
Under review as a conference paper at ICLR 2020

RETHINKING THE HYPERPARAMETERS
FOR FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning from pre-trained ImageNet models has become the de-facto standard
for various computer vision tasks. Current practices for fine-tuning typically
involve selecting an ad-hoc choice of hyper-parameters and keeping them fixed
to values normally used for training from scratch. This paper re-examines several
common practices of setting hyper-parameters for fine-tuning. Our findings are
based on extensive empirical evaluation for fine-tuning on various transfer learning
benchmarks. (1) While prior works have thoroughly investigated learning rate and
batch size, momentum for fine-tuning is a relatively unexplored parameter. We find
that picking the right value for momentum is critical for fine-tuning performance
and connect it with previous theoretical findings. (2) Optimal hyper-parameters for
fine-tuning in particular the effective learning rate are not only dataset dependent but
also sensitive to the similarity between the source domain and target domain. This
is in contrast to hyper-parameters for training from scratch. (3) Reference-based
regularization that keeps models close to the initial model does not necessarily
apply for "dissimilar" datasets. Our findings challenge common practices of fine-
tuning and encourages deep learning practitioners to rethink the hyper-parameters
for fine-tuning.

1 INTRODUCTION

Many real-world applications often have limited number of training instances, which makes directly
training deep neural networks hard and prone to overfitting. Transfer learning with the knowledge of
models learned on a similar task can help to avoid overfitting. Fine-tuning is a simple and effective
approach of transfer learning and has become popular for solving new tasks in which pre-trained
models are fine-tuned with the target dataset. Specifically, fine-tuning on pre-trained ImageNet
classification models (Simonyan & Zisserman, 2015; He et al., 2016b) has achieved impressive
results for tasks such as object detection (Ren et al., 2015) and segmentation (He et al., 2017; Chen
et al., 2017) and is becoming the de-facto standard of solving computer vision problems. It is
believed that the weights learned on the source dataset with a large number of instances provide better
initialization for the target task than random initialization. Even when there is enough training data,
fine-tuning is still preferred as it often reduces training time significantly (He et al., 2019).

The common practice of fine-tuning is to adopt the default hyperparameters for training large models
while using smaller initial learning rate and shorter learning rate schedule. It is believed that
adhering to the original hyperparameters for fine-tuning with small learning rate prevents destroying
the originally learned knowledge or features. For instance, many studies conduct fine-tuning of
ResNets (He et al., 2016b) with these default hyperparameters: learning rate 0.01, momentum 0.9
and weight decay 0.0001. However, the default setting is not necessarily optimal for fine-tuning on
other tasks. While few studies have performed extensive hyperparameter search for learning rate
and weight decay (Mahajan et al., 2018; Kornblith et al., 2018), the momentum coefficient is rarely
changed. Though the effectiveness of the hyperparameters has been studied extensively for training a
model from scratch, how to set the hyperparameters for fine-tuning is not yet fully understood.

In addition to using ad-hoc hyperparameters, commonly held beliefs for fine-tuning also include:

• Fine-tuning pre-trained networks outperforms training from scratch; recent work (He et al.,
2019) has already revisited this.

1



Under review as a conference paper at ICLR 2020

• Fine-tuning from similar domains and tasks works better (Ge & Yu, 2017; Cui et al., 2018;
Achille et al., 2019; Ngiam et al., 2018).
• Explicit regularization with initial models matters for transfer learning performance (Li

et al., 2018; 2019).

Are these practices or beliefs always valid? From an optimization perspective, the difference between
fine-tuning and training from scratch is all about the initialization. However, the loss landscape of
the pre-trained model and the fine-tuned solution could be much different, so as their optimization
strategies and hyperparameters. Would the hyperparameters for training from scratch still be useful
for fine-tuning? In addition, most of the hyperparameters (e.g., batch size, momentum, weight decay)
are frozen; will the conclusion differ when some of them are changed?

With these questions in mind, we re-examined the common practices for fine-tuning. We conducted
extensive hyperparameter search for fine-tuning on various transfer learning benchmarks with different
source models. The goal of our work is not to obtain state-of-the-art performance on each fine-tuning
task, but to understand the effectiveness of each hyperparameter for fine-tuning, avoiding unnecessary
computations. We explain why certain hyperparameters work so well on certain datasets while fail on
others, which can guide future hyperparameter search for fine-tuning.

Our main findings are as follows:

• Optimal hyperparameters for fine-tuning are not only dataset dependent, but also depend
on the similarity between the source and target domains, which is different from training
from scratch. Therefore, the common practice of using optimization schedules derived from
ImageNet training cannot guarantee good performance. It explains why some tasks are
not achieving satisfactory results after fine-tuning because of inappropriate hyperparameter
selection. Specifically, as opposed to the common practice of rarely tuning the momentum
value beyond 0.9, we verified that zero momentum could work better for fine-tuning on
tasks that are similar with the source domain, while nonzero momentum works better for
target domains that are different from the source domain.
• Hyperparameters are coupled together and it is the effective learning rate—which encapsu-

lates the learning rate, momentum and batch size—that matters for fine-tuning performance.
While effective learning rate has been studied for training from scratch, to the best of our
knowledge, no previous work investigates effective learning rate for fine-tuning and is less
used in practice. Our observation of momentum can be explained as small momentum
actually decreases the effective learning rate, which is more suitable for fine-tuning on
similar tasks. We show that the optimal effective learning rate actually depends on the
similarity between the source and target domains.
• We find regularization methods that were designed to keep models close to the initial model

does not apply for “dissimilar” datasets, especially for nets with Batch Normalization.
Simple weight decay can result in as good performance as the reference based regularization
methods for fine-tuning with better search space.

2 RELATED WORK

In transfer learning for image classification, the last layer of a pre-trained network is usually replaced
with a randomly initialized fully connected layer with the same size as the number of classes in the
target task (Simonyan & Zisserman, 2015). It has been shown that fine-tuning the whole network
usually results in better performance than using the network as a static feature extractor (Yosinski
et al., 2014; Donahue et al., 2014; Huh et al., 2016; Mormont et al., 2018; Kornblith et al., 2018). Ge
& Yu (2017) select images that have similar local features from source domain to jointly fine-tune
pre-trained networks. Cui et al. (2018) estimate domain similarity with ImageNet and demonstrate
that transfer learning benefits from pre-training on a similar source domain. Besides image classi-
fication, many object detection frameworks also rely on fine-tuning to improve over training from
scratch (Girshick et al., 2014; Ren et al., 2015).

Many researchers re-examined whether fine-tuning is a necessity for obtaining good performance.
Ngiam et al. (2018) find that when domains are mismatched, the effectiveness of transfer learning is
negative, even when domains are intuitively similar. Kornblith et al. (2018) examine the fine-tuning

2



Under review as a conference paper at ICLR 2020

performance of various ImageNet models and find a strong correlation between ImageNet top-1
accuracy and the transfer accuracy. They also find that pre-training on ImageNet provides minimal
benefits for some fine-grained object classification dataset. He et al. (2019) questioned whether
ImageNet pre-training is necessary for training object detectors. They find the solution of training
from scratch is no worse than the fine-tuning counterpart as long as the target dataset is large enough.
Raghu et al. (2019) find that transfer learning has negligible performance boost on medical imaging
applications, but speed up the convergence significantly.

