
Under review as a conference paper at ICLR 2020

DETECTING CHANGE IN SEASONAL PATTERN VIA AU-
TOENCODER AND TEMPORAL REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Change-point detection problem consists of discovering abrupt property changes
in the generation process of time-series. Most state-of-the-art models are opti-
mizing the power of a kernel two-sample test, with only a few assumptions on
the distribution of the data. Unfortunately, because they presume the samples are
distributed i.i.d., they are not able to use information about the seasonality of a
time-series. In this paper, we present a novel approach - ATR-CSPD allowing the
detection of changes in the seasonal pattern of a time-series. Our method uses an
autoencoder together with a temporal regularization, to learn the pattern of each
seasonal cycle. Using low dimensional representation of the seasonal patterns, it
is possible to accurately and efficiently estimate the existence of a change point
using a clustering algorithm. Through experiments on artificial and real-world
data sets, we demonstrate the usefulness of the proposed method for several ap-
plications.

1 INTRODUCTION

Time series data are sequences of measurements over time describing the behavior of systems. Time
series analysis has become increasingly important in monitoring systems health and performance.
As the system behavior changes over time due to external events and/or internal modifications, the
problem of identifying the locations of these changes, referred to as Change Point Detection (CPD)
has quickly drawn researchers attention. The CPD problem has been widely researched during the
last three decades (4; 18; 13; 6; 16; 9) and it has been applied to several fields such as financial
market analysis, medicine, climate science as well as system monitoring. The first methods found
in the literature for CPD compared probability distributions between two consecutive intervals in a
time-series, and alarmed if the difference became significant. Among them we find the cumulative
sum algorithm (4) or the change finder for auto-regressive processes (18). Another line of research
focuses on subspace identification (12), where the time series is modeled using a linear state-space
and a change is identified using the model parameters.

Since all these methods make strong assumptions on the distributions, a need arises for more generic
solutions and non parametric algorithms, such as direct density estimation methods. Unfortunately,
these methods suffer from the curse of dimensionality (17) and are not applicable to real life prob-
lems. To overcome this challenge, one possible solution is to estimate the ratio of densities between
two successive window without computing the densities themselves. This is achieved by going
through the estimation of a probability divergence metric such as Kullback-Leibler in (16) or the
Person divergence (13). Such methods proved to be quite successful. Another line of research fo-
cuses on Kernel two sample test (8), where the kernel trick is used to evaluate mean discrepancy of
two samples in a Reproducing Kernel Hilbert Space. For example, Harchaoui et al. (10) introduced
a test statistic using the maximum kernel fisher discriminant ratio. More recently, Chang et al. (6)
proposed a way to learn an optimal kernel representation for CPD by using an auxiliary generative
model.

Nonetheless, although more general, these models still assume that the process is time independent.
However, very often, a time-series follows a seasonal behavior. Seasonality is defined as the ten-
dency of a time-series to exhibit behavior that repeats itself every fixed period of time. The term
season is used to represent the period of time before behavior begins to repeat itself. Detecting
change in the seasonal pattern of a time-series is critical for many applications such as service mon-

1

Under review as a conference paper at ICLR 2020

itoring or climate change detection (5; 15). In some cases, it requires a totally different approach
than regular CPD solutions. For example, Figure 1 shows the CPU utilization metric values recorded
over a period of six days for some server machine. An event occurs every day at 10AM, representing
some background process that is important for the system. A forecasting system should adapt its
predictions to take into consideration this event. If for some reason, this process was moved to 4PM,
the forecasting system is expected to detect this change and adjust the forecast values accordingly.
Some information about the location of the peak in each period has to be taken into account in order
to detect this kind of change.

Figure 1: Example of change in process execution. On the first four days (blue section), the process
is running at 10AM. During the two last days (orange section), it ran at 4PM.

The regular algorithms presented in this section would fail to detect such kind of change points.
Indeed: (a) Existing parametric models for CPD compare the distribution between two windows by
looking at some statistics. Here, we will not observe a persistent statistical change, as the spike still
occurs. (b) Kernel based methods assume that the samples are generated i.i.d (10; 13; 6). Hence,
they will consider every seasonal spike as anomaly instead of including them to the model.

