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ABSTRACT

We are interested in the optimization of a high-dimensional function when only
function evaluations are possible. Although this derivative-free setting arises in
many applications, existing methods suffer from high sample complexity since
their sample complexity depend on problem dimensionality, in contrast to the
dimensionality-independent rates of first-order methods. The recent success of
deep learning methods suggests that many data modalities lie on low-dimensional
manifolds that can be represented by deep nonlinear models. Based on this ob-
servation, we consider derivative-free optimization of functions defined on low-
dimensional manifolds. We develop an online learning approach that learns this
manifold while performing the optimization. In other words, we jointly learn
the manifold and optimize the function. Our analysis suggests that the proposed
method significantly reduces sample complexity. We empirically evaluate the
presented method on continuous optimization benchmarks and high-dimensional
continuous control problems. Our method achieves significantly lower sample
complexity than Augmented Random Search and other derivative-free optimiza-
tion algorithms.

1 INTRODUCTION

A typical approach to machine learning problems is to define an objective function and optimize
it over a dataset. First-order optimization methods are widely used for this purpose since they can
scale to high-dimensional problems and their convergence rates are independent of the problem
dimensionality in most cases. However, gradients are not available in many essential tasks such as
control, black-box optimization, or interactive learning with humans in the loop. Derivative-free
optimization (DFO) can be used to tackle such problems. However, the sample complexity of DFO
methods scales poorly with the problem dimensionality. Thus a major open problem is to design
DFO methods that solve high-dimensional problems with low sample complexity.

The success of deep learning methods suggests that high-dimensional real-world data can be repre-
sented in low-dimensional spaces via learned non-linear features. In other words, while the problems
of interest are high-dimensional, the data typically lies on low-dimensional manifolds. If we could
perform the optimization directly in the manifold instead of the full space, intuition suggests that we
could improve the sample complexity of DFO methods since their convergence rates are generally a
function of the problem dimensionality (see analysis by Nesterov & Spokoiny (2017); Dvurechen-
sky et al. (2018)). In this paper, we focus on high-dimensional data distributions that are drawn from
low-dimensional manifolds. Since the manifold is typically not known prior to the optimization, we
pose the question: Can we develop an adaptive derivative-free optimization algorithm that learns
the manifold in an online fashion while performing the optimization?

There exist DFO methods that aim to identify a low-dimensional search space (Maheswaranathan
et al., 2018; Choromanski et al., 2019). However, they are limited to linear subspaces. In contrast,
we propose to use highly expressive, nonlinear models (specifically, neural networks) to represent
the manifold. Our approach not only increases expressiveness but also enables utilization of domain
knowledge on the geometry of the problem. For example, if the function of interest is known to be
translation invariant, convolutional networks could be deployed to represent the underlying mani-
fold structure. On the other hand, the high expressive power and flexibility brings challenges. Our
approach requires solving for the parameters of the nonlinear manifold at each iteration of the opti-
mization. To address this, we develop an efficient online method that learns the underlying manifold
while the function is being optimized.
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We specifically consider random search methods and extend them to the nonlinear manifold learning
setting. Random search methods choose a set of random directions and perform perturbations to the
current iterate in these directions. Differences of the function values computed at perturbed points
are known to be an unbiased estimate of the directional derivatives. We first extend this to a random
search over a known manifold and show that sampling directions in the tangent space of the manifold
provides an unbiased estimate of the gradient. We further propose an online learning method that
estimates this manifold while jointly performing the optimization. We theoretically analyze the
sample complexity and show that our method reduces sample complexity. We conduct extensive
experiments on learning continuous control, continuous optimization benchmarks, and gradient-free
optimization of an airfoil. The results indicate that our method significantly outperforms prior work.

2 PRELIMINARIES

We are interested in high-dimensional stochastic optimization problems of the form

min
x∈Rd

f(x) = Eξ[F (x, ξ)], (1)

where x is the optimization variable and f : Rd → R is the function of interest, which is defined
as expectation over a noise ξ. We assume that the stochastic function is bounded (|F (x, ξ)| ≤ Ω),
L−Lipschitz and µ−smooth 1 with respect to x for all ξ, and has uniformly bounded variance
(Eξ[(F (x, ξ)− f(x))2] ≤ VF ). In DFO, we have no access to the gradients. Instead, we only have
zeroth-order access by evaluating the function F (i.e. sampling F (x, ξ) for the input x).

