vector
without bd. ‖b‖q := (

∑D
j=d b

q
d)

1/q is the q-norm for q ∈ [0,∞]. For a tensor A ∈ RD1×D2 , a (d1, d2)-th element of
A is written as Ad1,d2 . For a function f : Ω → R with a set Ω, ‖f‖Lq := (

∫
Ω
|f(x)|qdx)1/q denotes the Lq-norm

for q ∈ [0,∞]. For a subset Λ ⊂ Ω, f�Λ
denotes the restriction of f to Λ. For an integer z, z! =

∏n
j=1 j denotes a

factorial of z. For a set Ω with a norm ‖ · ‖,N (ε,Ω, ‖ · ‖) := inf{N : ∃{ωj}Nj=1 s.t. ∪Nj=1 {ω : ‖ω− ωj‖ ≤ ε} ⊃ Ω}
is a covering number of Ω with ε > 0. For a set Ω, idΩ or id denotes the identity map on Ω, namely idΩ(x) = x for
any x ∈ Ω. For a subset ∆ ⊂ Rn, int(∆) denotes the set of the inner points of ∆.

2 PROBLEM SETTING

2.1 INVARIANT DEEP NEURAL NETWORK

We define a set of permutation Sn in this paper. Consider x ∈ Rn×D where n be a number of coordinates in x and D
be a dimension of each coordinate. Then, an action σ ∈ Sn on x is defined as

(σ · x)i,d = xσ−1(i),d, i = 1, ..., n, d = 1, ..., D,

here, σ is a permutation of indexes i. Also, we define an invariant property for general functions.
Definition 1 (Sn-Invariant/Equivariant Function). For a set X ⊂ Rn×D, we say that a map f : X → R is

• Sn-invariant (or simply invariant) if f(σ · x) = f(x) for any σ ∈ Sn and any x ∈ X ,

• Sn-equivariant (or simply equivariant) if f(σ · x) = σ · f(x) for any σ ∈ Sn and any x ∈ X .

In this paper, we mainly treat fully connected deep neural networks with a ReLU activation function. The ReLU
activation function is defined by ReLU(x) = max(0, x). Deep neural networks are built by stacking blocks which
consist of a linear map and a ReLU activation. More formally, it is a function Zi : Rdi → Rdi+1 defined by Zi(x) =
ReLU(Wix + bi), where Wi ∈ Rdi+1×di and bi ∈ Rdi+1 for i = 1, ...,H . Here, H is a depth of the deep neural
network and di is a width of the i-th layer. An output of deep neural networks is formulated as

f(x) := ZH ◦ ZH−1 . . . Z2 ◦ Z1(x). (1)

2

Let FDNN be a set of functions by deep neural networks.

We also consider an invariant deep neural network defined as follows:
Definition 2 (Invariant Deep Neural Network). f ∈ FDNN is a function by a Sn-invariant deep neural network, if f
is a Sn-invariant function. Let FSnDNN ⊂ FDNN be a set of functions by Sn-invariant deep neural networks.

The definition is a general notion and it contains several explicit invariant deep neural networks. We provide several
representative examples as follow.
Example 1 (Deep Sets). Zaheer et al. (2017) develops an architecture for invariant deep neural networks by utilizing
layer-wise equivariance. Their architecture consists of equivariant layers `1, ..., `j , an invariant linear layer h, and a
fully-connected layer f ′. For each `i.i = 1, .., j, its parameter matrix is defined as

Wi = λI + γ(11>), λ, γ ∈ R,1 = [1, ..., 1]>,

which makes `i as a layer-wise equivariant function. They show that f = f ′ ◦ h ◦ `j ◦ · · · `1 is an invariant function.
Its illustration is provided in Figure 1.
Example 2 (Invariant Feature Extraction). Let e is a mapping for invariant feature extraction which will be explicitly
constructed by deep neural networks in Proposition 2. Then, a function f = g ◦ e where g is a function by deep neural
networks with a restricted domain. Figure 2 provides its image.

