
Under review as a conference paper at ICLR 2020

ENFORCING PHYSICAL CONSTRAINTS IN NEURAL
NETWORKS THROUGH DIFFERENTIABLE PDE LAYER

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies at the intersection of physics and deep learning have illustrated
successes in the application of deep neural networks to partially or fully replace
costly physics simulations. Enforcing physical constraints to solutions generated
by neural networks remains a challenge, yet it is essential to the accuracy and
trustworthiness of such model predictions. Many systems in the physical sciences
are governed by Partial Differential Equations (PDEs). Enforcing these as hard
constraints, we show, are inefficient in conventional frameworks due to the high
dimensionality of the generated fields. To this end, we propose the use of a novel
differentiable spectral projection layer for neural networks that efficiently enforces
spatial PDE constraints using spectral methods, yet is fully differentiable, allowing
for its use as a layer in neural networks that supports end-to-end training. We show
that its computational cost is cheaper than a regular convolution layer. We apply it to
an important class of physical systems – incompressible turbulent flows, where the
divergence-free PDE constraint is required. We train a 3D Conditional Generative
Adversarial Network (CGAN) for turbulent flow superresolution efficiently, whilst
guaranteeing the spatial PDE constraint of zero divergence. Furthermore, our
empirical results show that the model produces realistic flow fields with more
accurate flow statistics when trained with hard constraints imposed via the proposed
novel differentiable spectral projection layer, as compared to soft constrained and
unconstrained counterparts.

1 INTRODUCTION

Convolutional Neural Network (CNN) based deep learning architectures have achieved huge success
in many tasks across computer vision, but their use in the physical sciences have only recently
been explored. Many parallels exist between physical science problems and those in computer
vision. For instance, grid-based simulations generate a physical scalar or vector field which can
been compared to multidimensional arrays in computer vision. However, unlike computer vision
problems, physical fields are often constrained by PDEs that arise from the governing equations of the
physical system. For example, the Poisson equation of the form∇2φ = f is often encountered in heat
diffusion problems, whereas the divergence-free (also known as solenoidal) conditions in the form of
∇ · φ = 0 is fundamental to magnetic fields, as well as incompressible fluid velocity fields to ensure
conservation of mass. For meaningful application of deep learning to a range of important physical
problems it is essential to enforce such spatial PDE constraints to guarantee physical consistency
and reliability of the model output for scientific applications. Yet, general means of enforcing these
constraints do not exist and the existing methods do not scale well with high dimensional, high
resolution outputs.

In this paper, we address this issue by proposing a novel differentiable PDE layer (PDEL) that
efficiently enforces spatial PDE constraints for neural networks, at costs on par with a single CNN
layer. We use spectral methods, which leverages the highly efficient Fast Fourier Transform (FFT)
algorithm for enforcing such constraints. Using this formulation, we are able to exploit the structures
of the spectral matrices corresponding to these differential operators that renders the entire layer
O(n log n) for processing a 3 dimensional field of size n. The method is general for enforcing
arbitrary linear combinations of differential operators on these fields, which encompasses physical
constraints from a broad range of important scientific and engineering systems. We apply this hard
constraining layer to the problem of turbulence superresolution, where we show that training with the

1



Under review as a conference paper at ICLR 2020

hard constraining layer in-the-loop not only guarantees that the imposed constraint is strictly satisfied,
but also generates solutions that are more accurate measured via a variety of fluid flow metrics.

In summary, the main contributions of this paper are:

• We propose the highly efficient differentiable spatial linear PDE layer (PDEL), which strictly
enforces linear spatial PDEs constraints.

• We apply the PDE layer towards the superresolution task for turbulent flows, showing that
training with hard constraints in-the-loop results in solutions that not only strictly satisfy the
imposed constraint but also produce flow fields with more accurate fluid flow statistics.