In this paper, we introduce a CPD variation for seasonal time series. The issue of seasonal CPD has
also been addressed by Lund et al. (14) where they developed a test for periodic and auto correlated
time series. However, this test is based on predefined statistics and focuses on median (level) change
of the metric.

We present ATR-CSPD, a method which uses an Autencoder with Temporal Regularization for
detecting Changes in Seasonal Pattern. Our contributions are the following:

• In section 2, we introduce a variation of the Change Point Detection (CPD) problem called
Change in Seasonal Pattern Detection (CSPD) for seasonal time series, and explain why
current solutions to CPD are inefficient at detecting them.

• In section 3 we describe ATR-CSPD, an unsupervised approach that is designed to capture
essential information of each period in a seasonal time series. This is achieved by applying
a time dependant regularization to the model’s loss. We explain then how to use this model
for CPD.

• Sections 4 and 5 present an extensive evaluation on both generated and real-life data. This
benchmark exhibits how ATR-CSPD manages to detect new types of change points, unde-
tected by regular algorithms.

2 PROBLEM FORMULATION

In this section, we start by presenting the simplified formulation of the Change Point Detection
problem. Then we will introduce a more elaborated formulation for the detection of change points
seasonal metrics, and illustrate the difference with an example. The simplified formulation assumes
a single generative function behind the time-series values, and independence between the obser-
vations. Many common methods for detecting change points are applied based on this simplified
version. For example, kernel density methods are based on the analysis of the single underlying
function that generates the observations before and after the change (13; 6).

2

Under review as a conference paper at ICLR 2020

Definition 1. Change Point Detection (CPD):
Given a sequence of 1-dimensional observations {x1, ..., xt, ...xN} for which
∀i, xi ∈ R. A change point t0 is a point such that {x1, ..., xt0−1} are sampled i.i.d from a distribu-
tion F1, and {xt0 , ..., xN} are sampled i.i.d from the distribution F2 where F1 6= F2.

However, for a seasonal time-series the assumption that up to the change-point all samples are i.i.d
does not hold, since seasonality creates dependencies between the samples and their index in the
period (i.e their phase). In the extreme, it might be that each observation within a period is drawn
from an entirely different distribution. However, as we are targeting metrics that are generated by
one origin system, a more plausible assumption would be that each data point xi is generated by a
combination of a generative function of the time series and another generative function of its phase.
For a seasonal time series with period size p, we define each point xi as xjk where j is its period
number, k is its phase number, and i = j · p+ k.
We denote a single seasonal window of observations of size p by wi where wi = xi1, ...xip. We can
represent the original time series by grouping all its seasonal windows: {w1, ..., wt, ...}, wi ∈ Rp.

Denote F as the generative function of the time series, {Sk}p1 as the phase-wise generative functions,
and xjk ∼ Gj , whereGj = Sj⊗F and⊗ can be an additive or a multiplicative factor (7). In additive
seasonal models, the metric is explained by a weighted sum of the seasonal components {Sk}p1 and
the generating function F . In multiplicative model, the sum is replaced by a multiplication. In our
analysis and results we don’t differentiate the two.
Definition 2. Change in Seasonal Pattern Detection (CSPD):
A change point in a seasonal pattern is a period number j0 such that ∀(k, j < j0), xjk ∼ Gk, and
∃k, xj0k ∼ G

′

k, where Gk 6= G
′

k.

The difference between the two formulations can be demonstrated by the example displayed in
Figure 1. It is clear that the time-series displayed in the chart represents a system that has altered its
behavior. However, when considering the classical CPD problem formulation, the chart does not
fall under the definition of a time series containing a change point as the overall distribution did
not change. Considering the CSPD formulation, the change of the seasonal distribution component
of both S10AM and S4PM distribution functions are identified as a change point in the time series.
This observation suggests the CSPD is a generalization of the CPD problem. While CPD is centered
around the cumulative values distribution parameters such as median and variance of the time series
values, CSPD also focuses on the shape and proportions between the values observed in each period
cycle.

Remark: Both problems can be extended to multi-dimensional time series and we are only
presenting it in 1-dimension for simplicity.