2.2 LEARNING PROBLEM WITH INVARIANT NETWORK

Problem formulation: Let I = [0, 1]n×D be an input space with dimension p = dD. Let Y be an output space.
Also, let L : Y × Y → R be a loss function which satisfies supy,y′∈Y |L(y, y′)| ≤ 1 and 1-Lipschitz continuous.
Let P ∗(x, y) be the true unknown distribution on I × Y , and for f : I → Y , R(f) = E(X,Y)∼P∗ [L(f∗(X), Y)] be
the expected risk of f . Also, suppose we observe a training dataset Dm := {(X1, Y1), ..., (Xm, Ym)} of size m. Let
Rm(f) := m−1

∑m
i=1 L(f(Xi), Yi) be the empirical risk of f . A goal of this study to investigate the expected loss

R(f) with a function f from a set of functions as a hypothesis set.

Learning with Invariant Network: We consider learning with a hypothesis set by invariant deep networks. Namely,
we fix an architecture of deep neural networks preserves fSn ∈ FSnDNN to be an invariant function. Then, we evaluate
the expected loss R(fSn).

Figure 1: The invariant deep neural network by DeepSets (Zaheer
et al. (2017)). ` is an equivariant layer, h is a linear invariant
layer, and f ′ is a function by networks.

Figure 2: The invariant deep neural
network by a fully connected layer g
and a feature extraction layer e.

3 MAIN RESULT

3.1 COMPLEXITY-CONTROL BOUND

We show that the learning procedure with invariance can largely improve the generalization performance of a deep
neural network by proving the improved bound for the generalization error of f̂ with invariance. We firstly derive a
Complexity-dependent bound which holds with an arbitrary true distribution. The bound depends on a Complexity
control of FSnDNN and the Rademacher complexity.

Theorem 2 (Main Result 1). Let FSnDNN be a set of functions by Sn-invariant deep neural networks which are C∆-
Lipschitz continuous and bounded by B > 0. Then, for any fSn ∈ FSnDNN and for any ε > 0, the following inequality

3

holds with probability at least 1− 2C∆ε:

R(fSn) ≤ Rm(fSn) +

√
2c1

n! mεp︸ ︷︷ ︸
=:I1

+

√
2 log(2c2B/ε) + 2 log(1/2ε)

m︸ ︷︷ ︸
=:I2

,

where c1, c2 > 0 are constants which are independent of n and m.

Significantly, the main term I1 in Theorem 2 is improved by
√
n! in the denominator. Note that we regard I1 as the

main term since I2 is a logarithmic order in ε. As n is huge in practice, e.g. a number of points in point cloud data,
the term n! largely improves the tightness of the bound.

Proof of Theorem 2 utilizes a complexity control for FSnDNN . As a preparation, we apply the well-known bound (e.g.
a slightly modified version of Theorem 10.1 in Anthony & Bartlett (2009)) and obtain

R(fSn) ≤ Rm(fSn) +

√
2 log 2N (ε,FSnDNN , ‖ · ‖L∞) + 2 log(1/2ε)

m
, (2)

which describes generalization of fSn by the covering number log 2N (ε,FSnDNN , ‖ · ‖L∞). Then, we bound the
covering number by the following Theorem which plays a key role to achieve the main result in Theorem 2. Proof of
Theorem 3 depends on several newly developed results presented in Section 4.

Theorem 3 (Complexity Bound). Let FSnDNN be defined in section 2. Then, with an existing constant c > 0, we obtain

logN (2C∆δ,FSnDNN , ‖ · ‖L∞(I)) ≤
c

n! δp
+ log

(
2cB

δ

)
.