2 BACKGROUND AND RELATED WORK

2.1 CONSTRAINTS IN NEURAL NETWORKS

Many studies in machine learning have considered imposing some form of constraints for their
respective applications. ? proposed an approach for constraining the prediction of a discriminative
predictor and showed that a Gaussian Process can be forced to satisfy linear and quadratic constraints.
? proposed training a kernalized latent variable model that imposes equality and inequality constraints.
? proposed a constrained CNN, which phrases the training objective as a biconvex optimization for
linear models, which is then relaxed to nonlinear deep networks for any set of linear constraints on
the output space. ? proposed an alternative approach by randomly subsampling a set of constraints
at each optimization step and projecting the gradients onto the feasible solution space. OptNet (?)
solves a generic quadratic programming problem differentiably within the neural network, but its
cubed complexity does not handle high dimensional output. ? proposed parameterizing the feasible
solution space for imposing inequality constraints. However, methods to impose physical constraints
into machine learning and deep learning models remains largely unexplored.

2.2 APPLICATIONS OF MACHINE LEARNING FOR PDE AND TURBULENCE

More recently there have been some work in the literature to apply machine learning to PDE and
physical problems. ??? developed physics informed deep learning frameworks for assimilating
observational data. In the context of applying machine learning methodologies to turbulence problems,
earlier works using data-driven modeling approaches have used optimization and Bayesian inference
approaches to calibrate existing turbulence models (?????). With the advancement of efficient and
accurate modeling tools in machine learning, recent studies have looked at data driven approaches for
turbulence modeling (?), including the direct use of random forests for modeling Reynolds-Averaged
Navier Stokes (RANS) model errors (?), the use of multilayer perceptrons for modeling Reynolds
stress anisotropy tensor from simulation data (?), and using random forests to predict mean velocities
of turbulent flow fields. ? use a random forest to compute particle location and ? use a CNN to
approximate part of a numerical PDE scheme. A recent application of deep learning for generating
realistic fluid flow fields is TempoGAN (?) that uses a specialized discriminator network for temporal
coherence. None of these methods, however, enforce constraints that are necessary for physically
consistent fluid flow fields. ? addressed this with a customized loss function for the divergence-free
constraint of fluid flow, but since it is a loss-based soft constraint, the conditions are ultimately not
exactly satisfied.

3 PROBLEM STATEMENT

The main focus of this paper is to introduce a novel and efficient method for imposing spatial linear
PDE constraints to the outputs of Convolutional Neural Networks (CNNs). This is discussed in
the context of underdetermined systems, since solutions do not exist for overdetermined systems,
while solutions for determined systems do not fit in the context of constraining the outputs. More
specifically, given the output of the network to be a discretization of a 3D vector field f : R3 7→ R3

and a linear spatial PDE operator A(( ∂
∂xj

)0, ( ∂
∂xj

)1, · · · ) that maps vector fields to scalar fields
Af : R3 7→ R, we seek a means of efficiently imposing the spatial linear PDE constraints within

2



Under review as a conference paper at ICLR 2020

CNNs, i.e.,

Af = b (1)

Note that this form encompasses a wide range of physically relevant constraints. In particular, all
spatial PDE constraints composed of divergence, curl, Laplacian and other higher order partial
differential terms in linear combination may be expressed in this form. Depending on the domain
of application, this includes mass conservation for incompressible fluid flows, the heat equation,
the wave equation, Laplace’s equation, Helmholtz equation, Klein-Gordon equation, and Poisson’s
equation. For the important constraint of mass conservation in incompressible flows, we investigate
the divergence-free (solenoidal) constraint of:

∇ · f =
∑
j

∂

∂xj
fj = 0 (2)

4 METHODS

Before presenting our proposed method for enforcing the solenoidal condition on CNN outputs, we
present an overview of two commonly utilized strategies for enforcing general linear constraints,
which we will compare and benchmark against in the experiments section (Sec. 5).

We first discuss enforcing linear constraints on the outputs of the neural network, where we have
a neural network that learns the function mapping f : Rt 7→ Rm, where the function f(x;θ) is
parameterized by learnable parameters θ, and is subject to the linear constraint Af(x;θ) = b, where
A ∈ Rn×m, b ∈ Rn. For this to be an underconstrained system, we have n < m.

