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ABSTRACT

Many processes can be concisely represented as a sequence of events leading
from a starting state to an end state. Given raw ingredients, and a finished cake,
an experienced chef can surmise the recipe. Building upon this intuition, we
propose a new class of visual generative models: goal-conditioned predictors
(GCP). Prior work on video generation largely focuses on prediction models that
only observe frames from the beginning of the video. GCP instead treats videos
as start-goal transformations, making video generation easier by conditioning on
the more informative context provided by the first and final frames. Not only
do existing forward prediction approaches synthesize better and longer videos
when modified to become goal-conditioned, but GCP models can also utilize
structures that are not linear in time, to accomplish hierarchical prediction. To
this end, we study both auto-regressive GCP models and novel tree-structured
GCP models that generate frames recursively, splitting the video iteratively into
finer and finer segments delineated by subgoals. In experiments across simulated
and real datasets, our GCP methods generate high-quality sequences over long
horizons. Tree-structured GCPs are also substantially easier to parallelize than
auto-regressive GCPs, making training and inference very efficient, and allowing
the model to train on sequences that are thousands of frames in length. Finally,
we demonstrate the utility of GCP approaches for imitation learning in the setting
without access to expert actions. Videos are on the supplementary website: https:
//sites.google.com/view/video-gcp

1 INTRODUCTION
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Figure 1: In order to drive from Oakland
to San Francisco one needs to get in the car,
splitting the task into two subtasks: entering
the car and driving. The former can be split
into getting the keys and using them to enter
the car. The latter requires crossing a bridge,
which requires paying a toll. We propose
goal-conditioned video prediction that can
recover sequences of events between two ob-
servations, and describe both sequential and
tree-structured predictive models.

Many phenomena, both natural and artificial, are naturally
characterized as transformations — the most salient in-
formation about them is contained in the start and end
states, given which it is possible to fill in intermediate
states from prior experience. For example, ending up in
San Francisco after starting in Oakland entails getting into
a car and crossing the Bay Bridge (see Fig 1). Similarly, to
an expert engineer observing a bridge, the task of reverse-
engineering how it was built is well-defined and tractable.

In contrast, consider the task of predicting forward in time,
having observed only the steel and concrete that went
into making the bridge. Such forward prediction tasks are
severely underconstrained, leading to high uncertainties
that compound with time, making it impossible to make
meaningful predictions after only a few stages of iterative
forward prediction. This is aggravated in high-dimensional
settings such as forward video prediction, which despite
being the most widely studied setting for video synthesis,
struggles to produce coherent video longer than a few
seconds.

We propose to condition video synthesis instead on the substantially more informative context of
the start and the goal frame. We term such models goal-conditioned predictors (GCP). Much like
the engineer observing the bridge, GCPs treat long videos as start-goal transformations and reverse-

1



Under review as a conference paper at ICLR 2020

engineer the full video, conditioned on the first and final frames. The simplest instantiation of GCPs
modifies existing forward prediction approaches to also observe the final frame.

More broadly, once we consider condition on the goal frame, we can devise new types of GCP models
that more efficient leverage the hierarchical structure present in real-world event sequences. Just as
coarse-to-fine image synthesis (Karras et al., 2017) generates a high-resolution image by iteratively
adding details to a low-resolution image, we can synthesize a temporally downsampled video in
the form of sequences of keyframes, and fill it in iteratively. We propose to implement this as a
tree-structured GCP: the start-goal input frames serve as the initial downsampled sequence and new
frames are recursively added until the full video is generated. Intuitively, this exploits the hierarchical
temporal structure of natural video by breaking a long sequential procedure into its constituent steps,
as illustrated in Fig 1. However, procedural steps do not all occur on a regularly spaced schedule or
last for equal lengths of time. To model this, we further propose to allow the model to select which
frames to generate at each level in the tree.