Remark 1 (Bound without invariance). The bound is a general version of an ordinary learning f ∈ FDNN which
does not have invariance. Rigorously, suppose FDNN is a set of functions which are C∆-Lipschitz continuous and
bounded by B > 0. Then, for any f ∈ FDNN and ε > 0, the inequality in Theorem 2 holds with n = 1.
Remark 2 (Bound for covering numbers). We mention that there is another way to bound the covering number of
FSnDNN by a number of parameters (e.g. Theorem 14.5 in Anthony & Bartlett (2009)). Such the bound has a fast order
since its order is a logarithm of ε. However, the bound has a linear order in a number of parameters, hence it easily
increases with large-scale deep neural networks which possess a huge number of nodes and edges. Moreover, such the
bound is independent of the volume of the domain, hence we cannot obtain the scale-sensitive covering number. To
avoid the problem, we employ another strategy in Theorem 3.

3.2 APPROXIMATION-CONTROL BOUND

We investigate the approximation power of invariant deep neural networks to clarify how they can achieve a small
empirical loss. Although we restrict the expressive power of deep neural networks in the learning procedure, we prove
that our networks have sufficient power of approximation. To the aim, we define the Hölder space which is a class of
smooth functions, then investigate the approximation power of invariant deep neural networks for the space.
Definition 3 (Hölder space). Let α > 0 be a degree of smoothness. For f : I → R, the Hölder norm is defined as

‖f‖Hα := max
β:|β|<bαc

sup
x∈I
|∂βf(x)|+ max

β=bαc
sup

x,x′∈I,x6=x′

|∂βf(x)− ∂βf(x′)|
‖x− x′‖α−bαc∞

.

Then, the Hölder space on I is defined as

Hα =
{
f ∈ Cbαc

∣∣∣‖f‖Hα <∞} .
Also,HαB = {f ∈ Hα | ‖f‖Hα ≤ B} denotes the B-radius closed ball inHα.

Intuitively,Hα is a set of bounded functions which are α-times differentiable. The notion of the Hölder space is often
utilized in characterizing the optimal functions f∗ (e.g. see Schmidt-Hieber (2017)). We achieve the more detailed
bound for the generalization error with assuming f∗ ∈ HαB .

4

Theorem 4 (Main Theorem 2). For any ε > 0, supposeFSnDNN has at mostO(log(1/ε))layers andO(ε−p/α log(1/ε))

non-zero parameters. Then, for any invariant f∗ ∈ HαB , there is fSn ∈ FSnDNN such that

‖fSn − f∗‖L∞(I) ≤ ε.

The result in Theorem 4 clarifies the approximation power of deep networks, and also show that a sufficient number of
parameters (nodes) makes the generalization error converge to zero. Also, the theorem shows that the approximation
error decreases as the number of parameters increase with the rate −p/α up to log factors. The rate is the optimal
rate by Yarotsky (2017) without invariance. Hence, we prove that the deep networks with invariance can achieve the
optimal approximation rate even with the invariance restriction.

4 PROOF AND ITS STRATEGY

4.1 FUNDAMENTAL DOMAIN AND ITS CORRESPONDENCE

To handle the invariance property in our proof, we provide a key notion to show the main result.

Definition 4 (Fundamental Domain). Let G be a group acting on a set J . ∆ ⊂ J is said to be a fundamental domain
of J with respect to the action of G if ∆ satisfy the following properties;

• J = ∪σ∈G {σ · x | x ∈ ∆}.

• σ · int(∆) ∩ τ · int(∆) = φ for any σ 6= τ ∈ G.

In our case, we can take a fundamental domain explicitly.

Proposition 1. Put I = [0, 1]n×D. Then

∆ := {x ∈ I | x1,1 ≥ x2,1 ≥ · · · ≥ xn,1}

is a fundamental domain of I with respect to the permutation action of Sn defined in Section 2.1.

Figure 3 provides ∆ with n = 3 and D = 1. Intuitively, ∆ is an extracted feature space for an invariant function. Any
element of I corresponds to an element of ∆ with an existing action in Sn, namely, we can obtain

I = ∪σ∈Sn {σ · x | x ∈ ∆} .