4.1 GENERALIZED LINEAR CONSTRAINTS

Two forms of constraints are possible for explicitly enforcing a certain set of constraints for neural
network outputs: soft constraints and hard constraints.

Soft constraints are easy to implement, by adding a differentiable residual loss for penalizing the
network during training time for violating the explicit constraints. For simplicity, let y := f(x;θ).
In the conventional unconstrained case, assume the neural network is trained under the differentiable
loss function L(f(x;θ)), in the constrained case, the loss function can be augmented by an additional
residual loss term defined by:

Lc(θ) = L(θ) + α((Ay − b)T (Ay − b)) (3)

where α is a hyper-parameter weighing the two loss functions that can be difficult to determine and
vary between applications. Although easy to implement, soft constraints provide no guarantees on
the solutions satisfying the imposed constraint.

Hard linear constraints can be enforced by posing the problem as a constrained optimization
problem for seeking the closest point in the solution space subject to the constraints, which can be
solved by satisfying the Karush-Kuhn-Tucker (KKT) condition. The result of the projection step can
be written as the stationary point of the Lagrangian:

min
ŷ

max
λ
L(ŷ,λ) (4)

where we have the Lagrangian as:

L(ŷ,λ;y) = 1

2
(y − ŷ)T (y − ŷ) + λT (Ay − b) (5)

∂L
∂ŷ

= y − ŷ + λTA (6)

The KKT condition leads to the following linear system, the solution of which involves solving a
linear system of dimensions (m + n) × (m + n). Given that the linear system is symmetric and
positive definite, the solution can be sought by inverting the system:[

I AT

A 0

] [
ŷ
λ

]
=

[
y
b

]
⇒
[
ŷ
λ

]
=

[
I AT

A 0

]−1 [
y
b

]
(7)

3



Under review as a conference paper at ICLR 2020

While this approach is general for enforcing arbitrary linear constraints on arbitrary network outputs,
it is difficult to scale it to higher dimensions, and particularly difficult for 2-dimensional and 3-
dimensional outputs, by direct matrix inversion followed by matrix multiplication.

4.2 SPECTRAL METHODS

First, we introduce and review the spectral methods (?) for discretizing the spatial PDE operators.
Spectral methods are a class of numerical methods that computes the spatial partial derivatives
of a field based on the spectral decomposition of the signal. By decomposing the original signal
into a linear combination with respect to trigonometric basis functions of varying wavenumbers (or
frequencies), the spatial derivatives with respect to the trigonometric basis functions can be easily
and efficiently computed. The Fast Fourier Transform (FFT) is a well known algorithm for efficiently
computing the Direct Fourier Transform (DFT) of uniform discrete signals. The multidimensional
FFT and inverse FFT respectively compute the following:

F (k) =

N−1∑
n=0

f (n)e−i2πk·(n/N); f (n) =
1

N1N2N3

N−1∑
k=0

F (k)ei2πk·(n/N) (8)

where F (k) = FFT(f (n)),f (n) = IFFT(F (k)), spatial indices n = (n1, n2, n3), nj ∈
{0, 1, · · · , Nj − 1} and spectral indices k = (k1, k2, k3), kj ∈ {0, 1, · · · , Nj − 1}. The spatial
derivative with respect to xj can be computed by:

∂

∂xj
f (n) = IFFT(ikjF (k)) (9)

In matrix form, for the t-th component of a 3 dimensional vector field: Ft, taking its flattened vector
form, and taking the flattened vector form of the wavenumber kj corresponding to the dimension xj ,
the spatial derivative with respect to xj can be computed using matrix multiplication:

∂

∂xj
Ft = diag(ikj)Ft (10)

where diag() converts a vector into a corresponding diagonal matrix. In general, arbitrary linear
combination of spatial derivatives of varying orders can be computed using a single diagonal matrix
multiplication:

(
∑
j

∑
r

cjr

( ∂

∂xj

)r
)Ft = diag(

∑
j

∑
r

cjr(ikj)
r)Ft := AtFt (11)

where At is a diagonal matrix for the spatial derivatives corresponding to the t-th component of the
vector field, that is a polynomial of ikj , and A = [A1, A2, A3].