3 AUTOENCODER WITH TEMPORAL REGULARIZATION

We introduce an algorithm that is able to detect changes in the seasonal pattern of a time-series. We
start by using an autoencoder to capture the main pattern of each period in the time-series. The aim
is to have close encoding (in terms of euclidean distance) for two periods that behaves similar, and
different ones if there is an abrupt change between them. By having such a representation we can
detect if there has been a change point by examining the euclidean distance between two adjacent
encoded periods in the time series.

3.1 THE AUTOENCODER MODEL

Autoencoders are neural networks that attempt to copy its input to its output. It consists of an encoder
function, that maps the input to an encoded version, and a decoder that performs the reconstruction.
Here we are training an autoencoder to reconstruct fix-size windows of a time-series. Let xi ∈ Rd×p,
be the ith window of size p in a d-dimensional time series, fθ1 : Rd×p → Rd×q our encoder function,
gθ2 : Rd×q → Rd×p the decoder function and n the total number of windows. In general autoencoder
model, want to minimize:

min
θ1,θ2

n∑
i=1

||xi − gθ2(fθ1(xi))||2 + λ(||θ1||2 + ||θ2||2) (1)

3

Under review as a conference paper at ICLR 2020

θ1 and θ2 are a set of parameters that can be learn by gradient descent using back-propagation and
λ ∈ R allows us to control the L2-norm of θ1 and θ2.

In ATR-CSPD a regularization term is added to this loss function, which will contribute to the
detection of change points.

3.2 TEMPORAL REGULARIZATION

In order to encourage the network to generate similar low-dimensional representations, we introduce
a new term in equation (1). The idea is to penalize the network for a difference between the encoding
of two consecutive periods. The resulting loss function is given in (2).

min
θ1,θ2

n∑
i=1

||xi − gθ2(fθ1(xi))||2 + λ(||θ1||2 + ||θ2||2) + γ

n−1∑
i=1

||hi+1 − hi||1 (2)

We refer to the last term as temporal regularization as it applies to neighbours period in the time-
series. Here γ ∈ R allows us to control the strength of this regularization and hi = fθ1(xi).

To understand its effect we take the following examples. Figure 2a shows a one-dimensional, weekly
seasonal, time-series. On it we run two autoencoder models, the first one optimizing equation (1)
and the second one equation (2). We set p = 288 meaning that we consider the period as daily (the
metric is recorded every 5 minutes), and expect to observe changes in the weekends. The additional
parameters are set to λ = 0.00005, γ = 0.001 and q = 18. We observe that, although the regular
autoencoder doesn’t get rid of the major anomalies in the data (Figure 2b), the temporal regularized
model creates a generic pattern for the weekdays and for the weekends (Figure 2c). According to
this result, we can infer that the low dimensional representations are similar within the weekdays and
within the days of the weekends, and we can use clustering to identify breakpoints. In Appendix C,
we show the results of a Principal Components Analysis (PCA) applied to the encodings generated
by both algorithms, which confirms this hypothesis.

(a) Raw time-series (b) Regular autoencoder (Eq.1) (c) With regularization (Eq.2)

Figure 2: Given the time-series (2a), we run a regular autoencoder model (2b) and a temporal
regularized version (2c). Even if it drops some anomalies, the regular autoencoder does not get
rid of the minor differences between different days. However, using temporal regularization, the
patterns for the week days (blue and green sections) are very similar, as well as the one for the
weekends (orange and red).

3.3 LOCATING THE CHANGE POINTS

Once every window is mapped to an embedding in a reduced space, finding change points becomes
much easier. We aim to find groups of similar windows, based on their location in the space. A
change points will be detected if two consecutive points do not end up in the same partition.

To do that we choose to use the well known k-means clustering algorithm (11). In order to find
the best number of clusters, and thus the number of change points, we use the silhouette score. It
compares the mean pairwise distance of points in the same cluster (a) with the mean distance of
each points to the nearest cluster (b): s = b−a

max(a,b)

We run k-means iteratively on candidates number of change points, and select the one with the best
silhouette score. If the received score is larger than a specified threshold (which is a hyperparameter
of the model), we select the resulting partition, otherwise we consider that there were no changes.