Figure 3: A fundamental domain
∆ (the green cone) in I (the blue
cube) with n = 3 and D = 1.

Figure 4: The Sort layer (red) which converts g ∈ F∆
DNN to f =

Λ−1(g) ∈ FSnDNN with n = D = 3. The Sort layer exchanges the
first elements of each xi ∈ RD.

Proof of Proposition 1. We confirm the first property of the fundamental domain, namely I = ∪σ∈G {σ · x | x ∈ ∆}.
Take x ∈ I . There is a σ−1 ∈ Sn such that xσ(1),1 ≥ xσ(2),1 ≥ · · · ≥ xσ(n),1. Then by the definition of ∆,
σ−1 · x ∈ ∆. Hence x ∈ σ ·∆ = {σ · x | x ∈ ∆} . This implies the first property.
We confirm the second property. We have int(∆) = {x ∈ I | x1,1 > x2,1 > · · · > xn,1} By the definition of our
action, σ · int(∆) =

{
x ∈ I | xσ−1(1),1 > xσ−1(2),1 > · · · > xσ−1(n),1

}
. Hence σ · int(∆) ∩ τ · int(∆) = φ for any

σ 6= τ ∈ G.

5

We provide two important properties of ∆. Firstly, we start with showing that there is a one-to-one correspondence
between deep neural networks on ∆ and invariant deep neural networks on I . To the aim, we consider a set of functions
on ∆ by (not necessarily invariant) deep neural networks;

F∆
DNN = {g : ∆→ R | g has the form (1)}.

Then, we obtain the following result:

Proposition 2. There exists a bijection map Λ : FSnDNN → F∆
DNN . Further, for any f ∈ FSnDNN , Λ(f) is obtained by

the restriction of f , namely Λ(f) = f�∆
, and for any g ∈ F∆

DNN , Λ−1(g) can be obtained by adding sorting layers
appeared in the proof.

Figure 4 provides an image for Λ−1(g) for g ∈ F∆
DNN . For preparation for proof of Proposition 2, we define an explicit

invariant deep neural network. For a vector z ∈ RN for some N , let max(j)(z1, . . . , zN) (resp. min(j)(z1, . . . , zN))
be a function which returns the j-th largest (resp. smallest) element of {z1, . . . , zN}. We can easily see that these
functions are a Sn-invariant function. More strongly, we have the following proposition.

Proposition 3. max(j)(z1, . . . , zN) and min(j)(z1, . . . , zN) are represented by an existing deep neural networks with
an ReLU activation for any j = 1, ..., N .

Proof of Proposition 3. Firstly, since

max(z1, z1) = max(z1 − z1, 0) + z2, and min(z1, z2) = −max(z1 − z2, 0) + z1

hold, we see the case of j = 1, N = 2. By repeating max(z1, z2), we construct max(1)(z1, . . . , zN) and
min(1)(z1, . . . , zN). Namely, we prove the claim in the case of j = 1 and arbitrary N . At first, we assume N is
even without loss of generality, then we divide the set {z1, ...zN} into sets of pairs {(z1, z2), ...(zN−1, zN)}. Then, by
taking a max operation for each of the pairs, we have {y1 = max(z1, z2), ..., yN/2 = max(zN−1, zN)} . We repeat
this process to terminate. Then we have max(1)(z1, . . . , zN) it is represented by an existing deep neural network.
Similarly, we have min(1)(z1, . . . , zN). Finally, we prove the claim on j = 2, ..., N by induction. Assume that for
any N and ` < j, max(`)(z1, . . . , zN) is represented by a deep neural network. We construct max(j)(z1, . . . , zN) as
follows:

max(j−1)(z−`) =

{
max(j−1)(z1, . . . , zN) (if z` ≤ max(j)(z1, . . . , zN))

max(j)(z1, . . . , zN) (otherwise)

Hence max(j)(z1, . . . , zN) = max({max(j−1)(z−`) | ` = 1, ..., N}) holds. By inductive hypothesis, the right hand
side is represented by a deep neural network.