4.3 SPECTRAL PROJECTION LAYER

For brevity, we present our main results for computing the spectral projection operator that efficiently
enforces spatial linear PDE constraints using spectral methods. We defer readers to Eqns (14 - 27) of
Appendix A for detailed derivation of these results. In spectral space, the projection of the original
vector field F into solution space: F̂ , can be computed by:

F̂ = PF +QB (12)

where F = FFT(f),B = FFT(b), and

P = I − 1∑3
j=0A

2
j

 A2
1 A1A2 A1A3

A1A2 A2
2 A2A3

A1A3 A2A3 A2
3

 ;Q = − 1∑3
j=0A

2
j

[
A1

A2

A3

]
(13)

4



Under review as a conference paper at ICLR 2020

Generator

low
res

Interpolate

Conv(512)
SResBlk(512)

Up(2)

SResBlk(256)

Up(2)

SResBlk(128)

Up(2)

SResBlk(64)

Up(2)

SResBlk(16)

Up(2)

Conv3d(3)

Constraint

high
res

Conditioning

Discriminator (single)

low
res

high
res

Concat

Conv(16)

LReLU

Conv(64)

LReLU

Conv(128)

LReLU

Conv(256)

LReLU
IN LReLU

Conv(1)

logits

FFT spectral

projection
IFFT

PDEL

Figure 1: Schematic for the network architecture for the turbulent flow superresolution task. The
network is a modified GauGAN (?) architecture for 3D fields that utilizes spatially-adaptive nor-
malization for conditioning with the input, and residual blocks for facilitating gradient flows. The
network inputs a low resolution flow field in R32×32×32 and outputs an output field of R128×128×128

with an upscaling factor of 4 in each dimension.

5 EXPERIMENTS AND RESULTS

5.1 COMPUTATIONAL COMPLEXITY AND COST

We first show that although the classic Lagrangian based hard constraining method in Eqn. 7 is general
and able to enforce hard linear constraints, solving it by direct inversion leads to poor computational
efficiency, especially with high-resolution 3-dimensional data outputs from CNNs.

Given Eqn. 7 for enforcing hard linear constraints using Lagrangian multipliers, we estimate
the computational complexity regarding enforcing solenoidal conditions as follows. Without loss
of generality, assume that the vector field on which we enforce the solenoidal constraints is 3
dimensional of resolution N in each spatial dimension, with a total of n = N3 nodes. The overall
degrees of freedom in the system is 3n, and enforcing solenoidal constraint for each voxel results
in n linear constraints, hence the resulting linear system in Eqn. 7 is of dimensions 4n × 4n.
Though the matrix inversion is shared, hence reusable by caching, each projection involves a matrix
multiplication of O((3n)2) ∼ O(9n2) operations. In comparison, the spectral projection method
only involves element-wise operations, resulting in an overall complexity of O(n) operations for
enforcing constraints, and O(n log(n)) for the FFT and IFFT operations. Results of an empirical
analysis for computational time and memory usage is shown in Fig. 2.

5.2 TURBULENCE SUPERRESOLUTION WITH CONDITIONAL GAN

Conditional Generative Adversarial Networks While Generative Adversarial Networks (GANs)
have been effective at generating 2D (???) and 3D (?) images, the unconditional generative modeling
scenario of generating entire fields from random latent vectors is hardly useful in scientific settings. A
more desirable model is one that is conditioned upon a set of inputs from either partial observations,
or low resolution simulations due to computational limitations ?. Conditional GANs, which have
been widely used in various image-to-image translation problems (?????), and a recent extension
of conditional GANs, the GauGAN (?), utilizes a novel spatially-adaptive normalization layer that
better preserves semantic information in the conditional input and produces improved texture outputs.