In our experiments, all GCP variants successfully generate longer and higher-quality video than has
been demonstrated with standard auto-regressive video prediction models, which only utilize the
starting frames for context. Furthermore, we show that tree-structured GCPs are more parallelizable
than auto-regressive models, leading to very fast training and inference. We show that we can train
tree-structured GCPs on videos consisting of thousands of frames. We also study the applications
of GCPs, demonstrating that they can be utilized to enable prediction-based control in simulated
imitation learning scenarios. In these settings, the GCP models can be trained without access to
demonstrator actions, and can synthesize visual plans directly from start and goal images, which can
then be tracked using an inverse model.

2 RELATED WORK

Video generation. Several existing neural video generation approaches either generate the entire
video from scratch (Vondrick et al., 2016; Clark et al., 2019) or conditioned on the beginning of the
video (Ranzato et al., 2014; Srivastava et al., 2015; Mathieu et al., 2015; Finn et al., 2016; Oh et al.,
2015). Some approaches also model the uncertainties inherent in video prediction through variational
inference (Denton & Fergus, 2018; Villegas et al., 2019; Xue et al., 2016; Lee et al., 2018; Larsen
et al., 2016; Babaeizadeh et al., 2018). As argued above, video prediction approaches struggle to
synthesize videos longer than a few seconds due to the ill-defined nature of this task. To rectify this,
we propose a different class of models that conditions the prediction on both the first and the last
frame of the desired video. This is related to prior work on neural video interpolation. However,
such work has focused on short-term interpolation, often using models based on optical flow. Liu
et al. (2017); Jiang et al. (2018) propose techniques that transform the start and the goal images via
flow fields predicted by a convolutional neural network (CNN). Niklaus et al. (2017a;b) transform
the start and the goal images with convolutional kernels predicted with a CNN. These methods rely
on simple warping-based techniques that, while well-suited for short-term video in-filling, are not
effective for generating longer video sequences. In contrast, we propose a powerful goal-conditioned
video prediction technique that scales to videos as long as a minute in length. We compare against
video interpolation in our experiments.

Visual imitation and planning. We show an application of GCP for imitation learning in the case
where we have expert data without actions. Prior methods for solving the visual imitation learning
problem have tried to learn reward functions from demonstrations to train reinforcement learning
agents to perform imitation (Sermanet et al., 2016; Peng et al., 2018; Sermanet et al., 2018), suffering
from high sample complexity, and exploration problems of reinforcement learning. Our proposed
goal-conditioned imitation framework, does not need to perform reinforcement learning and also
leverages expert demonstrations to overcome the exploration problem. Visual goal-directed behavior
can also be achieved using visual planing methods, such as visual foresight (Ebert et al., 2018) or
Causal InfoGan (Kurutach et al., 2018). Unlike GCP-based imitation however, these methods do
not attempt to imitate the expert, but instead compute plans internally by sampling imaginary states
or actions, exhibiting difficulties for longer control horizons as targeted with our proposed method.
Inverse models such as zero-shot visual imitation proposed by Pathak et al. (2018) require access to
actions and are therefore insufficient to work in the action-free imitation setting.
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Figure 2: Graphical models for state-space video generation. Left: video continuation. Right:
the proposed goal-conditioned predictors (GCPs). b) a sequential goal-conditioned prediction.
c) a hierarchical goal-conditioned predictor. Shaded circles denote observations, and others are
unobserved latent states.

3 GOAL-CONDITIONED PREDICTION

In this section, we formalize the goal-condition prediction problem, and propose several models for
goal-conditioned prediction, including both auto-regressive models and tree structured models. To
define the goal-conditioned prediction problem, consider a sequence of observations [o1, o2, ...oT ] of
length T . Standard forward prediction approaches observe the first k observations and synthesize the
rest of the sequence, i.e., they model p(ok+1, ok+2, . . . oT−1|o1, o2, . . . ok). Instead, we would like
our goal-conditioned predictors to produce intermediate observations given the first and last elements
in the sequence. In other words, they must model p(o2, o3, . . . oT−1|o1, oT ). We propose several
designs of goal-conditioned predictors that operate in learned compact state spaces for scalability and
accuracy. Fig 2 shows schematics of these GCP designs, as well as of a standard forward predictor.