There is much literature on the hyperparameter selection for training neural networks from scratch,
mostly on batch size, learning rate and weight decay (Goyal et al., 2017; Smith et al., 2018; Smith
& Topin, 2019). There are few works on the selection of momentum (Sutskever et al., 2013).
Zhang & Mitliagkas (2017) proposed an automatic tuner for momentum and learning rate in SGD
and empirically show that it converges faster than Adam (Kingma & Ba, 2014). There are also
studies on the correlations of the hyperparameters, such as linear scaling rule between batch size and
learning (Goyal et al., 2017; Smith et al., 2018; Smith, 2017). However, most of these advances
on hyperparameter tuning are designed from training from scratch, but not examined on fine-tuning
tasks for computer vision problems. Most work on fine-tuning just choose fixed hyperparameters
for all fine-tuning experiments (Cui et al., 2018) or use dataset dependent learning rates in their
experiments (Li et al., 2018). Due to the huge computational cost for hyperparameter search, only a
few works (Kornblith et al., 2018; Mahajan et al., 2018) performed large-scale grid search of learning
rate and weight decay for obtaining the best performance.

3 TUNING HYPERPARAMETERS FOR FINE-TUNING

In this section, we first introduce the notations and experimental settings, and then present our
observations on momentum, effective learning rate and regularization. The fine-tuning process is not
different from learning from scratch except for the weights initialization. The goal of the process is
still to minimize the loss function L =

∑N
i=1 `(f(xi, θ), yi) +

λ
2 ‖θ‖

2
2, where ` is the loss function,

N is the number of samples, xi is the input data, yi is its label, f is the neural network and θ is
the model parameters. Momentum is widely used for accelerating and smoothing the convergence
of SGD by accumulating a velocity vector in the direction of persistent loss reduction (Sutskever
et al., 2013; Goh, 2017). The commonly used Nesterov momentum SGD (Nesterov, 1983) iteratively
updates the model in the following form:

vt+1 = mvt − ηt
1

n

n∑
i=1

∇`(f(xi, θt +mvt), yi) (1)

θt+1 = θt − vt+1 − ηλθt (2)

where θt indicates the model parameter at iteration t. The hyperparameters include the learning rate
ηt, batch size n, momentum coefficient m ∈ [0, 1), and the weight decay λ.

3.1 EXPERIMENTAL SETTINGS

We evaluate fine-tuning on seven widely used image classification datasets, which covers tasks for
fine-grained object recognition, scene recognition and general object recognition. Detailed statistics
of each dataset can be seen in Table 1. We use ImageNet (Russakovsky et al., 2015), Place365 (Zhou
et al., 2018) and iNaturalist (Van Horn et al., 2018) as source domains for pre-trained models. We
resize the input images such that the aspect ratio is preserved and the shorter side is 256 pixels. The
images are normalized with mean and std values calculated over ImageNet. For data augmentation, we
adopt the common practices used for training ImageNet models (Szegedy et al., 2015): random mirror,
random scaled cropping with scale and aspect variations, and color jittering. The augmented images
are resized to 224×224. Note that state-of-the-art results could achieve even better performance by
using higher resolution images (Cui et al., 2018) or better data augmentation (Cubuk et al., 2018).

We mainly use ResNet-101-V2 (He et al., 2016a) as our base network, which is pre-trained on
ImageNet (Russakovsky et al., 2015). Similar observations are also observed on DenseNets (Huang
et al., 2017) and MobileNet (Howard et al., 2017) (see Appendix B). The hyperparameters to be tuned
(and ranges) are: learning rate (0.1, 0.05, 0.01, 0.005, 0.001, 0.0001), momentum (0.9, 0.99, 0.95,
0.9, 0.8, 0.0) and weight decay (0.0, 0.0001, 0.0005, 0.001). We set the default hyperparameter to be

3



Under review as a conference paper at ICLR 2020

Table 1: Datasets statistics. For the Caltech-256 dataset, we randomly sampled 60 images for each class
following the procedure used in (Li et al., 2018). For the Aircraft and Flower dataset, we combined the original
training set and validation set and evaluated on the test set. For iNat 2017, we combined the original training set
and 90% of the validation set following (Cui et al., 2018).

Datasets Task Category Classes Training Test
Oxford Flowers (Nilsback & Zisserman, 2008) fine-grained object recog. 102 2,040 6,149
CUB-Birds 200-2011 (Wah et al., 2011) fine-grained object recog. 200 5,994 5,794
FGVC Aircrafts (Maji et al., 2013) fine-grained object recog. 100 6,667 3,333
Stanford Cars (Krause et al., 2013) fine-grained object recog. 196 8,144 8,041
Stanford Dogs (Khosla et al., 2011) fine-grained object recog. 120 12,000 8,580
MIT Indoor-67 (Sharif Razavian et al., 2014) scene classification 67 5,360 1,340
Caltech-256-60 (Griffin et al., 2007) general object recog. 256 15,360 15,189
iNaturalist 2017 (Van Horn et al., 2018) fine-grained object recog. 5,089 665,571 9,599
Place365 (Zhou et al., 2018) scene classification 365 1,803,460 36,500

batch size 2561, learning rate 0.01, momentum 0.9 and weight decay 0.0001. To avoid insufficient
training and observe the complete convergence behavior, we use 300 epochs for fine-tuning and 600
epochs for scratch-training , which is long enough for the training curves to converge. The learning
rate is decayed by a factor of 0.1 at epoch 150 and 250. We report the Top-1 validation error at the
end of fine-tuning. The total computation time for the experiments is more than 10K GPU hours.

3.2 EFFECT OF MOMENTUM AND DOMAIN SIMILARITY

Momentum 0.9 is the most widely adopted value for training from scratch (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2015; He et al., 2016b), and is also widely adopted in fine-tuning (Kornblith
et al., 2018). To the best of our knowledge, it is rarely changed, regardless of the network architectures
or target tasks. To check the influence of momentum on fine-tuning, we first search the best momentum
values for fine-tuning on the Birds dataset with different batch size and weight decay. Figure 1(a)
shows the performance of fine-tuning with or without weight decays. Surprisingly, momentum zero
actually outperforms the nonzero momentum. We also noticed that the optimal learning rate increases
when the momentum is disabled (Figure 1(b) and Appendix A).

0.0 0.8 0.9 0.95 0.99
Momentum

18

20

22

24

Te
st

 E
rro

r

birds, imagenet, , = 0.01, n = 256
= 0.0001
= 0.0

0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
learning rate

0

10

20

30

40

50

60

Te
st

 E
rro

r

birds, imagenet, , = 0.0001, n = 256

m = 0.9, min top1=17.24, = 0.005
m = 0.0, min top1=16.98, = 0.05

Figure 1: (a) Searching for the optimal momentum on Birds dataset with fixed learning rate 0.01 and different
weight decays. Detailed learning curves and results of other hyperparameters can be found in Appendix A. (b)
Comparison of momentum 0.9 and 0.0 with different learning rates on the Birds dataset. λ is fixed at 0.0001.

To verify this observation, we further compare momentum 0.9 and 0.0 on other datasets. Table 2
shows the performance of 8 hyperparameter settings on seven datasets. We find a clear pattern that
disabling momentum works better for Dogs, Caltech, Indoor datasets, while momentum 0.9 works
better for Cars, Aircrafts and Flowers.

Interestingly, datasets such as Dogs, Caltech, Indoor and Birds are known to have high overlap with
ImageNet dataset2, while Cars/Aircrafts are identified to be difficult to benefit from fine-tuning from

1 For ResNet-101 and batch size 256, we use 8 NVIDIA Tesla V100 GPUs for synchronous training, where
each GPU uses a batch of 32 and no SyncBN is used.