5



Under review as a conference paper at ICLR 2020

(a) Compute time vs system size (b) Peak memory usage vs system size

Figure 2: Comparison of computational performance for direct solve using Lagrangian multiplier
method and our PDE Layer (PDEL). Computational performance for a single Conv3d layer of kernel
size 3 is also included for comparison purposes. Our PDEL fairs well with respect to size of the
linear system, even compared with the highly optimized 3D convolution layers, allowing for its direct
integration into CNN architectures. Direct solve leads to memory overflow at very small output
resolutions (243). Above computation benchmarks performed on a 2.4 GHz CPU chip.

In this paper we use the GauGAN architecture for the task of superresolution of turbulent fluid flow
fields (See Fig. 1).

Problem setup The main target application of this study is the super-resolution of turbulent flow
fields. Fully resolving turbulence requires direct numerical simulation (DNS) that can resolve the
smallest scales of the flow (Komogorov scale), which is prohibitively expensive. Therefore, the
motivation of this study is to produce flow fields and flow statistics comparable to DNS at the cost
of a low-resolution proxy, whilst strictly enforcing PDE constraints. To this end, we leverage high-
resolution DNS data to train a deep neural network to learn the mapping between the low-resolution
flow and its high-resolution counterpart. We compare between several algorithms for the task: the
conventional trilinear interpolation which is not learning based, and various deep learning methods
leveraging the GauGAN architecture for conditional generative modeling. We benchmark our PDEL
in-the-loop hard constraining method against unconstrained training (denoted by “none” in figures
and tables) and soft constrained training (denoted by “soft”), with and without hard constraining
spectral projection at test time. The goal is to satisfy the imposed constraint and to evaluate the
accuracy of the predicted flow fields using key domain-specific metrics.

Dataset Description We use the Forced Isotropic Turbulence dataset from the Johns Hopkins
Turbulence Database for this experiment ?. The dataset consists of DNS at 10243 resolution performed
by solving the Navier-Stokes equations using the pseudo-spectral method. The dataset consists of
5028 frames (time steps) of data, each with 3 velocity components. For this experiment, we use all
simulation frames starting from the 16th time step, since the initial frames consist of underdeveloped
flow. Furthermore, since 10243 resolution is practically impossible to fit into modern GPUs, we
use a subsampled version of the data at 1283 as high-resolution targets, and further subsampled 323

fields as low-resolution inputs. Subsampling for the high-resolution field is performed by uniformly
sampling the original flow field at intervals of 8 in each dimension. For test and training splits, we
take a random subset of 70/10/20% of the original data as training, validation and test splits.

Evaluation metrics Since the superresolution task constraining on the low-resolution input is
mathematically underdetermined, it is not possible to recover the exact velocity field. Further, given
the chaotic nature of turbulence, a single low-resolution flow field corresponds to various different
realizations of high-resolution flows. Therefore, we refrain from directly comparing the norm of
the difference in velocity fields. Instead, we compare the distributions of various key flow statistics,
as outlined by ?, which are more informative from a turbulence modeling standpoint. In Tab. 1,
we report the Kolmogorov-Smirnov (KS) statistic between the ground truth test set distributions
and the distributions generated by various models conditioning on the low-resolution test inputs.
We also report the mean difference between the distributions, i.e., difference between the mean of
the modelled and ground truth distributions in units of ground truth distribution standard deviation.

6



Under review as a conference paper at ICLR 2020

(a) Turbulent Kinetic Energy (b) Dissipation

(c) Large Eddy Turnover Time (d) Spectrum Plot

Figure 3: Probability Density Function plots of samples generated by various models as well as
ground truth distributions (highlighted in red). The quality of the distributions compared against the
ground truth distributions are captured well by the KS statistic and mean difference measurements
in Tab. 1. (d) Shows the spectrum, where all methods trail the data distribution well in the low
wavenumber regime and deviate at higher wavenumbers.

The flow statistics in Tab. 1 is defined as below. For simplicity, we denote the different velocity
components using Einstein notation, and use angle brackets <> to denote spatial averaging.