3.1 GOAL-CONDITIONED SEQUENTIAL PREDICTION

We first present a simple auto-regressive model for goal-conditioned prediction. In this model, we
predict latent state representations sequentially in chronological order, from the start to the end, with
the prediction at each point in time conditioned on the first and final observations as well as the
previous latent state. The resulting model (GCP-sequential, shown in Fig 2, b) can be factorized as
follows:

p(o2, o3, . . . oT−1|o1, oT ) =

∫
p(o2|s2)p(s2|o1, oT )

T−1∏
t=3

p(ot|st)p(st|st−1, o1, oT )ds2:T−1 (1)

We show in Sec 3.4 that this model is simple to implement, and can build directly on previously
proposed auto-regressive video prediction models. However, its computational complexity scales
with the sequence length, as every state must be produced in sequence. Furthermore, this approach
does not account for the hierarchical structure of natural video, which contains events and sub-events,
as depicted in Fig 1.

3.2 GOAL-CONDITIONED PREDICTION BY RECURSIVE INFILLING

To account for this hierarchical structure and also devise a computationally more efficient method,
we now design a tree-structured GCP model.

Suppose that we have an intermediate state prediction operator p(st|pa(t)) that produces an inter-
mediate state st halfway in time between its two parent states pa(t). Then, consider the following
alternative generative process for goal-conditioned prediction: at the beginning, the observed first and
last frames are encoded into the latent state space as s1 and sT , and the prediction operator p(st|pa(t))
generates s0.5T . The same operator may now be applied to two new sets of parents (s1, s0.5T ) and
(s0.5T , sT ). As this process continues recursively, the intermediate prediction operator fills in more
and more temporal detail until the full video is synthesized.

Fig 2, c depicts this model, which we call GCP-tree, since it has a tree-like shape where each predicted
state is dependent on its right and left parents, starting with the start and the goal. GCP-tree factorizes
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Figure 3: Proposed latent variable models. Circles represent stochastic variables, shaded circles
represent variables observed at training and squares represent deterministic variables. Left: Sequential
prediction. Right: Hierarchical prediction.

the goal-conditioned video generation problem as:

p(o2, o3, . . . oT−1|o1, oT ) =

∫
p(s1|o1)p(sT |oT )

T−1∏
t=2

p(ot|st)p(st|pa(t))ds2:T−1. (2)

Computational efficiency. While the sequential forward predictor performs O(T ) sequential op-
erations to produce a sequence of length T, the hierarchical prediction can be more efficient due to
parallelization. As the depth of the tree is dlog T e, it only requires O(log T ) sequential operations
to produce a sequence, assuming all operations that can be conducted in parallel are parallelized
perfectly. We therefore batch the branches of the tree and process them in parallel at every level
to utilize the benefit of efficient computation on modern GPUs. We note that the benefits of the
GCP-tree runtime lie in parallelization, and thus diminish with large batch sizes, where the parallel
processing capacity of the GPU is already fully utilized. We notice that, when predicting sequences of
500 frames, GCP-sequential can use up to 4 times bigger batches than GCP-Tree without significant
increase in runtime cost.

Adaptive binding. We have thus far described the intermediate prediction operator as always
generating the state that occurs halfway in time between its two parents. While this is a simple and
effective scheme, it may not correspond to the natural hierarchical structure in the video. For example,
in the navigation example in Figure 1, we might prefer the first split to correspond to traversing the
bridge, which partitions the prediction problem into two largely independent halves. We can design a
version of GCP-tree that allows the intermediate frame predictor to select which of the several states
between the parents to predict, each time it is applied. In other words, the predicted state might bind
to one of many observations in the sequence. In this more versatile model, we represent the time
steps of the tree nodes with discrete latent variable w that selects which nodes bind to which frames:
p(ot|s1:N , wt) = p(ot|swt). We can then express the prediction problem as:

p(o2:T−1|o1, oT ) =

∫
p(s1|o1)p(sN |oT )

∏
n

p(sn|pa(n))

T−1∏
t=2

p(ot|s1:N , wt)p(wt)ds1:Ndw2:T−1

(3)

Appendix C shows an efficient inference procedure for w based on dynamic programming.