2Stanford Dogs Khosla et al. (2011) was built using images and annotation from ImageNet for the task of
fine-grained image categorization. Caltech-256 has at least 200 categories exist in ImageNet (Deng et al., 2010).
Images in the CUB-Birds dataset overlap with images in ImageNet.

4



Under review as a conference paper at ICLR 2020

Table 2: Top-1 errors on seven datasets by fine-tuning pre-trained ResNet-101 with different hyperparmeters.
Each row represents a network fine-tuned by a set of hyperparameters (left four columns). The datasets are
ranked by the relative improvement by disabling momentum. The lowest error rates with the same momentum
are marked as bold. Note that the performance difference for Birds is not very significant.

m n η λ Dogs Caltech Indoor Birds Cars Aircrafts Flowers
0.9 256 0.01 0.0001 17.20 14.85 23.76 18.10 9.10 17.55 3.12
0.9 256 0.01 0 17.41 14.51 24.59 18.42 9.60 17.40 3.33
0.9 256 0.005 0.0001 14.14 13.42 24.59 17.24 9.08 18.21 3.50
0.9 256 0.005 0 14.80 13.67 22.79 17.54 9.31 17.82 3.53

0 256 0.01 0.0001 11.00 12.11 21.14 17.41 11.07 20.58 5.48
0 256 0.01 0 10.87 12.16 21.29 17.21 10.65 20.46 5.25
0 256 0.005 0.0001 10.21 11.86 21.96 18.24 13.22 24.39 7.03
0 256 0.005 0 10.12 11.61 20.76 18.40 13.11 23.91 6.78

Table 3: Verification of the momentum effect on similar source-target domains. The other hyperparameters are
n = 256, η = 0.01, and λ = 0.0001. Momentum 0 works better for transferring from iNat-2017 to Birds and
transferring from Places365 to Indoor-67 comparing to momentum 0.9 counterparts.

Source domain m Indoor Birds Dogs Caltech Cars Aircrafts

iNat-2017 0.9 30.73 14.69 24.74 20.12 11.16 19.86
0 34.11 12.29 23.87 21.47 16.89 27.21

Place-365 0.9 22.19 27.72 30.84 22.53 11.06 21.27
0 20.16 32.17 32.47 22.60 14.67 25.29

pre-trained ImageNet models (Kornblith et al., 2018). According to Cui et al. (2018), in which the
Earth Mover’s Distance (EMD) is used to calculate the distance between a dataset with ImageNet, the
similarity to Birds and Dogs are 0.562 and 0.620, while the similarity to Cars, Aircrafts and Flowers
are 0.560 and 0.555, 0.5253. The relative order of similarity to ImageNet is

Dogs, Birds, Cars, Aircrafts and Flowers

which aligns well with the transition of optimal momentum value from 0.0 to 0.9.

To verify this dependency on domain similarity, we fine-tune from pre-trained models of different
source domains. It is reported that Place365 and iNaturalist are better source domains than ImageNet
for fine-tuning on Indoor and Birds dataset (Cui et al., 2018). We can expect that fine-tuning from
iNaturalist works well for Birds with m = 0 and similarly, Places365 for Indoor. Indeed, as shown
in Table 3, disabling momentum improves the performance when the source and target domains are
similar, such as Places for Indoor and iNaturalist for Birds.

Large momentum works better for fine-tuning on different domains but not for tasks that are
close to source domains Our explanation for the above observations is that because the Dogs
dataset is very close to ImageNet, the pre-trained ImageNet model is expected to be close to the
fine-tuned solution on the Dogs dataset. In this case, momentum may not help much as the gradient
direction around the minimum could be much random and accumulating the momentum direction
could be meaningless. Whereas, for faraway target domains (e.g., Cars and Aircrafts) where the
pre-trained ImageNet model could be much different with the fine-tuned solution, the fine-tuning
process is more similar with training from scratch, where large momentum stabilizes the decent
directions towards the minimum. An illustration of the difference can be found in Figure 2.

Connections to early observations on decreasing momentum Early work (Sutskever et al., 2013)
actually pointed out that reducing momentum during the final stage of training allows finer conver-
gence while aggressive momentum would prevent this. They recommended reducing momentum
from 0.99 to 0.9 in the last 1000 parameter updates but not disabling it completely. Recent work (Liu

3The distance values are from Figure 5 in (Cui et al., 2018). The calculation process is illustrated in their
Section 4.1

5



Under review as a conference paper at ICLR 2020

(a) Dissimilar, m = 0.9 (b) Dissimilar, m = 0 (c) Similar, m = 0.9 (d) Similar, m = 0.0

Figure 2: An illustration of the effect of momentum on different fine-tuning scenarios from the loss-landscape
perspective. The red point is the the pre-trained model and the blue point is the final fine-tuned solution. The
dashed lines are loss contours. In (a, b) where the initial solution is far from the optimal point, large momentum
accelerates the training process. In (c, d) where the initialization is close to the solution, large momentum may
impede the convergence. These figures assumes a fixed learning rate.

et al., 2018; Smith, 2018) showed that a large momentum helps escape saddle points but can hurt
the final convergence within the neighborhood of the optima, implying that momentum should be
reduced at the end of training. Liu et al. (2018) find that a larger momentum introduces higher
variance of noise and encourages more exploration at the beginning of optimization, and encourages
more aggressive exploitation at the end of training. They suggest that at the final stage of the step
size annealing, momentum SGD should use a much smaller step size than that of vanilla SGD. When
applied to fine-tuning, we can interpret that if the pre-trained model lies in the neighborhood of
the optimal solution on the target dataset, the momentum should be small. Our work identifies the
empirical evidence of disabling momentum helps final convergence, and fine-tuning on close domains
seems to be a perfect case.

3.3 COUPLED HYPERPARAMETERS AND THE VIEW OF EFFECTIVE LEARNING RATE

dogs caltech mit67 birds cars aircrafts flowers
Dataset

0

20

40

60

80

100

M
in

 E
rro

r

imagenet, resnet101_v2, finetune

m = 0.9, ′=0.1
m = 0.0, ′=0.1
m = 0.9, ′=0.01
m = 0.0, ′=0.01
m = 0.9, ′=0.001
m = 0.0, ′=0.001
m = 0.9
m = 0.0

Figure 3: Test errors obtained by dif-
ferent momentum with fixed effective
learning rate η′. It shows that when η′

is the same, momentum = 0 and 0.9 are
almost equivalent. When η′ is allowed
to change, there is almost no difference
between momentum 0.9 and 0.

Now that we had studied the effectiveness of momentum by
fixing other hyperparaemters and only allow momentum to
change. But note that the two difficult scenarios faced in Fig-
ure 2 (b) and (c) can be mitigated by increasing learning or
decreasing learning rate. That is, hyperparameters are coupled
and varying one hyperparameter can change the optimal values
of the other hyperparameters that lead to the best performance.
Optimal values of neural network hyperparameters depend on
the values of other hyperparameters in systematic ways. For
example, learning rate is entangled with batch size, momentum
and weight decay. Smith et al. (2018) interpret SGD as integrat-
ing a stochastic differential equation and show that the scale
of random fluctuations in the SGD dynamics, g = η(NB − 1),
where B is the batch size. The notion of effective learning rate
(ELR) (Hertz et al., 1991; Smith & Le, 2018) for SGD with
momentum is follows:

η′ = η/(1−m) (3)

which was shown to be more closely related with training dy-
namics and final performance rather than η (Smith et al., 2018; Smith & Le, 2018). The effective
learning rate with m = 0.9 is 10× higher than the one with m = 0.0 if other hyperparameters are
fixed, which is probably why we see an increase in optimal learning rate when momentum is disabled
in Figure 1(b) and Appendix A.