4

Under review as a conference paper at ICLR 2020

4 EXPERIMENTS

In order to illustrate the difference between regular CPD algorithms and ATR-CSPD, we start by
generating data containing different types of seasonal or non seasonal change points. Then we run
some experiments on several real-life seasonal data sets. We present the results in the Smart meters
in London (3) data set, the NYC taxi data set (2) and on time-series taken from Azure monitoring.
In the experiments, we assume that for seasonal time-series the length of the period is known (the
inference of the season is outside the scope of this article) .

4.1 NETWORK ARCHITECTURE

In all the experiments we use a similar network architecture. The encoder function fθ1 is a 3-layer
feed-forward neural network. Each layer consists of a linear function and a hyperbolic tangent
function. Equation (3) shows how the layer output z is computed from its input x. The decoder is a
2-layer neural network, with a similar activation function.

y =Wx+ b, z =
ey − e−y

ey + e−y
(3)

The shape of W in the layers determines whether it increases, decreases or leaves unchanged the
dimension of the output. In ATR-CSPD, we reduce the dimension during the encoding phase and
increase it back when decoding. This way, only the main information for the reconstruction will be
stored in the encoding.

The initial window is always of the size of one period. For example if we have a daily seasonality
and the data is recorded every 30 minutes, we will have a window size of 48. Then it is divided
successively by 4, 2 and again 2 in the encoding phase, and multiplied by 2 and 8 in the decoding
layers. The architecture is displayed in Appendix B.

Depending on the experiment, we use a learning rate that ranges from 0.005 to 0.05. The value of
the parameter λ in the loss function (2) is set to 0.00005 or 0.000001 and γ varies from 0.001 and
0.00001.

Note that the time-series are first scaled to range between 0 and 1 using min-max scaling.

4.2 EVALUATION ON GENERATED SET

4.2.1 SIMULATED SET WITH CHANGE POINT

For each category of change point, we generate 20 random time-series and keep track of the location
of the change point inserted to the data. For all the seasonal time-series we fix the period length to
288. The first type is regular change points from non seasonal time-series. They can be a change
in the mean, the variance or both on a white Gaussian noise without (category A), and with random
anomalies (category B).
Then we generate time-series with seasonal spikes and white Gaussian noise and search for two
different types of change points: a change in the height of the spike (category C), and a change in
the position of the spike. (category D)
Finally, we consider seasonal time-series that alternate between a quiet state and an active state, with
higher values and higher noise. On them we insert the following kind of change : A change in the
active period height (category E), a change in the quiet period height (category F) and a change in
the active period length (category G). We also generate 120 samples from those categories without
changes in order to evaluate the false detection.

Samples for each category are drawn in Appendix A, along with more details about the implemen-
tation of the generating process.

4.2.2 RESULTS

We compare the results for ATR-CSPD with two non-parametric change point algorithm: KCpE
introduced by Harchaoui and Capp (9), and RDR presented by Liu et al. (13). We choose to use

5

Under review as a conference paper at ICLR 2020

a regular gaussian kernel: K(x, x
′
) = exp(−γ||x − x′ ||2). The bandwidth parameters which are

required for KCpE were set according to the ”median trick” (8). For the RDR model, we follow Li
et al. by adjusting the bandwidth and the regularization parameter at each time step. Finally, we run
KCpE on deseasonalized data. Thus means, that for the seasonal samples, we compute the mean
for each period and remove it from their original values. This is a common procedure for obtaining
stationarity in seasonal time-series. We refer to this model as DS-KCpE.

Each model Fi runs on a time-series xj and returns a set of candidate change points t̂ij . A change
point tj0 in xj is detected by Fj if

t̂ij = 1 and |tj0 − t̂
ij
0 | < 288. (4)

Note that even if every model is able to detect multiple change points on a time-series, our generated
samples all have at most one.
The detection for each category is equal to the number of change points detected divided by the
category size. The false positive rate for Fi is the ratio in time-series without change on which Fi
found at least one CP.