3.3 LATENT VARIABLE MODELS FOR GCP

To build powerful probabilistic models for goal-conditioned prediction, we propose to model the
stochasticity with a per-frame latent variable z (see Fig 3). To train the models, we maximize a
lower bound on the likelihood of the sequence that is computed using amortized variational inference.
In practice, we use a weight β on the KL-divergence term, as is common in amortized variational
inference (Higgins et al., 2017; Alemi et al., 2018; Denton & Fergus, 2018).

ln p(o2:T−1|o1,T ) ≥ Eq(z2:T−1|x) [ln p(o2:T−1|o1,T , z2:T−1)]− βKL [q(z|o1:T ) || p(z2:T−1|o1,T )] .
(4)
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3.4 ARCHITECTURES FOR GOAL-CONDITIONED PREDICTION

Having introduced the probabilistic framework of goal-conditioned prediction, and several instantia-
tions of that framework as graphical models, we now describe how these graphical models can be
implemented as deep neural networks, to make it possible to predict sequences of high-dimensional
observations o1:T , such as images. Our predictive models depicted in Fig. 3 consists of the follow-
ing parts: the prior p(zt|st), the deterministic recurrent predictor p(st|zt, pa(t)), and the decoding
distribution p(ot|st). Additionally, we use an amortized variational inference network q(zt|o1:T ).

We parameterize these distributions as follows. The prior is a diagonal covariance Gaussian whose
parameters are predicted with a multi-layer perceptron (MLP). The recurrent predictor p(st|zt, pa(t))
is a long short-term memory network (LSTM, (Hochreiter & Schmidhuber, 1997)). The decoding
distribution p(ot|st) is a unit variance Gaussian with the mean ōt predicted by a convolutional
decoder. We condition the recurrent predictor on the start and goal images via first encoding them into
embeddings et = enc(ot). We denote the corresponding embedding space of the decoder dec(et).

The posterior distributions for each node, q(z|o1:T ), is computed using an attention mechanism over
the embeddings of the evidence sequence (Bahdanau et al., 2015; Luong et al., 2015): q(zt) =
Att(enc(o1:T ), pa(st)). For simplicity, we reuse the same frame embeddings et for the attention
mechanism.

We found that using TreeLSTM (Tai et al., 2015) as the backbone of the hierarchical predictor
significantly improved performance, perhaps due to better capturing long-term temporal dependencies.
To increase the visual quality of the generated results, we also use skip-connections from the encoder
of first and the last frame (Villegas et al., 2017; Denton & Fergus, 2018) to all decoded frames
and a foreground-background generation procedure similar to (Wang et al., 2018). We activate the
generated images with a hyperbolic tangent.

4 GOAL-CONDITIONED IMITATION LEARNING WITH GCP

We demonstrate a natural application of GCP for imitation learning, where the goal is to learn a
controller that can select actions that reach a user-indicated goal observation. We can utilize a GCP
trained on expert optimal behavior to generate a sequence of predicted observations that must occur
in optimal trajectories between the current observation and the goal, i.e., a plan. Crucially, such a
GCP can be trained on data that is not annotated with any actions – for example, a robot could learn
behaviors from raw videos downloaded from YouTube. After the predictions are generated, we still
need to actually select the action to take, but this is now a much simpler problem, since the GCP
predicts the very next observation, and can be accomplished using a one-step inverse model.