Because learning rate and momentum are coupled, looking at the performance with only one hyper-
parameter varied can give a misleading understanding of the effect of hyperparameters. Therefore,
we report the best result with and without momentum. which does not affect the maximum accuracy
obtainable with and without momentum, as long as the hyperparameters explored are sufficiently
close to the optimal parameters. We review previous experiments that demonstrated the importance of
momentum tuning when the effective learning rate η′ = η/(1−m) is held fixed instead of the learning
rate η. Figure 3 shows that when η′ is constant, momentum 0.0 and 0.9 are actually equivalent. In
addition, the best performance obtained by momentum 0.9 and momentum 0 is equivalent when other

6



Under review as a conference paper at ICLR 2020

10 4 10 3 10 2 10 1 100

effective learning rate: /(1 m)

20

40

60

80

100

Be
st

 V
al

id
at

io
n 

Er
ro

r

resnet101_v2, imagenet, finetune, rand resized crop, bs=256

dogs, 9.83, ′ = 0.001
caltech, 11.64, ′ = 0.005
mit67, 20.54, ′ = 0.01
birds, 16.34, ′ = 0.05
cars, 7.61, ′ = 0.5
aircrafts, 12.33, ′ = 1.0
flowers, 2.91, ′ = 0.1

(a) ImageNet

10 4 10 3 10 2 10 1 100

effective learning rate: /(1 m)

20

40

60

80

100

Be
st

 V
al

id
at

io
n 

Er
ro

r

resnet101_v2, inat2017, finetune, rand resized crop, bs=256

dogs, 23.51, ′ = 0.05
caltech, 18.82, ′ = 0.1
mit67, 28.11, ′ = 0.1
birds, 12.06, ′ = 0.005
cars, 9.58, ′ = 1.0
aircrafts, 15.45, ′ = 0.5
flowers, 2.70, ′ = 0.1

(b) iNat2017

10 3 10 2 10 1 100

effective learning rate: /(1 m)

20

40

60

80

100

Be
st

 V
al

id
at

io
n 

Er
ro

r

resnet101_v2, place365, finetune, rand resized crop, bs=256

dogs, 29.08, ′ = 0.5
caltech, 22.43, ′ = 0.05
mit67, 19.42, ′ = 0.05
birds, 26.04, ′ = 0.5
cars, 9.13, ′ = 1.0
aircrafts, 15.48, ′ = 0.5
flowers, 5.06, ′ = 1.0

(c) Place365

100

effective learning rate: /(1 m)

20

40

60

80

100

Be
st

 V
al

id
at

io
n 

Er
ro

r

resnet101_v2, imagenet, scratch, rand resized crop, bs=256

dogs, 29.32, ′ = 1.0
caltech, 29.62, ′ = 1.0
mit67, 39.36, ′ = 2.0
birds, 30.08, ′ = 2.0
cars, 8.37, ′ = 2.0
aircrafts, 14.34, ′ = 2.0
flowers, 16.51, ′ = 2.0

(d) Training from scratch

Figure 4: The relationship between optimal ELR and source datasets. (a, b, c) show the best test errors obtained
by different ELRs while allowing other hyper-parameters to change. The title of each sub-figure describes the
source domain datasets. The optimal ELR for each target dataset are in the interior of the search space. Note
that the best ELR for each target dataset changes when the source domain is different, e.g., fine-tuning from
ImageNet require a small ELR for Dogs but requires a larger one when fine-tuned from iNat2017 and Places365.
(d) shows that the optimal ELRs for training from scratch of each dataset are very similar (1.0 or 10.0).

hyperparameters are allowed to change. However, different effective learning rates results in different
performance, which indicates that it is effective learning rate that matters for the best performance. It
explains why the common practice of changing only learning rate generally works, though changing
momentum may results in the same effect. They both change the effective learning rate.

10 3 10 2 10 1 100 101

effective weight decay: ′ = /
0

10

20

30

40

50

60

M
in

 T
es

t E
rro

r

resnet101_v2, imagenet, finetune
dogs, 9.83, ′ = 0.5
caltech, 11.61, ′ = 0.0
mit67, 20.54, ′ = 0.5
birds, 16.34, ′ = 0.01
cars, 7.65, ′ = 0.005
aircrafts, 12.33, ′ = 0.005
flowers, 2.91, ′ = 0.001

Figure 5: The relationship between op-
timal effective weight decay and source
datasets. The optimal effective weight
decay is smaller when the source do-
main is similar with the target domain..

Optimal effective learning rate and weight decay depend
on the similarity between source domain and target do-
main. Now that we have shown ELR is critical for the per-
formance of fine-tuning, we are interested in the factors that
determine the optimal ELR affected. Smith & Le (2018) found
that there is an optimum fluctuation scale which maximizes the
test set accuracy (at constant learning rate). However, the rela-
tionship between ELR and domain distance is unknown, which
is important for fine-tuning. Effective learning rate encapsulates
the effect of learning rate and momentum for fine-tuning. We
varied other hyperparameters and report the best performance
for each η′. As shown in Figure 4, a smaller η′ works better if
source and target domains are similar, such as Dogs for Ima-
geNet and Birds for iNaturalist. On the other hand, the ELR
for training from scratch is large and relative stable.

The relationship between weight decay and effective learning
rate are also well-studied (Loshchilov & Hutter, 2018; van
Laarhoven; Zhang et al., 2018). It was shown that the optimal
weight decay value λ is inversely related with learning rate η. The ‘effective‘ weight decay is
λ′ = λ/η. We show in Figure 5 that the optimal effective weight decay is larger when the source
domain is similar with the target domain.

7



Under review as a conference paper at ICLR 2020

3.4 THE CHOICE OF REGULARIZATION

L2 regularization or weight decay is widely used for constraining the model capacity (Hanson &
Pratt, 1989; Krogh & Hertz, 1992). Recent work (Li et al., 2018; 2019) pointed that standard L2

regularization, which drives the parameters towards the origin, is not adequate in transfer learning.
To retain the knowledge learned by the pre-trained model, reference based regularization was used
to regularize the distance between fine-tuned weights and the pre-trained weights, so that the fine-
tuned model is not too different from the initial model. Li et al. (2018) propose L2-SP norm, i.e.,
λ1

2 ‖θ
′ − θ0‖22 + λ2

2 ‖θ
′′‖22, where θ′ refers to the part of network that shared with the source network,

and θ′′ refers to the novel part, e.g., the last layer with different number of neurons.