• Total kinetic energy, Etot =
1
2 < uiui >

• Dissipation, ε = 2ν < σijσij >, where σij := 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, and ν = 0.000185 is a

constant for fluid viscosity.

• Large eddy turnover time: TL = L/u′, where L = π
2u′2

∫ E(k)
k dk and u′ =

√
(2/3)Etot

Results The main quantitative results for this experiment are presented in Tab. 1, whereas a visual-
ization of the distributions regarding various key flow statistics are presented in Fig. 3. We observe
from empirical evaluations that training with the hard constraining layer in-the-loop effectively
imposes the solenoidal constraints (zero residue), and enforcing the hard constraint at training time
achieves more accurate flow field distributions measured by various key flow statistics. We note that
although this method is not the most accurate for the dissipation statistic, presumably because of
discrepancies in the high wavenumber regime (where dissipation occurs), the overall mean statistics
and individual statistics for the other metrics are superior compared to all the other methods.

7



Under review as a conference paper at ICLR 2020

Constraint Type No PDE Layer PDEL at test time In-the-loop
Trilinear None Soft Trilinear None Soft PDEL

Residue(↓) 3.597 19.763 0.150 0.000 0.000 0.000 0.000

KS
Stats
(↓)

tkenergy 1.000 0.308 0.712 1.000 0.216 0.632 0.163
dissipation 1.000 0.283 0.549 1.000 1.000 0.332 0.422
eddytime 1.000 0.388 0.599 1.000 0.229 0.487 0.276
mean 1.000 0.326 0.620 1.000 0.482 0.484 0.287

Mean
Diff
(↓)

tkenergy 6.227 0.745 2.192 6.593 0.396 1.845 0.106
dissipation 16.245 0.016 1.301 16.732 2.690 0.731 0.804
eddytime 9.343 0.878 1.516 10.037 0.436 1.125 0.591
mean 10.605 0.546 1.670 11.121 1.174 1.234 0.500

Table 1: Comparison of generated distributions on test set against ground truth distribution on test
set. Smaller values indicate a better match between distributions. Results indicate that while soft
constraining can encourage the network to adhere to constraints, its residue is nonzero, implying
that the imposed constraint is not strictly satisfied. Spectral based projection method can effectively
eliminate residue. Training with the PDE layer in-the-loop eliminates residue and achieves greater
accuracy on key statistical quantities, as compared to unconstrained and soft constrained cases, even
when hard constraints are enforced at test time.

6 CONCLUSIONS AND FUTURE WORK

Enforcing hard physical constraints to solutions generated using neural networks are essential for
their application to important scientific problems. In this paper, we propose a novel differentiable
spectral projection layer for neural networks that efficiently enforces spatial PDE constraints using
spectral methods, yet is fully differentiable, allowing for its use as a layer in neural networks that
supports end-to-end training. Further, we show that its computational cost is cheaper than a regular
convolution layer. We demonstrate its use in an important class of physics problems – incompressible
turbulent flows, where the divergence-free PDE constraint is required. We are able to train a 3D
Conditional Generative Adversarial Network (CGAN) for turbulent flow superresolution efficiently,
whilst guaranteeing the spatial PDE constraint of zero divergence. Further, our results show that
the model produces more accurate flow statistics when trained with hard constraints imposed via
the proposed novel differentiable spectral projection layer, as compared to soft constrained and
unconstrained counterparts.

Some key limitations of this work are: (i) the method is applicable in its current form only to flows
with periodic boundary conditions; (ii) we only develop a method for linear spatial constraints and
(iii) we only consider statistically steady flows. In future we will address all the above limitations
to extend our work to more general sets of nonlinear unsteady constraints with arbitrary boundary
conditions.