Formally, at each time step, our imitation learning agent receives the current observation ot and
a goal observation oT . The GCP model outputs a sequences of observations ôt...ôT leading from
the start to the goal. To infer the actions necessary to execute this plan, we train a separate inverse
model that estimates p(a|o, o′) – the probability that the action a will lead from observation o to o′.
This model can be trained on any dataset that includes actions, including random behavior, since
it does not need to perform any long-horizon reasoning. In our implementation, an inverse model
is trained in a self-supervised fashion on trajectories from a random controller, without any expert
supervision, while the GCP model is trained on expert data but without access to the expert’s actions.
The complete imitation method is summarized in Algorithm 1. Instead of targeting the predicted
observations ôt with an inverse model, it is also possible to train the inverse model to infer actions
based on the encodings of the observations ôt = dec(êt). The advantage of using the encodings is
that uncertainties and inaccuracies induced in the image generation process cannot negatively affect
the inverse model’s performance.

5 EXPERIMENTAL EVALUATION

The aim of our experiments is study the following questions: 1) Are goal-conditioned models able
to generate long-horizon video sequences? 2) Does tree-structured prediction improve efficiency
for long-horizon video prediction? 3) Does goal-conditioned prediction enable long-term imitation
without access to the expert’s actions?
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Algorithm 1 Goal Conditioned Imitation Learning
1: Inputs: Goal-conditioned predictor g, inverse model p(a|s, s′), goal observation oT
2: while True do
3: ôt...ôT = g(ot, oT )
4: for i = 0...nreplan − 1 do
5: Compute at = arg maxa p(a|ôi, oT )
6: Execute action at.

Figure 4: Prior samples from GCP-tree on the four datasets: Human 3.6, pick&place, 3x3 Maze and
10x10 Maze. Each sequence is subsampled to 9 frames.

Figure 5: Datasets used for our evaluation of goal-
conditioned prediction. Left to right: Human
3.6M (64×64px), pick&place dataset (64×64px)
and Maze dataset (16×16px)

Datasets. We evaluate our model on the three
datasets depicted in Fig. 5). First, the Human
3.6M dataset (Ionescu et al., 2013) is a visually
complex dataset of human actors that is com-
monly used for evaluation of visual predictive
models. We further design two simulated long-
term video datasets. The pick&place dataset
contains videos of a simulated Sawyer robot
arm placing objects into a bin. Demonstrations
are collected using a rule-based policy that has
access to the underlying world state. Our third
dataset, Maze, is collected in an environment
based on the Gym-Miniworld (Chevalier-Boisvert, 2018) simulator which consists of a number of
sparsely connected rooms located on a grid. The maze layout is constructed such that one single
path exists between every pair of rooms and the wall texture of each room is unique. Demonstrations
between random start and goal positions are collected using the probabilistic roadmap (PRM) plan-
ner (Kavraki et al., 1996), leading to demonstrations with substantial noise. Due to its flexible layout
the maze dataset can scale to arbitrarily long-horizon tasks. We evaluate our method on a 3×3 room
and a 10×10 room layout.

We use 64×64px spatial resolution for Human 3.6M and pick&place and train on sequences of 500
frames and 80 frames respectively. For Maze, we generate sequences up to 100 frames on the 3×3
layout and 1000 frames for the 10×10 rooms. Due to the very long sequences we evaluate on a
resolution of 16×16px.

5.1 GOAL-CONDITIONED PREDICTION

We compare GCP-sequential and GCP-tree to a state-of-the-art deep video interpolation method, DVF
(Liu et al., 2017) and a method for generation of visual plans, CIGAN Kurutach et al. (2018) (see
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Table 1: Prediction performance. Pick&Place data are 80 frames 64x64, H3.6M data are 500 frames
64x64, 3x3 Maze data are 80 frames 32x32, 10x10 Maze data are 1000 frames 16x16.