Proof of Proposition 2. We first define sorting layers which is an Sn-invariant network mapping from I to ∆.When
D = 1, put Sort1(x1,1, . . . , xn,1) = (max(1)(x1,1, . . . , xn,1), . . . ,max(n)(x1,1, . . . , xn,1)). Then by Proposition
3, Sort1(x1,1, . . . , xn,1) = Sort1(x1,1, . . . , xn,1) is also a function by an Sn-invariant deep neural network and
Sort(x1,1, . . . , xn,1) is the function from I to ∆. When D > 1, we first consider Sort1(x1,1, . . . , xn,1). Since
Sort1(x1,1, . . . , xn,1) gives a permutation on (x1,1, . . . , xn,1), for each (x1,1, . . . , xn,1), we can find σ ∈ Sn such
that

Sort1(x1,1, . . . , xn,1) = (Sort1(x1,1, . . . , xn,1)1, ...,Sort1(x1,1, . . . , xn,1)n) = (xσ(1),1, . . . , xσ(n),1).

Then we define

Sort(x) =


Sort1(x1,1, . . . , xn,1)1 · · · xσ(1),d · · · xσ(1),D

...
. . .

...
Sort1(x1,1, . . . , xn,1)i xσ(i),d xσ(i),D

...
. . .

...
Sort1(x1,1, . . . , xn,1)n · · · xσ(n),d · · · xσ(n),D

 .

By the construction and the definition of ∆, Sort(x) is the function to ∆. We confirm Sort(x) is Sn-invariant. Take
arbitrary τ ∈ Sn and fix x and σ ∈ Sn as above. Put τ · x = y. We show Sort(y) = Sort(x). Since Sort1

6

is an Sn-invariant function, we see Sort1(y1,1, . . . , yn,1) = Sort1(τ(x1,1, . . . , xn,1)) = (xσ(1),1, . . . , xσ(n),1) =
(yσ(τ−1(1)),1, . . . , yσ(τ−1(n)),1). Then we have

Sort(y) =


Sort1(y1,1, . . . , yn,1)1 · · · yσ(τ−1(1)),d · · · yσ(τ−1(1)),D

...
. . .

...
Sort1(y1,1, . . . , yn,1)i yσ(τ−1(i)),d yσ(τ−1(i)),D

...
. . .

...
Sort1(y1,1, . . . , yn,1)n · · · yσ(τ−1(n)),d · · · yσ(τ−1(n)),D



=


Sort1(x1,1, . . . , xn,1)1 · · · xσ(1),d · · · xσ(1),D

...
. . .

...
Sort1(x1,1, . . . , xn,1)i xσ(i),d xσ(i),D

...
. . .

...
Sort1(x1,1, . . . , xn,1)n · · · xσ(n),d · · · xσ(n),D


= Sort(x),

where the second equality follows from τ−1 · y = x.
By using this function, we define the inverse of Λ. For any function f by a deep neural network on ∆, we define
Φ(f) = f ◦ Sort. We confirm Λ ◦ Φ = idF∆

and Φ ◦ Λ = idFSn . Since we have

Λ ◦ Φ(f) = Λ ◦ f ◦ Sort = (f ◦ Sort)�∆ = f,

Λ ◦ Φ is equal to idF∆
. Similarly,

Φ ◦ Λ(f) = Φ ◦ f�∆
= f�∆

◦ Sort = f,

where the last equality follows from the Sn-invariance of f . Hence, we have the desired result.

The second key property of ∆ is that we can measure its size. Since ∆ is included in I , we can naturally measure its
volume by the Euclidean metric. By utilizing the property, we evaluate its volume by a covering number of ∆ by the
following lemma:

Lemma 1 (Covering bound for ∆). There is a constant C such that for enough small ε > 0, we obtain

N (ε,∆, ‖ · ‖∞) ≤ C

n! εnD
.