8



Under review as a conference paper at ICLR 2020

APPENDIX

A MATHEMATICAL DERIVATION FOR SPECTRAL PROJECTION

The solution to the Lagrangian multiplier method for enforcing the solenoidal conditions involves
inverting the left-hand-side matrix in Eqn. 7. Since I, A, 0 are block matrices, the inverse can be
represened by [

I AT

A 0

]−1
=

[
I −AT (AAT )−1A AT (AAT )−1

(AAT )−1A −(AAT )−1
]

(14)

Hence the projected vector in spectral space can be computed as:

F̂ = PF +QB (15)

The second term in the equation above drops out since b = 0 for solenoidal constraints. More
specifically for spectral methods, the matrix A can be represented as three diagonal matrices for the
wavenumbers in the three dimensions multiplied by the imaginary number i:

A =


. . . . . . . . .

A1 A2 A3

. . . . . . . . .

 (16)

= [A1 A2 A3] (17)

The only matrix inverse associated is AAT , whose value can be computed by block matrix multipli-
cation:

AAT = A2
1 +A2

2 +A2
3 (18)

Given that A1, A2, A3 are diagonal matrices (eliminating the terms regarding the [0, 0, 0] mode), its
inverse can be computed by directly inverting the diagonal terms:

(AAT )−1 =
1

A2
1 +A2

2 +A2
3

(19)

Hence the linear projection matrix can be written as:

I −AT (AAT )−1A = I − 1

A2
1 +A2

2 +A2
3

 A2
1 A1A2 A1A3

A1A2 A2
2 A2A3

A1A3 A2A3 A2
3

 (20)

AT (AAT )−1 = − 1∑3
j=0A

2
j

[
A1

A2

A3

]
(21)

Recovering the same solution as in Eqn. 13. More specifically for the divergence-free condition, we
have:

Aj = diag(−ikj) (22)
B = 0 (23)

Hence the spectral projection step can be further simplified as:

F̂ = F − k · F
k · k

k (24)

It is easy to show that the result is divergence-free, since:

−ikF̂ = −ikF + ikF = 0 (25)

It is also easy to show that the projection is orthogonal to the solution space, since the dot product
between the F̂ − F and F̂ is zero:

(F̂ − F ) · F̂ = −(k · F
k · k

k) · (F − k · F
k · k

k) (26)

= 0 (27)

9



Under review as a conference paper at ICLR 2020

Notation Description

Conv(n) 3D convolution block with n output layers

SResBlock SPADE Residue Block consisting of
SPADE + ReLU + Conv + SPADE + ReLU + Conv

Up(n) Upsampling layer with nearest neighbor interpolation with scaling factor of n

IN 3D Instance Normalization Layer

Table 2: Description of module notations in Fig. 1

B MODEL AND TRAINING DETAILS

We use the GauGAN architecture (with schematics as shown in Fig. 1) for the conditional flow field
generation task. The abbreviated names for the various modules are given in Tab. 2. Our model differs
from the original GauGAN model in two distinct aspects. First, our architecture utilizes 3 dimensional
convolutions instead of the 2 dimensional counterparts in the original GauGAN architecture. Second,
for our hard constrained case, we append the spectral projection layer to the end of the architecture
for enforcing hard constraints.

For training the model, we use multiresolution discriminator loss as in ? across 3 discriminators. We
train the model with batch size of 18 (across 6 Volta V100 GPUs) with the Adam optimizer using a
learning rate of 2E − 4. The soft constrained model uses a residue penalty factor of 0.01.

C ADDITIONAL VISUALIZATION

Figure 4: Visualizations for low resolution inputs from the test set, predictions by various models, as
well as ground truth flow fields. The flow fields are colored by mapping the three velocity components
to RGB channels respectively. The 2d images are slice plots in the z dimension.

10


	Introduction
	Background and Related Work
	Constraints in Neural Networks
	Applications of Machine Learning for PDE and Turbulence

	Problem Statement
	Methods
	Generalized Linear Constraints
	Spectral Methods
	Spectral Projection Layer

	Experiments and Results
	Computational Complexity and Cost
	Turbulence Superresolution with Conditional GAN

	Conclusions and Future Work
	Mathematical Derivation for Spectral Projection
	Model and training details
	Additional Visualization