DATASET PICK&PLACE HUMAN 3.6M 3X3 MAZE 10X10 MAZE

METHOD PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

GCP-SEQUENTIAL 34.45 0.965 27.57 0.924 20.83 0.664 17.08 0.48
GCP-TREE 34.34 0.965 28.34 0.928 20.80 0.652 17.29 0.495

DVF 26.15 0.858 26.74 0.922 15.798 0.485 14.50 0.428
CIGAN 21.16 0.613 16.89 0.453 15.57 0.415 13.81 0.331

SVG 31.41 0.960 - - 19.2 0.600 17.01 0.496

Tab. 1). Following the standard procedure for evaluation of stochastic prediction models, we report
top-of-100 Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Metric (SSIM). We observe
that the proposed goal-conditioned prediction models outperform the video interpolation baseline by
a large margin. We find that the interpolation methods fail to learn meaningful long-term dynamics
and instead merely blend over between the start and the goal image (see Fig. 6). CIGAN, which
uses latent space interpolation, similarly struggles to capture long-term transformations, predicting
unphysical changes in the scene. In contrast, both GCP-sequential and GCP-tree learn to predict rich
scene dynamics in between distant start and goal frames, synthesizing sequences that traverse tens of
different rooms (see Fig. 4). We attribute these results to the more powerful stochastic latent variable
model our methods employ.

Table 2: Ablation of prediction perfor-
mance on pick&place

METHOD PSNR SSIM

TREE 34.34 0.965
TREE W/O SKIPS 32.64 0.955
TREE W/O LSTM 31.44 0.947

We also include a comparison to Stochastic Video Genera-
tion (SVG, Denton & Fergus (2018)), a prior approach that
employs a stochastic latent variable model, but without
goal conditioning. As expected, without the goal informa-
tion the prediction problem is too underconstrained and
the resulting predictions rarely match the ground truth
sequene. We show that incorporating goal information
leads to directed predictions of higher accuracy across all
datasets.

To further inspect the properties of the proposed approach, we ablate different architectural choices in
Tab. 2 using the tree-structured predictor. We show that both skip connections from the parents and
start and goal as well as recurrence in the predictive module are essential to achieve high prediction
performance.

5.1.1 RUNTIME COMPARISON
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Figure 7: Runtime of GCP for dif-
ferent sequence lengths on 10x10
Maze (16 × 16px) with a batch
size of four. Experiments were
performed on a standard NVIDIA
P100 GPU.

One advantage of the hierarchical prediction approach of GCP-
Tree over the frame-by-frame prediction of GCP-sequential is
that the former allows for heavy parallelization of computation,
leading to substantially reduced sequential computational com-
plexity (see Sec. 3.2). We validate that we can realize these
runtime benefits by comparing the time required for each train-
ing iteration of forward and tree-structured prediction across
different sequence lengths (see Fig. 7). We find that, espe-
cially for very long sequences, GCP-Tree has a much lower
iteration time, enabling more efficient training on long-horizon
prediction tasks.

5.2 BOTTLENECK DISCOVERY

We evaluate the ability of the model with adaptive binding to
learn the structure of the dataset. To do so, we set the decoder
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Figure 6: Predictions on Human 3.6M. We see that the GCP models are able to faithfully capture
the human trajectory. The optical flow-based method (DVF) captures the background but fails to
generate complex motion needed for long-term goal-conditioned prediction. Causal InfoGan also
struggles to capture the structure of these long sequences and produce implausible interpolations.

distribution variance of the first node of the tree to 5, forcing this node to bind to the frame for which
the prediction is the most confident. In Fig. 8, we see that when prediction the top-down view of the
maze, this indeed causes the model to bind the first node to the frame that is the easiest to predict – the
bottleneck frame between rooms. Further details of this experiment are described in the Appendix C.
Experimentally, we found that adaptive binding did not substantially improve quantitative accuracy of
the predictions on our datasets, though the ability to discover meaningful bottlenecks may itself be a
useful property in future work, as discussed in the literature on hierarchical RL (Barto & Mahadevan,
2003) or exploration (Goyal et al., 2019).