While the motivation is intuitive, there are several issues for adopting reference based regularization
for fine-tuning: (1) Many applications actually adopt fine-tuning on target domains that are quite
different from source domain, such as fine-tuning ImageNet models for medical imaging (Mormont
et al., 2018; Raghu et al., 2019). The fine-tuned model does not necessarily has to be close with the
initial model. (2) The scale invariance introduced by Batch Normalization (BN) (Ioffe & Szegedy,
2015) layers enables models with different parameter scales to function the same, i.e., f(θ) = f(αθ).
Therefore, when L2 regularization drives ‖θ‖22 towards zeros, it could still have the same functionality
as the initial model. On the contrary, a model could still be different even when the L2-SP norm is
small. (3) It has been shown that the effect of weight decay on models with BN layers is equivalent
to increasing the effective learning rate by shrinking the weights scales (van Laarhoven; Zhang et al.,
2018). Regularizing weights with L2-SP norm would constrain the scale of weights to be close to
the original one, therefore not increasing the effective learning rate, during fine-tuning. As a small
effective learning rate is beneficial for fine-tuning from similar domains, which may explain why
L2-SP provides better performance. If this is true, then by decreasing the effective learning rate, L2

regularization would functions the same.

To examine these conjectures, we revisited the work of (Li et al., 2018) with additional experiments.
To show the effectiveness of L2-SP norm, Li et al. (2018) conducted experiments on datasets such as
Dogs, Caltech and Indoor, which are all datasets close to the source domain (ImageNet or Place-365)
according to previous sections. We extend their experiments on other datasets that are relatively “far”
away from ImageNet, such as Birds, Cars, Aircrafts and Flowers. We use the source code of Li et al.
(2018) to fine-tune on these datasets with both L2 and L2-SP regularization. For fair comparison,
we performed the same hyperparameter search for both methods (detailed experimental setting in
Appendix C). As expected, Table 4 shows that L2 regularization is very close to if not better than
L2-SP on Birds, Cars, Aircrafts and Flowers, which indicates that reference based regularization
methods may not be able to generalize for fine-tuning on dissimilar domains.

Table 4: The average class error of (Li et al., 2018) and the extension of their experiments of on “dissimilar”
datasets. The italic datasets and numbers are our experiments results.

Method Dogs Caltech Indoor Birds Cars Flowers Aircrafts
L2 (Li et al., 2018) 18.6 14.7 20.4 22.51 10.10 5.70 13.03
L2-SP (Li et al., 2018) 14.9 13.6 15.8 22.32 9.69 5.28 13.31

4 DISCUSSION

The two extreme ways for selecting hyperparameters—performing exhaustive hyperparameter search
or taking ad-hoc hyperparameters from scratch training—could be either too computationally expen-
sive or yield inferior performance. Different with training from scratch, the default hyperparameter
setting may work well for random initialization, the choice of hyperparameters for fine-tuning is
not only dataset dependent but is also influenced by the similarity between the target domain and
the source domains. The rarely tuned momentum value could impede the performance when the
target domain and source domain are close. These observations connect with previous theoretical
works on decreasing momentum at the end of training and effective learning rate. We further identify
the optimal effective learning rate depends on the similarity of source domain and target domain.
With this understanding, one can significant reduce the hyperparameter search space. We hope these
findings could be one step towards better hyperparameter selection strategies for fine-tuning.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless
Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning. arXiv
preprint arXiv:1902.03545, 2019.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE T-PAMI, 40(4):834–848, 2017.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
categorization and domain-specific transfer learning. In CVPR, 2018.

Jia Deng, Alexander C Berg, Kai Li, and Li Fei-Fei. What does classifying more than 10,000 image
categories tell us? In ECCV, pp. 71–84. Springer, 2010.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML,
2014.

Weifeng Ge and Yizhou Yu. Borrowing treasures from the wealthy: Deep transfer learning through
selective joint fine-tuning. In CPVR, 2017.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In CVPR, 2014.

Gabriel Goh. Why momentum really works. Distill, 2(4):e6, 2017.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases for minimal network construction with
back-propagation. In D. S. Touretzky (ed.), NIPS, pp. 177–185. Morgan-Kaufmann, 1989.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016b.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In ICCV, 2017.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In ICCV, 2019.

John Hertz, A Krogh, and Richard G Palmer. Introduction to the theory of neural computation. 1991.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, pp. 4700–4708, 2017.

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for transfer
learning? arXiv preprint arXiv:1608.08614, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, pp. 448–456, 2015.

9



Under review as a conference paper at ICLR 2020

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for
fine-grained image categorization. In First Workshop on Fine-Grained Visual Categorization, IEEE
Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? arXiv
preprint arXiv:1805.08974, 2018.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition
(3dRR-13), Sydney, Australia, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, 2012.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In NIPS, pp.
950–957, 1992.

Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, and Jun Huan. Delta: Deep
learning transfer using feature map with attention for convolutional networks. In ICLR, 2019.

Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning with
convolutional networks. ICML, 2018.

Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. Toward deeper understanding of noncon-
vex stochastic optimization with momentum using diffusion approximations. arXiv preprint
arXiv:1802.05155, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly supervised
pretraining. In ECCV, 2018.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of
aircraft. Technical report, 2013.

Romain Mormont, Pierre Geurts, and Raphaël Marée. Comparison of deep transfer learning strategies
for digital pathology. In CVPR Workshops, pp. 2262–2271, 2018.

Yurixi E Nesterov. A method for solving the convex programming problem with convergence rate o
(1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Jiquan Ngiam, Daiyi Peng, Vijay Vasudevan, Simon Kornblith, Quoc V Le, and Ruoming Pang.
Domain adaptive transfer learning with specialist models. arXiv preprint arXiv:1811.07056, 2018.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.
IEEE, 2008.

Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understanding
transfer learning with applications to medical imaging. arXiv preprint arXiv:1902.07208, 2019.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. IJCV, 115(3):211–252, 2015.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In CVPR workshops, pp. 806–813, 2014.

10



Under review as a conference paper at ICLR 2020

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Leslie N Smith. Cyclical learning rates for training neural networks. In WACV, pp. 464–472. IEEE,
2017.

Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate,
batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, volume 11006, pp. 1100612. International Society for Optics and Photonics, 2019.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. In ICLR, 2018.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. In ICLR, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In ICML, 2013.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR,
2015.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
CVPR, 2018.

Twan van Laarhoven. L2 regularization versus batch and weight normalization. In NIPS.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Junyuan Xie, Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. arXiv preprint arXiv:1812.01187, 2018.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In NIPS, 2014.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. arXiv preprint arXiv:1810.12281, 2018.

Jian Zhang and Ioannis Mitliagkas. Yellowfin and the art of momentum tuning. arXiv preprint
arXiv:1706.03471, 2017.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE T-PAMI, 40(6):1452–1464, 2018.

11



Under review as a conference paper at ICLR 2020

A SEARCH OPTIMAL MOMENTUM ON BIRDS

To check the influence of momentum on fine-tuning, we first search the best momentum values
for fine-tuning on the Birds dataset with different batch size and weight decay. Figure 6 provides
the convergence curves for the results shown in Figure 1(a), which shows the learning curves of
fine-tuning with 6 different batch sizes and weight decay combinations. Zero momentum outperforms
the nonzero momentum in 5 of the 6 configurations.

(a) n = 256, λ = 0.0005 (b) n = 256, λ = 0.0001 (c) n = 256, λ = 0.0

(d) n = 16, λ = 0.0005 (e) n = 16, λ = 0.0001 (f) n = 16, λ = 0.0

Figure 6: Searching for the optimal momentum on Birds dataset with fixed learning rate 0.01 and different
weight decays. The solid lines are training errors and the dashed lines are validation errors.