We are specifically interested in random search methods in which an unbiased estimate of the gra-
dient is computed using function evaluations at points randomly sampled around the current iterate.
Before we formalize this, we introduce some definitions. Denote the d-dimensional unit sphere and
unit ball by Sd−1 and Bd, respectively. Furthermore, we define a smoothed function following Flax-
man et al. (2005). For a function f : Rd → R, its δ-smoothed version is f̂(x) = Ev∼Bd [f(x + δv)].
The main workhorse of random search is the following result by Flaxman et al. (2005). Let s be a
random vector sampled from the uniform distribution over Sd−1. Then f(x + δs)s is an unbiased
estimate of the gradient of the smoothed function:

Eξ,s∈Sd−1 [F (x + δs, ξ)s] =
δ

d
∇xf̂(x). (2)

We use antithetic samples since this is known to decrease variance (Kroese et al., 2013) and define
the final gradient estimator as y(x, s) = (F (x + δs, ξ)− F (x− δs, ξ)) s. Moreover, extending (2)
to the antithetic case, Eξ,s∈Sd−1 [y(x, s)] = 2δ

d ∇xf̂(x).

A simple way to optimize the function of interest is to use the unbiased gradient estimate in stochas-
tic gradient descent (SGD), as summarized in Algorithm 1. This method has been analyzed in
various forms and its convergence is characterized well for nonconvex smooth functions. We restate
the convergence rate and defer the constants and proof to Appendix A.2.
Proposition 1 (Flaxman et al., 2005; Vemula et al., 2019). Let f(x) be differentiable, L-Lipschitz,
and µ-smooth. Consider running random search (Algorithm 1) for T steps. Let k = 1 for simplicity.
Then

1

T

T∑
i=1

E‖∇xf(xt)‖22 ≤ O
(
T−

1
2 d+ T−

1
3 d

2
3

)
.

3 ONLINE LEARNING TO GUIDE RANDOM SEARCH

Proposition 1 implies that the sample complexity of random search scales linearly with the dimen-
sionality. This dependency is problematic when the function of interest is high-dimensional. We
argue that for many practical problems, the function of interest lies on a low-dimensional nonlinear
manifold. This structural assumption will allow us to significantly reduce the sample complexity of
random search, without knowing the manifold a priori.

1L−Lipschitz and µ-smooth: |f(x)−f(y)| ≤ µ‖x−y‖2 and ‖∇xf(x)−∇xf(y)‖2 ≤ µ‖x−y‖2 ∀x,y
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Algorithm 1 Random Search

1: for t = 1 to T do
2: gt, = GRADEST(xt, δ)
3: xt+1 = xt − αgt
4: end for

Algorithm 2 Manifold Random Search

1: for t = 1 to T do
2: gt, = MANIFOLDGRADEST(xt,J(xt; θ?))
3: xt+1 = xt − αgt
4: end for

1: procedure GRADEST(x, δ)
2: Sample: s1, . . . , sk ∼ Sd−1

3: Query: yi = f(x + δsi)− f(x− δsi)
4: Estimator: g = d

2δ

∑k
i=1 yisi

5: return g, {si}i∈[k]

6: end procedure

1: procedure MANIFOLDGRADEST(x, θ,δ)
2: Normalize: Jq = GramSchmidt(J)
3: Sample: s1, . . . , sk ∼ Sn−1

4: Query: yi = f(x + δJqsi)− f(x− δJqsi)
5: Estimator: g = n

2δ

∑k
i=1 yiJqsi

6: return g, {Jqsi}i∈[k]

7: end procedure

Assume that the function of interest is defined on an n-dimensional manifold (n� d) and this
manifold can be defined via a nonlinear parametric family (e.g. a neural network). Formally, we are
interested in derivative-free optimization of functions with the following properties:

• Smoothness: F (·, ξ) : Rd → R is µ-smooth and L-Lipschitz for all ξ.
• Manifold: F (·, ξ) is defined on an n-dimensional manifoldM for all ξ.
• Representability: The manifoldM and the function of interest can be represented using

parametrized function classes r(·; θ) and g(·;ψ). Formally, given ξ, there exist θ?, ψ? such
that F (x, ξ) = g(r(x; θ?);ψ?) ∀x ∈ Rd.

We will first consider an idealized setting where the manifold is already known (i.e. we know θ?).
Then we will extend the developed method to the practical setting where the manifold is not known
in advance and must be estimated with no prior knowledge as the optimization progresses.

3.1 WARM-UP: RANDOM SEARCH OVER A KNOWN MANIFOLD

If the manifold is known a priori, we can perform random search directly over the manifold instead
of the full space. Consider the chain rule applied to g(r(x; θ);ψ) as ∇xf(x) = J(x; θ?)∇rg(r),
where J(x; θ?) = ∂r(x;θ?)/∂x and r = r(x, θ?). The gradient of the function of interest lies in the
column space of the Jacobian of the parametric family. In light of this result, we can perform random
search in the column space of the Jacobian, which is lower-dimensional than the full space.