Proof of Lemma 1. Let C(I) be a set of ε-cubes which is a subdivision of I . We can easily see that C(I) attains the min-
imum value of the number of ε-cubes covering of I . Since σ ·∆ is

{
x ∈ I | xσ−1(1),1 ≥ xσ−1(2),1 ≥ · · · ≥ xσ−1(n),1

}
,

any boundary of σ ·∆ is of the form
{
x ∈ I | xσ−1(1),1 ≥ · · ·xσ−1(i),1 = xσ−1(i+1),1 ≥ · · · ≥ xσ−1(n),1

}
.

Fix σ and i. Consider the projection π : Rn×D → Rn−1×D which corresponds to xσ(i),1. π induces the map
π̃ : C(I) → C(π(I)). Let C(I)diag denote the set of cubes which intersect

{
x ∈ I | xσ−1(i),1 = xσ−1(i+1),1

}
. Then

we can see that π̃�C(I)diag is injective as follows. Let us denote a = (as,r) ∈ RnD the center of an ε-cube. Assume
that we have two cubes whose centers are a and a′. If the images by π̃ are equal. We have π̃(a) = π̃(a′) and hence
as,r = a′s,r holds for (s, r) 6= (σ−1(i), 1). By our construction of ε-cubes, a cube intersect C(I)diag if and only if its
center is on C(I)diag . Therefore, we have aσ−1(i),1 = aσ−1(i+1),1 and a′σ−1(i),1 = a′σ−1(i+1),1. Hence as,r = a′s,r
holds for any (s, r) and two cubes are equal and π̃�C(I)diag is injective.

Next, let C′(I) be the set of ε-cubes in C(I) which intersect a boundary of σ ·∆. We see that the cardinality of C′(I)
is bounded by Eε−n(D−1) for some E. Since the number of components of the boundaries is finite, we prove the
claim for a component of the boundary. Since p̃�C(I)diag is injective, we see the number of cubes which intersect the
component is bounded by the number of ε-cubes in C(p(I)), hence ε−n(D−1). Put C(I)inn = C(I) − C′(I). Then
each cubes in C(I)inn does not intersect the boundaries of σ · ∆. Hence, there is a σ such that the number of cubes

7

C(I)inn which are contained in σ ·∆ is lower than |C(I)inn|n! . By adding the cubes which cover the boundaries of σ ·∆,
we have the covering of σ ·∆. Furthermore, by pulling back by σ , we have the covering of ∆. Hence, we have

N (ε,∆, ‖ · ‖∞) ≤ |C(I)| − Eε−n(D−1)

n!
+ E′ε−n(D−1).

Since |C(I)| = ε−nD, we have the desired result.

4.2 PROOF FOR THE COMPLEXITY-CONTROL BOUND (THEOREM 2)

We utilize the results of ∆ and prove Theorem 2. The proof mainly contains the following two-step: i) show that the
covering number of FSnDNN is equal to that of F∆

DNN , and ii) bound the covering number of F∆
DNN . The first step is

provided by the following proposition.
Proposition 4. For any ε > 0, we obtain

logN (ε,FSnDNN , ‖ · ‖L∞(I)) = logN (ε,F∆
DNN , ‖ · ‖L∞(I)).

The result shows that the functional set by deep neural networks on I with invariance is well described by a set
of functions on ∆ without invariance. The key point of this result is that we can describe the effect of invariance
restriction on FSnDNN by the size of F∆

DNN .

Proof of Proposition 4. For any f, f ′ ∈ FSnDNN , there exists f�∆
, f ′�∆

∈ F∆ by Proposition 2. Then, we can obtain

‖f − f ′‖L∞(I) = ‖f�∆
◦ g − f ′�∆

◦ g‖L∞(I) ≤ ‖f�∆
− f ′�∆

‖L∞(∆).