Optimal learning rate increases after disabling momentum. Figure 7 compares the performance
of turning on/off momentum for each datasets with different learning. For datasets that are “similar"
to ImageNet (Figure 7 (a-h)) and fixed learning rate (e.g., 0.01), the Top-1 validation error decreases
significantly after disabling momentum. On the other hand, for datasets that are “dissimilar" to
ImageNet (Figure 7(g-n)) and fixed learning rate, disabling momentum hurts the top-1 accuracy. We
can also observe that the optimal learning rate generally increase 10x after changing from 0.9 to 0.0,
which is coherrent with the rule of effective learning rate.

12



Under review as a conference paper at ICLR 2020

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.01, top1=17.20
lr=0.005, top1=14.14
lr=0.001, top1=10.96
lr=0.0005, top1=10.30
lr=0.0001, top1=9.83

(a) Dogs, 256, 0.9
0 50 100 150 200 250 300

Epochs

0

10

20

30

40

50

60
Er

ro
r

resnet101_v2, bs=256, mom=0.0, wd=0.0001

lr=0.1, top1=17.63
lr=0.05, top1=14.37
lr=0.01, top1=11.00
lr=0.005, top1=10.21
lr=0.001, top1=9.88
lr=0.0005, top1=10.98
lr=0.0001, top1=38.57

(b) Dogs, 256, 0.0
0 50 100 150 200 250 300

Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.1, top1=20.69
lr=0.05, top1=19.07
lr=0.01, top1=14.85
lr=0.005, top1=13.42
lr=0.001, top1=12.07
lr=0.0005, top1=11.64
lr=0.0001, top1=14.70

(c) Caltech, 256, 0.9
0 50 100 150 200 250 300

Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.0, wd=0.0001

lr=0.01, top1=12.11
lr=0.005, top1=11.86
lr=0.001, top1=14.62

(d) Caltech, 256, 0.0

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.1, top1=27.29
lr=0.05, top1=25.64
lr=0.01, top1=23.76
lr=0.005, top1=24.59
lr=0.001, top1=22.34
lr=0.0005, top1=21.29
lr=0.0001, top1=29.39

(e) Indoor, 256, 0.9
0 50 100 150 200 250 300

Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.0, wd=0.0001

lr=0.1, top1=23.46
lr=0.05, top1=22.04
lr=0.01, top1=21.14
lr=0.005, top1=21.96
lr=0.001, top1=29.69
lr=0.0005, top1=41.00
lr=0.0001, top1=88.23

(f) Indoor, 256, 0.0
0 50 100 150 200 250 300

Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.1, top1=22.37
lr=0.05, top1=21.00
lr=0.01, top1=18.10
lr=0.005, top1=17.24
lr=0.001, top1=17.28
lr=0.0005, top1=18.45
lr=0.0001, top1=35.26

(g) Birds, 256, 0.9
0 50 100 150 200 250 300

Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.0, wd=0.0001

lr=0.1, top1=17.78
lr=0.05, top1=16.98
lr=0.01, top1=17.41
lr=0.005, top1=18.24
lr=0.001, top1=35.21
lr=0.0005, top1=57.63
lr=0.0001, top1=97.89

(h) Birds, 256, 0.0

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.1, top1=8.46
lr=0.05, top1=8.99
lr=0.01, top1=9.10
lr=0.005, top1=9.08
lr=0.001, top1=11.02
lr=0.0005, top1=13.11

(i) Cars, 256, 0.9
0 50 100 150 200 250 300

Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, bs=256, mom=0.0, wd=0.0001

lr=0.5, top1=8.61
lr=0.1, top1=8.74
lr=0.05, top1=8.85
lr=0.01, top1=11.07
lr=0.005, top1=13.22
lr=0.001, top1=52.92
lr=0.0005, top1=80.21

(j) Cars, 256, 0.0
0 50 100 150 200 250 300

Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.1, top1=13.89
lr=0.05, top1=14.25
lr=0.01, top1=17.55
lr=0.005, top1=18.21
lr=0.001, top1=20.64
lr=0.0005, top1=24.57

(k) Aircrafts, 256, 0.9
0 50 100 150 200 250 300

Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.0, wd=0.0001

lr=0.5, top1=15.15
lr=0.1, top1=17.31
lr=0.05, top1=17.01
lr=0.01, top1=20.58
lr=0.005, top1=24.39
lr=0.001, top1=51.01
lr=0.0005, top1=69.31

(l) Aircrafts, 256, 0.0

0 50 100 150 200 250 300
Epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.05, top1=3.29
lr=0.01, top1=3.12
lr=0.005, top1=3.50
lr=0.001, top1=5.68
lr=0.0005, top1=6.91

(m) Flowers, 256, 0.9
0 50 100 150 200 250 300

Epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r

resnet101_v2, bs=256, mom=0.0, wd=0.0001

lr=0.5, top1=3.51
lr=0.1, top1=2.91
lr=0.05, top1=3.35
lr=0.01, top1=5.48
lr=0.005, top1=7.03
lr=0.001, top1=26.00
lr=0.0005, top1=48.79

(n) Flowers, 256, 0.0

Figure 7: (a-h) Fine-tuning without momentum works better for datasets that are "similar" to
ImageNet. The subtitle of each figure contains dataset name, batch size and momentum. (g-n)
Fine-tuning with momentum works better for tasks that are dissimilar with ImageNet.

13



Under review as a conference paper at ICLR 2020

B VERFIICATION ON DIFFERENT ARCHITECTURES

We also verified our observations on DenseNet-121 (Huang et al., 2017) and MobileNet-1.0 (Howard
et al., 2017) with smilar settings. As seen in Figure 8 (b) and (c), the optimal effective learning
rates for Dogs/Caltech/Indoor datasets are much smaller than these for Aircrafts/Flowers/Cars when
fine-tuned from ImageNet, similar with ResNet-101 in Figure 9(a). On the other hand, Figure 8 (d)
shows the optimal effective learning rate for fine-tuning birds from iNaturalist is much smaller than
pre-training from ImageNet. This shows that our claims are valid for a variety of architectures and
datasets.

10 4 10 3 10 2 10 1 100

effective learning rate: /(1 m)

20

40

60

80

100

Be
st

 V
al

id
at

io
n 

Er
ro

r

resnet101_v2, imagenet, finetune, rand resized crop, bs=256

dogs, 9.83, ′ = 0.001
caltech, 11.64, ′ = 0.005
mit67, 20.54, ′ = 0.01
birds, 16.34, ′ = 0.05
cars, 7.61, ′ = 0.5
aircrafts, 12.33, ′ = 1.0
flowers, 2.91, ′ = 0.1

(a) ResNet, ImageNet

10 5 10 4 10 3 10 2 10 1 100

effective learning rate: /(1 m)

20

40

60

80

100

Be
st

 V
al

id
at

io
n 

Er
ro

r

densenet121, imagenet, finetune, rand resized crop, bs=256

dogs, 17.07, ′ = 0.01
caltech, 14.94, ′ = 0.01
mit67, 22.86, ′ = 0.1
birds, 19.00, ′ = 0.1
cars, 8.18, ′ = 1.0
aircrafts, 11.97, ′ = 0.1
flowers, 3.04, ′ = 0.1

(b) DenseNet, ImageNet

10 4 10 3 10 2 10 1 100 101

effective learning rate: /(1 m)

20

40

60

80

100

Be
st

 V
al

id
at

io
n 

Er
ro

r

mobilenet1.0, imagenet, finetune, rand resized crop, bs=256

dogs, 21.03, ′ = 0.01
caltech, 17.84, ′ = 0.01
mit67, 26.31, ′ = 0.05
birds, 21.42, ′ = 0.1
cars, 8.34, ′ = 1.0
aircrafts, 13.92, ′ = 1.0
flowers, 3.84, ′ = 0.1

(c) MobileNet, ImageNet

10 3 10 2 10 1 100

effective learning rate: /(1 m)

20

40

60

80

100

Be
st

 V
al

id
at

io
n 

Er
ro

r

mobilenet1.0, inat2017, finetune, rand resized crop, bs=256

dogs, 22.67, ′ = 0.05
caltech, 18.72, ′ = 0.1
mit67, 28.34, ′ = 0.5
birds, 12.12, ′ = 0.005
cars, 8.16, ′ = 0.5
aircrafts, 13.83, ′ = 0.5
flowers, 2.54, ′ = 0.5

(d) MobileNet, iNaturalist

Figure 8: The performance of different architectures with different effective learning rates. The title of each
subfigure describes the architecture and source domain dataset.