The results are summarized in Table 1:

Category KCpE ATR-CSPD RDR DS-KCpE
A 90% 40% 50% 90%
B 80% 0% 15% 80%
C 0% 100% 20% 0%
D 0% 90% 5% 25%
E 55% 75% 50% 55%
F 100% 95% 80% 100%
G 55% 80% 60% 55%

False positives 0.8% 0% 2.5% 0.8%

Table 1: Results on generated set

The results clearly show that regular CPD approaches fail to detect most changes in the seasonal
pattern when it comes to a seasonal spike. They also demonstrate that ATR-CSPD performs at least
as well as classical algorithms on detecting change points in seasonal time-series. Indeed, in cate-
gories C and D, the impact of the changes on the kernel mean estimate of the windows is minimal
or nonexistent, which explains why KCpE and RDR hardly detect them. We can notice that using
decomposition of the seasonal component helped DS-KCpE for category D, still the detection is
far from ATR-CSPD. A similar explanation can be derived for the next categories. Except for the
category F, the changes are made only on a minor section of the periods and the statistical impact is
smaller.
It worth noticing that ATR-CSPD performs badly on categories A and B. For a very noisy gaussian
data, since getting a minor decrease in the MSE requires a high increase of the temporal regulariza-
tion term, the autoencoder will not create a change in the encodings and the detection will be bad.
In other cases, where there are too much anomalies on one period, it decides to learn the anomalies
to decrease the MSE which might create a wrong detection of change point.

4.3 LONDON ELECTRICITY DATA SET

The data records the energy consumption of 5567 households in London between November 2011
and February 2014. For each time-series the consumption in kWh/hh is saved every 30 minutes.
We assume that, in general, we will observe a weekly seasonal pattern, with similar weekdays and
different weekends. Of course this assumption is not always true, for example retired people will
probably exhibit a more monotonic week but the results will support this assumption.

First we preprocess each entry in the dataset by aggregating every 30 minutes of the week within the
timeseries. Meaning that for a specific timeseries, we retrieve all the Mondays 8:30 AM and take
the mean. Doing it for every recorded timestamp, gives us a new timeseries representing the average
week for a household.

6

Under review as a conference paper at ICLR 2020

Then we run KCpE and ATR-CSPD on this new set. As RDR is quite slow, and we could not run
it on this set. We say a model correctly detected a change if it detected changes only after Friday
00:00. Any other change is considered as false positive.
In Table 2 we present the precision and recall of the two models using the previous definitions. At a
pretty similar precision level, we can see that our algorithm outperforms the baseline model. Figure
3 displays a few examples of unique detection of ATR-CSPD.

Model Precision Recall

KCpE 68% 47%
ATR-CSPD 67% 54%

Table 2: ATR-CSPD and KCpE on the London electricity set

(a) (b) (c)

Figure 3: Electricity consumption of three households on which ATR-CSPD alone found a differ-
ence on the weekend. In all of them, it is not reflected by a drastic change in the mean. Top charts:
electricity consumption. Bottom charts: the mean consumption of each day. In orange: periods
recognized by ATR-CSPD as different

We can observe that the weekends, in those cases, is characterized by a different shape whether
the level (mean) changes seem to occur at different places in the time-series. In Figure 3a we can
easily distinguish the working hours of the weekdays, whether on the weekend no drop is observed.
Looking at 3b, we notice that a peak of activity occurs every day. On Sundays, however, it happens
at 12:00 PM instead of 4:00 PM days and ATR-CSPD spotted the change. Finally in 3c, we can
observe that our model detected a change in the pattern on Sundays that did not drastically impact
the mean.

4.4 NYC TAXI DATASET

The city of New York provides every month a dataset containing a lot of information about taxi
trips (2). Taken from the kaggle Numenta Anomaly Benchmark repository (1), the current dataset
consists of an aggregation of the total number of taxi passengers into 30 minutes buckets between
July 2014 and February 2015.

The results of ATR-CSPD, compared with the two baseline models introduced in section 4, exhibit
well the differences between regular Change Points and Changes in Seasonal Patterns. Looking at
Figure 4 we, in fact, observe that although KCpE and RDR detects many level change, whether
ATR-CSPD identifies only seasons in which the regular weekly pattern is broken. Looking at the
dates of Figure 4b, one can notice that the weeks match respectively: the 4th of July, Thanksgiving
and Christmas holidays. Being able to identify non-regular seasons and to treat them separately
could drastically benefit to a forecasting algorithm.