For numerical stability, we will first orthonormalize the Jacobian using the Gram-Schmidt proce-
dure, and perform the search in the column space of this orthonormal matrix since it spans the same
space. We denote the orthonormalized version of J(x; θ?) by Jq(x; θ?).

In order to perform random search, we sample an n-dimensional vector uniformly s̃ ∼ Sn−1, and
lift it to the input space via Jq(x; θ?)s̃. As a consequence of the manifold Stoke’s theorem, using
the lifted vector as a random direction gives the gradient of the manifold smoothed function as

Eξ,s∈Sn−1 [y(x,Jq(x; θ?)s̃)] =
2δ

n
∇xf̃θ?(x), (3)

where the manifold smoothed function is defined as f̃θ?(x) = Eṽ∼Bn [f(x + δJq(x; θ?)ṽ)]. We
show this result as Lemma 1 in Appendix A.1. We use the resulting unbiased gradient in SGD. The
following proposition summarizes the sample complexity of this method. The constants and the
proof are given in Appendix A.2.
Proposition 2. Let f(x) be differentiable, L-Lipschitz, and µ-smooth. Consider running manifold
random search (Algorithm 2) for T steps. Let k = 1 for simplicity. Then

1

T

T∑
i=1

E‖∇xf(xt)‖22 ≤ O
(
T−

1
2n+ T−

1
3n

2
3

)
.

3.2 JOINT OPTIMIZATION AND MANIFOLD LEARNING

When n� d, the improvement in the sample complexity of random search (summarized in Propo-
sition 2) is significant. However, the setting of Algorithm 2 and Proposition 2 is impractical since
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the manifold is generally not known a priori. We thus propose to minimize the function and learn
the manifold jointly. In other words, we start with an initial guess of the parameters and solve for
them at each iteration using all function evaluations that have been performed so far.

Our major objective is to improve the sample efficiency of random search. Hence, minimizing the
sample complexity with respect to manifold parameters is an intuitive way to approach the problem.
We analyze the sample complexity of SGD using biased gradients in Section A.3.1 and show the
following informal result. Consider running manifold random search with a sequence of manifold
parameters θ1, ψ1, . . . , θT , ψT for T steps. Then the additional suboptimality caused by biased
gradients, defined as SUBOPTIMALITY = 1

T

∑T
t=1 E[∇xf(x)], is bounded as follows:

SUBOPTIMALITY(θt, ψt) ≤ SUBOPTIMALITY(θ?, ψ?)+
Ω

T

T∑
t=1

‖∇xf̃θ?(xt)−∇xg(r(xt; θt);ψt)‖2, (4)

where SUBOPTIMALITY(θ?, ψ?) is the suboptimality of the oracle case (Algorithm 2). Our aim is
to minimize the additional suboptimality with respect to θt, ψt. However, we do not have access to
∇xf(x) since we are in a derivative-free setting. Hence we cannot directly minimize (4).

At each iteration, we observe y(xt, st). Moreover, y(xt, st) = 2δst
ᵀ∇xF̃ (xt, ξ) +O(δ2) follow-

ing the smoothness . Since we observe the projection of the gradient to the chosen directions, we
minimize the projection of (4) to these directions. Formally, we define our one-step loss as

L(xt, st, θt, ψt) =

(
y(xt, st)

2δ
− st

ᵀ∇xg(r(xt; θt);ψt)

)2

. (5)

We use the follow the regularized leader (FTRL) algorithm (Hazan, 2016; Shalev-Shwartz, 2012) to
minimize the aforementioned loss function and learn the manifold parameters as

θt+1, ψt+1 = arg min
θ,ψ

t∑
i=1

L(xi, si, θ, ψ) + λR(θ, ψ), (6)

where the regularizer (R(θ, ψ) = ‖∇xg(r(xt; θt);ψt) − ∇xg(r(xt; θ);ψ)‖2) is the temporal
smoothness term which enforces that gradient estimates do not change significantly.

Algorithm 3 summarizes our algorithm. We add exploration by sampling a mix of directions from
the manifold and the full space. In each iteration, we sample directions and produce two gradient
estimates gm,ge using the samples from the tangent space and the full space, respectively. We mix
them to obtain the final estimate g = (1 − β)gm + βge. We discuss the implementation details of
the FTRL step in Section 4. In our theoretical analysis, we assume that (6) can be solved optimally.
Although this is a strong assumption, experimental results suggest that neural networks can easily
fit any training data (Zhang et al., 2017). Our experiments also support this observation.