5.3 GOAL-CONDITIONED CONTROL

Figure 8: Bottleneck discovery on a top-down
view of the maze. Four predicted sequences for
adaptive GCP-tree are shown, with the first pro-
duced node marked red. We see that the first
produced node reliably identifies and predicts the
bottleneck in the trajectory, which is the position
where the agent passes through the door.

We evaluate whether goal-conditioned visual
prediction is suitable for imitating long-term,
goal-directed expert behavior without access to
the expert’s actions. We first collect a dataset of
30k expert trajectories with up to 100 frames in
the 3×3 Maze environment. For planning and
execution we follow the procedure detailed in
Sec. 4. We train the inverse model that is used to
follow the visual plans using 20k trajectories of
15 frames each, collected by taking random ac-
tions from random initial positions in the maze.

We quantitatively evaluate the performance of
goal-conditioned prediction for visual imitation
learning by randomly sampling 100 start and
goal positions in the map and measuring the
difference between the initial and final distance
to the goal after the episode finished, computed
as the shortest path distance through the maze. We compare GCP-sequential to two alternative visual
planning methods: visual foresight (Ebert et al., 2018) and Causal InfoGan (CIGAN, Kurutach et al.
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Real trajectory Time Goal Image

Figure 9: Illustration of the agent successfully following plans generated by GCP-sequential model
through 5 rooms in succession. The agent’s position in the map is marked with the red diamond, the
goal is marked in green; time progresses from left to right; re-planning is performed every 5 steps.
We show temporally subsampled plans and executed sequence; the full trajectory has a length of 200
steps and is provided in Figure 10 in the appendix.

(2018)). We additionally report performance of a behavior cloning approach, but note that it requires
ground truth action annotations for the demonstration dataset while all other approaches can learn
from pure visual demonstrations only.

We find that none of the alternative methods for visual planning is able to scale to long-horizon tasks
that require the traversal of multiple rooms. In particular, we observe that CIGAN is unable to produce
coherent, long-horizon plans and instead generates smooth interpolations between start and goal
image. Consequently, both prior methods fail to complete most of the tasks while GCP-sequential
can generate long-horizon, coherent plans (see Fig. 9) and complete substantially more of the test
tasks (see Tab. 3). Finally, behavior cloning achieves higher performance but requires access to
ground truth demonstration actions at training time which can be very costly or impossible to obtain
in realistic settings.

6 DISCUSSION AND FUTURE WORK

Table 3: Control Performance
on the Maze task

METHOD SUCCESS

GCP-SEQ 59%
CIGAN 10%
VMPC 7%

BC 87%

We presented goal-conditioned predictors (GCPs) – predictive mod-
els that generate video sequences between a given start and goal
frame. GCPs must learn to understand the mechanics of the envi-
ronment that they are trained in, in order to accurately predict the
intermediate events that must take place in order to bring about the
goal images from the start images. GCP models not only allow
for substantially more accurate video prediction than conventional
models that are conditioned only on the beginning context, but also
allow for novel model architectures. Specifically, we explore how, in
addition to more conventional auto-regressive GCPs, we can devise
tree-structured GCP models that predict video sequences hierarchically, starting with the coarsest
level subgoals and recursively subdividing until a full sequence is produced.

Our experimental results show that GCPs can make more accurate predictions. We also demonstrate
that they can be utilized in an imitation learning scenario, where they can learn behaviors from video
demonstrations without example actions. Imitation from observations, without actions, is applicable
in a wide range of realistic scenarios. For example, a robot could learn the mechanics of cooking
from watching videos on YouTube (Damen et al., 2018), and then use this model to learn how to cook
on its own. We hope that the imitation framework presented in our work can be a step in towards
effectively leveraging such data for robotic control.
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A DATA PROCESSING

For the Human 3.6 dataset, we downsample the original videos to 64 by 64 resolution. We obtain
videos of length of roughly 800 to 1600 frames, which we randomly crop in time to 500-frame
sequences.

We split the Human 3.6 into training, validation and test set by correspondingly 95%, 5% and 5% of
the data. On the TAP dataset, we use 48949 videos for training, 200 for validation and 200 for testing.