4.5 AZURE MONITOR DATA

Azure Dynamic Threshold (DT) Monitor is a service provided in the Azure cloud for monitoring a
vast range of services and usage metrics. For this purpose, DT analyzes the past observable history
of metric values and creates a baseline that describes the normal behavior expected for this metric.
It later uses this baseline as a forecasting method. We used the training stage (analysis of past data)
and run, as before, KCpE, ATR-CSPD and RDR to try to detect change point that happened in

7

Under review as a conference paper at ICLR 2020

(a) KCpE (b) RDR (c) ATR-CSPD

Figure 4: KCpE, RDR and ATR-CSPD on NYC taxi dataset. Although KCpE (a) and RDR (b)
are looking for a level change, ATR-CSPD (c) finds only changes in the pattern. They correspond
to the weeks of the 4th of July, Thanksgiving and Christmas holidays respectively.

those time series. We selected random 958 daily seasonal time series for this purpose. The values
are recorded either every 5-15-30 or 60 minutes, and we use a total record of 10 days.

As there is not any label for this data, we will focus on the differences in the change points detected.
We tune the three model to find change points in 25% of the time-series. Among the changes found
by ATR-CSPD, 40% are not reported by the others. We present in Figure 5 a few examples of
changes only detected by our model.

(a) Change in spike time (b) Appearance of seasonal pattern (c) Change in seasonal pattern

Figure 5: Three types of seasonal changes only detected by ATR-CSPD

In 5a blue spikes occurs between 2:40 and 2:45, in the green section, for some reasons it occurs at
1:35, an hour before usually. Finally in the orange section the spikes all occurs between 0:55 and
1:05. While monitoring the production system detecting such kind of update in a process could save
false alarms while still allowing quick detection of anomalies.
In 5b, a seasonal pattern appears at the end of the time-series and ATR-CSPD managed to find the
change points.
Finally in 5c, we can notice that even a slight change in a complex seasonal pattern can be detected
as long it is repeated enough time.

5 CONCLUSION

We propose ATR-CSPD, a new deep learning-based algorithm that detects changes in seasonal pat-
tern of a timeseries. The model combines an autoencoder network with a clustering algorithm, and is
able to identify changes from different real-world applications. Evaluations on multiple benchmark
datasets illustrate the difference between our new approach and existing CPD methods. They also
demonstrate that ATR-CSPD outperforms other models in detecting specific types of change points
and could be used to improve the efficiency of time-series forecasting in many applications.

8

Under review as a conference paper at ICLR 2020

REFERENCES

[1] Numenta anomaly benchmark (nab). https://www.kaggle.com/boltzmannbrain/
nab#targetText=The%20Numenta%20Anomaly%20Benchmark%20(NAB,
designed%20for%20real%2Dtime%20applications., 2019. Accessed: 2019-09-
23.

[2] Nyc open data. https://data.cityofnewyork.us/Transportation/
2018-Yellow-Taxi-Trip-Data/t29m-gskq, 2019. Accessed: 2019-09-23.

[3] Smart meters in london. https://www.kaggle.com/jeanmidev/
smart-meters-in-london, 2019. Accessed: 2019-09-23.

[4] Michèle Basseville, Igor V Nikiforov, et al. Detection of abrupt changes: theory and applica-
tion, volume 104. Prentice Hall Englewood Cliffs, 1993.

[5] Claudie Beaulieu, Jie Chen, and Jorge L Sarmiento. Change-point analysis as a tool to detect
abrupt climate variations. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 370(1962):1228–1249, 2012.

[6] Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, and Barnabás Póczos. Kernel change-point
detection with auxiliary deep generative models. arXiv preprint arXiv:1901.06077, 2019.

[7] Eric Ghysels, Denise R Osborn, and Thomas J Sargent. The econometric analysis of seasonal
time series. Cambridge University Press, 2001.

[8] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773,
2012.

[9] Zaid Harchaoui and Olivier Cappé. Retrospective mutiple change-point estimation with ker-
nels. In 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, pages 768–772. IEEE,
2007.

[10] Zaı̈d Harchaoui, Eric Moulines, and Francis R Bach. Kernel change-point analysis. In Ad-
vances in neural information processing systems, pages 609–616, 2009.

[11] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[12] Yoshinobu Kawahara, Takehisa Yairi, and Kazuo Machida. Change-point detection in time-
series data based on subspace identification. In Seventh IEEE International Conference on
Data Mining (ICDM 2007), pages 559–564. IEEE, 2007.