C EXPERIMENTAL SETTINGS FOR THE COMPARISON BETWEEN L2 AND L2-SP

We use the code4 provided by the authors. The base network is pretrained ResNet-101-V1. The
model is fine-tuned with batch size 64 in 9000 iterations, and the learning rate is decayed at it-
eration 6000. Following the original setting, we use momentum 0.9. We performed grid search
on learning rate and weight decay, with the range of η : {0.02, 0.01, 0.005, 0.001, 0.0001} and
λ1 : {0.1, 0.01, 0.001, 0.0001}, and report the best average error for both methods. For L2-SP norm,
we follow the authors setting to use constant λ2 = 0.01. Different with the original setting for L2

regularization, we set λ2 = λ1 to simulate the normal L2-norm.

4 https://github.com/holyseven/TransferLearningClassification

14

https://github.com/holyseven/TransferLearningClassification


Under review as a conference paper at ICLR 2020

D DATA AUGMENTATION

Data augmentation is an important way of increasing data quantity and diversity to make models more
robust. It is even critical for transfer learning with few instances. The effect of data augmentation
can be viewed as a regularization method and the choice of data augmentation method is also a
hyperparameter. Most current widely used data augmentation methods have verified their effectiveness
on training ImageNet models, such as random mirror flipping, random rescaled cropping5, color
jittering and etc Szegedy et al. (2015); Xie et al. (2018) and they are also widely used for fine-tuning.
Do these methods transfer for fine-tuning on other datasets? Here we compare three settings for data
augmentation: 1) random resized cropping: our default data augmentation; 2) random crop: the same
as standard data augmentation except that we use random cropping with fixed size; 3) random flip:
simply random horizontal flipping.

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=17.20
rand crop, top1=11.99
rand flip, top1=11.76

(a) Dogs
0 50 100 150 200 250 300

Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r
resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=17.55
rand crop, top1=21.72
rand flip, top1=24.09

(b) Aircrafts
0 50 100 150 200 250 300

Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=3.12
rand crop, top1=5.63
rand flip, top1=6.41

(c) Flowers

Figure 9: Fine-tuning with default hyperparameters but different data augmentation methods. Dashed curves
are the validation errors. Strong data augmentation is harder to train as it converge slowly and needs more
number of epochs to observe the advanced performance on datasets such as Aircrafts. Simple data augmentation
usually converge in 10s of epochs.

The effect of data augmentation is dataset dependent and has big impact on the convergence
time The training and validation errors of fine-tuning with different data augmentation strategies
are illustrated in Figure 9. We find that advanced cropping works significantly better on datasets like
Cars, Aircrafts and Flowers but performs worse on Dogs. The choice of data augmentation methods
has dramatic influence to the convergence behaviour. Simpler data augmentation usually converge
very quickly (e.g., in 20 epochs), while the training error for random resized cropping converges
much slower. We see that default hyperparemter and data augmentation method lead to overfitting
on Dogs dataset. This can be solved by disabling momentum as we can see in Table 2, and result in
better performance than random cropping. We can expect that random resized cropping adds extra
variance to the gradient direction and the effect of disabling momentum is more obvious for this case.

Disabling momentum improves performance on datasets that are close to source domains
Here we compare data augmentation methods with different momentum settings. As can be seen in
Table 5, random resized cropping consistently outperforms random cropping on datasets like Cars,
Aircrafts and Flowers. Using momentum improves the performance significantly for both methods.

We see that advanced data augmentation method with default hyperparameters (m = 0.9 and
η = 0.01) leads to overfitting on Dogs and Caltech dataset (Figure 10 (a) and (c)). Random resized
cropping with zero momentum solves this problem and results in better performance than random
cropping. When momentum is disabled for random cropping, the performance is still better for
Dogs, but decreases for other datasets. This can be expected as random cropping produces images
with less variation and noise than random resized cropping, the gradients variation is less random
and momentum can still point to the right direction. This can be further verified as we increase the
learning rate for random cropping, which adds variation to the gradients, and disabling momentum
shows better performance that nonzero momentum on datasets that are close.

5Randomly crop a rectangular region with aspect ratio randomly sampled in [3/4, 4/3] and area randomly
sampled in [8%, 100%] (Szegedy et al., 2015)

15



Under review as a conference paper at ICLR 2020

Table 5: Comparison of data augmentation methods with different momentum values. The rest of the hyperpa-
rameters are: n = 256 and λ = 0.0001.

Data Augmentation m η Dogs Caltech Indoor Birds Cars Flowers Aircrafts

Rand resized crop 0.9 0.01 17.20 14.85 23.76 18.10 9.10 3.12 17.55
0 0.01 11.00 12.11 21.14 17.41 11.06 5.48 20.58

Rand crop

0.9 0.01 11.99 12.42 23.39 20.31 17.77 5.63 21.72
0 0.01 11.35 12.89 25.19 22.11 23.87 7.76 29.04

0.9 0.05 16.85 14.80 23.46 18.81 13.70 4.85 17.64
0 0.05 11.79 12.52 23.24 20.69 20.00 7.06 23.43

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=17.20
rand crop, top1=11.99
rand flip, top1=11.76

(a) Dogs, m = 0.9

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.0, wd=0.0001

rand resized crop, top1=11.00
rand crop, top1=11.35

(b) Dogs, m = 0.0

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40
Er

ro
r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=14.85
rand crop, top1=12.42
rand flip, top1=12.34

(c) Caltech, m = 0.9

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.0, wd=0.0001

rand resized crop, top1=12.11
rand crop, top1=12.89

(d) Caltech, m = 0.0

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=23.76
rand crop, top1=23.39
rand flip, top1=23.31

(e) Indoor, m = 0.9

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.0, wd=0.0001

rand resized crop, top1=21.14
rand crop, top1=25.19

(f) Indoor, m = 0.0

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=18.10
rand crop, top1=20.31

(g) Birds, m = 0.9

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.0, wd=0.0001

rand resized crop, top1=17.41
rand crop, top1=22.11

(h) Birds, m = 0.0

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=9.10
rand crop, top1=17.77

(i) Cars, m = 0.9

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.0, wd=0.0001

rand resized crop, top1=11.07
rand crop, top1=23.87

(j) Cars, m = 0.0

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=17.55
rand crop, top1=21.72
rand flip, top1=24.09

(k) Aircrafts, m = 0.9

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.0, wd=0.0001

rand resized crop, top1=20.58
rand crop, top1=29.04

(l) Aircrafts, m = 0.0

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.9, wd=0.0001

rand resized crop, top1=3.12
rand crop, top1=5.63
rand flip, top1=6.41

(m) Flowers,m = 0.9

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r

resnet101_v2, lr=0.01, bs=256, mom=0.0, wd=0.0001

rand resized crop, top1=5.48
rand crop, top1=7.76

(n) Flowers, m = 0.0

Figure 10: Comparison of data augmentation methods with different momentum values. The rest of
the hyperparameters are: n = 256, η = 0.01 and λ = 0.0001.