Based on the result, we can bound logN (ε,FSnDNN , ‖·‖L∞(I)) by logN (ε,F∆, ‖·‖L∞(∆)). Suppose logN (ε,F∆, ‖·
‖L∞(∆)) =: K is finite. Then, there exist f�∆1, ..., f�∆K , and for any f�∆ ∈ F∆, there exists j ∈ {1, ...,K} such as
‖f�∆

− f�∆j‖L∞(∆) ≤ ε. Here, for any f ∈ FSnDNN , there exists fj := f�∆j ◦ g ∈ F
Sn
DNN with corresponding j and it

satisfies ‖f − fj‖L∞(I) ≤ ‖f�∆
− f�∆j‖L∞(∆) ≤ ε. Then, we obtain the statement.

The second step of this section is shown by the following proposition:
Proposition 5. With an existing constant c > 0 and C in Lemma 1, for any δ > 0, we obtain

logN (2C∆δ,F∆
DNN , ‖ · ‖L∞(I)) ≤

C

n! δp
+ log

(
2cB

δ

)
.

Importantly, the result shows that the main term of the covering number is improved by n!, and it is a key factor to
improve the overall generalization error.

Proof of Poposition 5. We bound a covering number of a set of C∆-Lipschitz continuous functions on ∆. Let
{x1, ..., xK} ⊂ ∆ by a set of centers of δ-covering set for ∆. By Lemma 1, we set K = C/(n! δp) with δ with
a parameter δ > 0, where C > 0 is a constant.

We will define a set of vectors to bound the covering number. We define a discretization operator A : F∆ → RK as

Af = (f(x1)/δ, ..., f(xK)/δ)>.

Let Bδ(x) be a ball with radius δ in terms of the ‖ · ‖∞-norm. For two functions f, f ′ ∈ F∆ such as Af = Af ′, we
obtain

‖f − f ′‖L∞(I) = max
k=1,...,K

sup
x∈Bδ(xk)

|f(x)− f ′(x)|

≤ max
k=1,...,K

sup
x∈Bδ(xk)

|f(x)− f(xk)|+ |f ′(xk)− f(xk)| ≤ 2C∆δ,

where the second inequality follows f(xk) = f ′(xk) for all k = 1, ...,K and the last inequality follows the C∆-
Lipschitz continuity of f and f ′. By the relation, we can claim that F∆ is covered by 2C∆δ balls whose center is

8

characterized by a vector b ∈ RK such as b = Af for f ∈ F∆. Namely, N (2C∆δ,F∆, ‖ · ‖L∞(I)) is bounded by a
number of possible b.

Then, we construct an explicit set of b to cover F∆. Without loss of generality, assume that x1, ..., xK are ordered
satisfies such as ‖xk − xk+1‖∞ ≤ 2δ for k = 1, ...,K − 1. By the definition, f ∈ F∆ satisfies ‖f‖L∞(∆) ≤ B.
b1 = f(x1) can take values in [−B/δ,B/δ]. For b2 = f(x2), since ‖x1 − x2‖∞ ≤ 2δ and hence |f(x1)− f(x2)| ≤
2C∆δ, a possible value for b2 is included in [(b1 − 2δ)/δ, (b1 + 2δ)/δ]. Hence, b2 can take a value from an interval
with length 4 given b1. Recursively, given bk for k = 1, ...,K − 1, bk+1 can take a value in an interval with length 4.

Then, we consider a combination of the possible b. Simply, we obtain the number of vectors is (2cB/δ) · (4c)K−1

with a universal constant c ≥ 1. Then, we obtain that

logN (2C∆δ,F∆, ‖ · ‖L∞) ≤ (K − 1) log 4c+ log (2cB/δ) .

Then, we specify K which describe a size of ∆ through the set of covering centers.

Proof of Theorem 2 and 3. For Theorem 3, we combine the result in Proposition 4 and 5. For Theorem 2, we substitute
the result in Theorem 3 into the well-known result (2), then obtain the statement.