B ARCHITECTURE

We use a convolutional encoder and decoder similar to the standard DCGAN discriminator and
generator architecture respectively. The latent variables zn as well as en are 32-dimensional. All
hidden layers in the Multi-Layer Perceptron have 32 neurons. We add skip-connections from the
encoder activations from the first image to the decoder for all images. For the inference network
implemented with attention, we found it beneficial to use a 2-layer 1D temporal convolutional network
that adds temporal context into the latent vectors et before attention. For the recursive predictor that
predicts en, we found it crucial for the stability of the training to activate en with hyperbolic tangent
(tanh), and use group normalization Wu & He (2018). We observed that without this, the magnitude
of activations can explode in the lower levels of the tree and conjecture that this is due to recursive
application of the same network. We found that batch normalization Ioffe & Szegedy (2015) does not
work as well as group normalization for the recursive predictor and conjecture that this is due to the
activation distributions being non-i.i.d. for different levels of the tree. We use batch normalization in
the convolutional encoder and decoder, and use local per-image batch statistics at test time.

Hyperparameters. For each method and dataset, we performed a manual sweep of the hyperpa-
rameter β in the range from 1e−0 to 1e−4. The convolutional encoder and decoder both have five
layers. We use the Rectified Adam optimizer (Liu et al., 2019; Kingma & Ba, 2015) with β1 = 0.9
and β2 = 0.999, batch size of 16 for GCP-sequential and 4 for GCP-tree, and a learning rate of
2e−4. On each dataset, we trained each network for the same number of epochs on a single high-end
NVIDIA GPU.

C ADAPTIVE BINDING WITH DYNAMIC PROGRAMMING

To optimize the model with adaptive binding, we perform variational inference on both w and z:

log p(x) ≥ Eq(z,w)[p(x|w, z)]−DKL(q(z|x)||p(z))−DKL(q(w|x, z)||p(w)). (5)

To infer q(w|x, z), we want to produce a distribution over possible alignments between the tree and
the evidence sequence. Moreover, certain alignments, such as the ones that violate the ordering of the
sequence are forbidden. We define such distribution over aligment matrices A via Dynamic Time
Warping. We define the energy of an alignment matrix as the cost, and the following distribution over
alignment matrices:

p(A|x, y) =
1

Z
e−A∗c(x,z),

where Z = EA[e−A∗c(x,z)], and c is the MSE error between the ground truth frame xt and the
decoded frame associated with zn. We are interested in computing marginal edge distributions
w = EA[A]. Given these, we can compute the reconstruction error efficiently. We next show how to
efficiently compute the marginal edge distributions.

Given two sequences x0:T , z0:N , denote the partition function of aligning two subsequences x0:i, z0:j
as fi,j =

∑
A∈A0:i,0:j

e−A∗c(x0:i,z0:j). Cuturi & Blondel (2017) shows that these can be computed
efficiently as:

fi,j = c(xi, zj) ∗ (fi−1,j−1 + fi−1,j).

Futhermore, denote the partition function of aligning xi:T , zj:N as bi,j =∑
A∈Ai:T,j:N

e−A∗c(xi:T ,zj:N ). Analogously, we can compute it as:

bi,j = c(xi, zj) ∗ (bi+1,j+1 + bi+1,j).
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Figure 10: Agent successfully following plans through 5 rooms until reaching the goal.

Proposition 1 The total unnormalized density of all alignment matrices including the edge (i, j) can
be computed as ei,j = fi,j ∗ bi,j/c(xi, zj) = c(xi, zj) ∗ (fi−1,j−1 + fi−1,j) ∗ (bi+1,j+1 + bi+1,j).
Moreover, the probability of the edge (i, j) can be computed as wi,j = ei,j/Z.

14



Under review as a conference paper at ICLR 2020

Proposition 1 enables us to compute the expected reconstruction cost in quadratic time:

w ∗ c(x, y).

15