16



Under review as a conference paper at ICLR 2020

E SOURCE DOMAINS

Transfer learning from similar source domains helps but does not guarantee good performance
We consider two ImageNet subsets: 449 Natural objects and 551 Man-made objects, following the
splits of (Yosinski et al., 2014) (supplementary materials). From the bottom of Table 6, we can
see that fine-tuning from ImageNet-Natural pre-trained models performs better on Birds and Dogs
dataset, whereas Caltech-256 and Indoor benefit more from ImageNet-Manmade pretrained models.
The performance gap between ImageNet-Manmad and ImageNet-Natural on Cars and Flowers are
not as significant as for Birds and Dogs. It is surprising to see that fine-tuning from ImageNet-
Manmade subset yields worse performance than ImageNet-Natural on the Cars and Indoor dataset.
The fine-tuning results on both subsets do not exceed the pre-trained models with full ImageNet.

Scratch training can outperform fine-tuning with better hyperparameters We further re-
examine the default hyperparameters for scratch training. For most tasks, training from scratch
with default hyperparameters is much worse than fine-tuning from ImageNet. However, after slight
hyperparameter tuning on learning rates, momentum and weight decay, the performance of training
from scratch gets close to the default fine-tuning result (e.g., Cars and Aircrafts). Scratch training
HPO on Cars and Aircrafts even surpasses the default fine-tuning result. Previous studies Kornblith
et al. (2018); Cui et al. (2018) also identified that datasets like Cars, Aircrafts do not benefit too much
from fine-tuning.

Table 6: Fine-tuning results from different source domains. Comparison to existing fine-tuning methods.
FT ImageNet Default is the fine-tuning result with the default hyperparameters. Scratch Train use similar
hyperparameters as default fine-tuning, which are η = 0.1, n = 256, λ = 0.0001 and m = 0.9 with doubled
length of training schedules. HPO refers to the best results with hyperparameter grid search. Note our Indoor
dataset result is fine-tuned from ImageNet. Results of ResNet-101 DELTA refers to (Li et al., 2019), and
Inception-v3 refers to (Cui et al., 2018).

Method Birds Dogs Cars Flowers Aircrafts Caltech Indoor
ResNet-101 DELTA 19.5 11.3 - - - 11.3 -
Inception-v3 299 17.16 15.81 8.69 3.74 14.51 - -
Inception-v3 iNat 299 10.74 21.54 11.69 2.36 17.38 - -
FT ImageNet Default 18.10 17.20 9.10 3.12 17.55 13.42 23.76
FT ImageNet HPO 16.62 9.83 7.66 2.63 14.25 11.61 20.76
FT ImageNet-Nat Default 21.25 17.74 11.03 4.59 22.77 22.88 33.88
FT ImageNet-Man Default 29.43 32.52 13.48 4.70 20.46 18.90 25.26
Scratch Train Default 43.72 38.26 16.73 22.88 26.49 36.21 45.28
Scratch Train HPO 30.08 29.32 8.37 16.51 14.34 29.62 39.36

Pre-trained models on ImageNet-Natural and ImageNet-Manmade We train ResNet-101 from
scratch on each subset using standard hyperparameters, i.e., initial learning rate 0.1, batch size 256,
momentum 0.9. We train 180 epochs, learning rate is decayed at epoch 60 and 120 by a factor of 10.
Table 7 illustrates the Top-1 errors of training ResNet-101 on each source datasets.

Table 7: The performance of ResNet-101 trained on subsets of ImageNet.
Dataset class Top-1 error
ImageNet 1000 21.4
ImageNet-Natural 551 17.6
ImageNet-Manmade 449 27.5

Scratch Training HPO Figure 11 shows the training/validation errors of training from scratch on
each dataset with different learning rate and weight decay. We use initial learning rate 0.1, batch
size 256. For most dataset, we train 600 epochs, and decay the learning rate at epoch 400 and 550
by a factor of 10. The parameters to search is η ∈ [0.1, 0.2, 0.5] and λ ∈ [0.0001, 0.0005] with fixed
momentum 0.9 and batch size 256. We observe weight decay 0.0005 consistently performs better
than 0.0001.

17



Under review as a conference paper at ICLR 2020

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.5, top1=37.14
lr=0.2, top1=36.14
lr=0.1, top1=38.26

(a) Dogs, λ = 0.0001

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60
Er

ro
r

resnet101_v2, bs=256, mom=0.9, wd=0.0005

lr=0.5, top1=32.20
lr=0.2, top1=30.21
lr=0.1, top1=29.32

(b) Dogs, λ = 0.0005

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.2, top1=35.39
lr=0.1, top1=36.21

(c) Caltech, λ = 0.0001

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0005

lr=0.5, top1=32.83
lr=0.2, top1=31.10
lr=0.1, top1=29.62

(d) Caltech, λ = 0.0005

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.5, top1=43.18
lr=0.2, top1=43.25
lr=0.1, top1=45.28

(e) Indoor, λ = 0.0001

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0005

lr=0.5, top1=40.25
lr=0.2, top1=39.36
lr=0.1, top1=39.66

(f) Indoor, λ = 0.0005

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.5, top1=38.97
lr=0.2, top1=43.49
lr=0.1, top1=43.72

(g) Birds, λ = 0.0001

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0005

lr=0.5, top1=34.76
lr=0.2, top1=30.08
lr=0.1, top1=31.20

(h) Birds, λ = 0.0005

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.5, top1=12.00
lr=0.2, top1=14.04
lr=0.1, top1=16.73

(i) Cars, λ = 0.0001

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0005

lr=0.5, top1=9.13
lr=0.2, top1=8.37
lr=0.1, top1=9.48

(j) Cars, λ = 0.0005

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.2, top1=22.50
lr=0.1, top1=26.49

(k) Aircrafts, λ = 0.0001

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0005

lr=0.5, top1=16.08
lr=0.2, top1=14.34
lr=0.1, top1=17.64

(l) Aircrafts, λ = 0.0005

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0001

lr=0.5, top1=20.04
lr=0.2, top1=21.76
lr=0.1, top1=22.88

(m) Flowers, λ = 0.0001

0 100 200 300 400 500 600
Epochs

0

10

20

30

40

50

60

Er
ro

r

resnet101_v2, bs=256, mom=0.9, wd=0.0005

lr=0.5, top1=17.55
lr=0.2, top1=16.51
lr=0.1, top1=16.70

(n) Flowers, λ = 0.0005

Figure 11: Training from scratch with different learning rates and weight decays. The batch size is
256 and the momentum is 0.9.

18


	Introduction
	Related Work
	Tuning Hyperparameters for Fine-tuning
	Experimental Settings
	Effect of Momentum and Domain Similarity
	Coupled Hyperparameters and the View of Effective Learning Rate
	The choice of Regularization

	Discussion
	Search Optimal Momentum on Birds
	Verfiication on Different Architectures
	Experimental Settings for the comparison between L2 and L2-SP
	Data Augmentation
	Source Domains