[13] Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. Change-point detection in
time-series data by relative density-ratio estimation. Neural Networks, 43:72–83, 2013.

[14] Robert Lund, Xiaolan L Wang, Qi Qi Lu, Jaxk Reeves, Colin Gallagher, and Yang Feng.
Changepoint detection in periodic and autocorrelated time series. Journal of Climate,
20(20):5178–5190, 2007.

[15] Vasundhara Puttagunta and Konstantinos Kalpakis. Adaptive methods for activity monitoring
of streaming data. In ICMLA, volume 2, pages 197–203, 2002.

[16] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Motoaki
Kawanabe. Direct importance estimation with model selection and its application to covariate
shift adaptation. In Advances in neural information processing systems, pages 1433–1440,
2008.

[17] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013.

[18] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne. On-line unsupervised
outlier detection using finite mixtures with discounting learning algorithms. Data Mining and
Knowledge Discovery, 8(3):275–300, 2004.

9

https://www.kaggle.com/boltzmannbrain/nab#targetText=The%20Numenta%20Anomaly%20Benchmark%20(NAB,designed%20for%20real%2Dtime%20applications.
https://www.kaggle.com/boltzmannbrain/nab#targetText=The%20Numenta%20Anomaly%20Benchmark%20(NAB,designed%20for%20real%2Dtime%20applications.
https://www.kaggle.com/boltzmannbrain/nab#targetText=The%20Numenta%20Anomaly%20Benchmark%20(NAB,designed%20for%20real%2Dtime%20applications.
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://www.kaggle.com/jeanmidev/smart-meters-in-london
https://www.kaggle.com/jeanmidev/smart-meters-in-london

Under review as a conference paper at ICLR 2020

A GENERATED DATA SAMPLES

A.1 PLOTS

(a) Category B (b) Category C (c) Category D

(d) Category E (e) Category F (f) Category G

Figure 6: Samples from the generated dataset

A.2 IMPLEMENTATION DETAILS

In this section, we explain, category by category, how samples in section 4.2 are generated.
Category A: Samples are following a gaussian distribution with a mean between 0 and 10 and a
standard deviation between 1 and 10. Then we randomly choose whether a change will occur in the
mean, in the standard deviation or in both. Finally, again at random, we define the parameters of
after the change.
Category B: We use the same process as category A but we add some random spikes (anomalies).
The spikes are generated with at a random frequency, there will be between 1 to 60 spikes in the time-
series. Their height is also generated randomly, from 2 to 10 times the max value of the gaussian
samples. Same for their length, between 5 and 15 points. At the end, we add some gaussian centered
noise with a standard deviation that depends on its height.
Category C: We generate some regular gaussian samples with a random mean and variance. Then
we add the spikes as previously but make them repeat every 288 points. For the last 4 spikes, we
increase the height by a random factor (between 1.5 and 2).
Category D: The process is similar to the generation of samples of category C, but we create a
random change in the periodic spike time and not in the height.
Category E: First we split randomly the period into three parts: a quiet part, an active part and a
quiet part again. Then we generate some gaussian samples for the quiet part, with a random mean
and a standard deviation that is determined by this mean. We do the same for the active part but
make sure the mean is bigger. Finally, at a specific point in time, we randomly increase the mean of
the active part.
Category F: We do the same as category E, but we randomly increase the mean of the quiet part
and make sure it still stays lower than the active one.
Category G: Again, the same process as category E, but we do not modify the mean, we randomly
change the split to make the active part longer.

10

Under review as a conference paper at ICLR 2020

B NETWORK ARCHITECTURE

Figure 7: Network architecture for a window size of 300

C PCA ON THE ENCODINGS

(a) Regular autoencoder (Eq.1) (b) With regularization (Eq.2)

Figure 8: Results of a PCA applied to the encoding of Figure 2b and Figure 2c

11

	Introduction
	Problem Formulation
	Autoencoder with Temporal Regularization
	The autoencoder model
	Temporal regularization
	Locating the change points

	Experiments
	Network architecture
	Evaluation on Generated Set
	Simulated Set with Change Point
	Results

	London Electricity Data Set
	NYC Taxi Dataset
	Azure Monitor data

	Conclusion
	Generated Data Samples
	Plots
	Implementation details

	Network architecture
	PCA on the encodings