4.3 PROOF FOR APPROXIMATION-CONTROL BOUND (THEOREM 4)

Proof of the approximation power also depends on the correspondence mapping Λ in Proposition 2. Although Propo-
sition 2 claims that the correspondence holds for a function by deep neural networks, the similar discussion in the
proof shows that it holds for a general invariant function.

Proof of Theorem 4. Let f∗ be an invariant function on I . Then by Proposition 2, we have a function f on ∆ such
that f∗ = f ◦ Sort holds. By Theorem 5 in Schmidt-Hieber (2017), for enough big N , there exists a constant c and a
neural network g with at mostO(log(N)) layers and at mostO(N log(N)) nonzero weights such that ‖f−g‖L∞(I) ≤
cN−α/p. We have

‖f∗ − g ◦ Sort‖L∞(I) = ‖f ◦ Sort− g ◦ Sort‖L∞(I) = ‖f − g‖L∞(∆) ≤ ‖f − g‖L∞(I) ≤ cN−α/p

g ◦ Sort is a neural network with at most O(log(N)) + K1 layers and at most O(N log(N)) + K2 nonzero weights,
where K1 and K2 are the number of layers and the number of nonzero weights of the neural network expressing Sort
respectively. By replacing N−1 with ε, we have the desired inequality.

5 CONCLUSION AND FURTHER DISCUSSION

In this paper, we develop a generalization theory to clarify the higher precision of the invariant deep neural network.
Our generalization bound shows that it gets much tight by the invariant property, rigorously, the bound is improved
by
√
n! where n is a number of permutation-invariant coordinates. We further prove that the invariant deep neural

network with a ReLU activation can achieve the optimal approximation rate for smooth functions. By the results, our
theory shows a great advantage of deep neural networks.

As an improvement of our result, it is an open question to connect the invariant property and the normalized entropy
control for deep neural networks (e.g. the work by Bartlett et al. (2017)). To describe the practical high accuracy of
deep learning, such as the normalized entropy has been extensively developed. We guess that our theory is valid with
the normalized entropy and more suitable to analyze the performance of invariant deep neural networks.

REFERENCES

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. cambridge university press,
2009.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural networks. In
Advances in Neural Information Processing Systems, pp. 6240–6249, 2017.

Felix A Faber, Alexander Lindmaa, O Anatole Von Lilienfeld, and Rickard Armiento. Machine learning energies of 2
million elpasolite (a b c 2 d 6) crystals. Physical review letters, 117(13):135502, 2016.

9

Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 9397–9406, 2018a.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In Advances in Neural Information Processing Systems, pp. 820–830, 2018b.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant networks. arXiv
preprint arXiv:1901.09342, 2019.

Michelle Ntampaka, Hy Trac, Dougal J Sutherland, Sebastian Fromenteau, Barnabás Póczos, and Jeff Schneider.
Dynamical mass measurements of contaminated galaxy clusters using machine learning. The Astrophysical Journal,
831(2):135, 2016.

Siamak Ravanbakhsh, Junier B Oliva, Sebastian Fromenteau, Layne Price, Shirley Ho, Jeff G Schneider, and Barnabás
Póczos. Estimating cosmological parameters from the dark matter distribution. In ICML, pp. 2407–2416, 2016.

Akiyoshi Sannai, Yuuki Takai, and Matthieu Cordonnier. Universal approximations of permutation invari-
ant/equivariant functions by deep neural networks. arXiv preprint arXiv:1903.01939, 2019.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation function. arXiv
preprint arXiv:1708.06633, 2017.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2530–2539, 2018.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning on point sets with parame-
terized convolutional filters. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 87–102,
2018.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep grid deforma-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–215, 2018.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–114, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and Alexander J
Smola. Deep sets. In Advances in neural information processing systems, pp. 3391–3401, 2017.

10