Theorem 1 states our main result concerning the sample complexity of our method. As expected,
the sample complexity of our method includes both the input dimensionality d and the manifold
dimensionality n. On the other hand, the sample complexity only depends on n

√
d rather than d.

Thus our method significantly decreases sample complexity when n� d.
Theorem 1. Let f(x) be bounded, L-Lipschitz and µ-smooth. Consider running learned manifold
random search (Algorithm 3) for T steps. Let ke = 1, km = 1 for simplicity. Then

1

T

T∑
i=1

E‖∇xf(xt)‖22 ≤ O
(
d

1
2T−1 + (d

1
2 + n+ nd

1
2 )T−

1
2 + (n

2
3 + d

1
2n

2
3 )T−

1
3

)
.

Proof sketch. We provide a short proof sketch here and defer the detailed proof and constants to
Appendix A.3. We start by analyzing SGD with bias. The additional suboptimality of using θt, ψt
instead of θ?, ψ? can be bounded by (4).

The empirical loss we minimize is the projection of (4) to randomly chosen directions. Next, we
show that the expectation of the empirical loss is (4) when the directions are chosen uniformly at
random from the unit sphere:

Est∈Sd−1

[
L(xt, st, θt, ψt)

]
=

1

dT

T∑
t=1

‖∇xf̃θ?(xt)−∇xg(r(xt; θt);ψt)‖2. (7)
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A crucial argument in our analysis is the concentration of the empirical loss around its expectation.
In order to study this concentration, we use Freedman’s inequality (Freedman, 1975), similar to the
seminal work studying the generalization of online learning (Kakade & Tewari, 2009). This analysis
bounds the difference

∣∣∣Est∈Sd−1

[∑T
t=1 Lt

]
−
∑T
t=1 Lt

∣∣∣, where Lt = L(xt, st, θt, ψt).

Next, we use the FTL-BTL Lemma (Kalai & Vempala, 2005) to analyze the empirical loss
∑T
t=1 Lt.

We bound the empirical loss in terms of the distances between the iterates
∑T
t=1 ‖xt+1 − xt‖2.

Such a bound would not be useful in an adversarial setting since adversary chooses xt, but we
choose appropriate step sizes resulting in sufficiently small steps for convergence.

Our analysis of learning requires the directions to be sampled from a unit sphere in (7). On the
other hand, our optimization method requires directions to be chosen from the tangent space of the
manifold. We mix exploration (directions sampled from Sd−1) and exploitation (directions sampled
from the tangent space of the manifold) to solve this mismatch. We show that the mixing weight
β = 1/d results in both fast optimization and no-regret learning. Finally, we combine analysis of
empirical loss, concentration, and analysis of SGD to obtain the statement of the theorem.

4 IMPLEMENTATION DETAILS AND LIMITATIONS

Parametric family. We use multilayer perceptrons (4 to 6 layers depending on the problem) with
ReLU nonlinearities to define g and r. We initialize our models with standard normal distribu-
tions. Thus, our method thus starts with pure random search at initialization and then moves to full
manifold random search as online learning progresses (see Appendix B for more details).

Solving FTRL. Results on training deep networks suggest that local SGD-based methods perform
well. Hence we use SGD with momentum as a solver for FTRL in (6). We do not solve each learning
problem from scratch but initialize with the previous solution. Since this process may be stymied by
local optima, we fully solve (6) from scratch for every 100th iteration of the method.

Computational complexity. Our method increases the amount of computation since we need to
learn a model while performing the optimization. However, in DFO, the major computational bot-
tleneck is typically the function evaluation. When efficiently implemented on a GPU, total time
spent on learning the manifold is negligible in comparison to function evaluations.

Parallelization. Random search is highly parallelizable since directions can be processed in-
dependently. Communication costs include i) sending the current iterate to workers, ii) send-
ing directions to each corresponding worker, and iii) each worker sending the function val-
ues back. When the directions are chosen independently, they can be indicated to each
worker via a single integer by first creating a shared For a d-dimensional problem with
k random directions, these costs are d, k, and k, respectively.noise table in preprocessing.
Thus the total communica-
tion cost becomes d + 2k.
In our method, each worker
also needs a copy of the Ja-
cobian, resulting in a com-
munication cost of d+2k+
kd. Hence our method in-
creases communication cost
from d+ 2k to d+ 2k+kd.

Algorithm 3 Learned Manifold Random Search

1: for t = 1 to T do
2: gte,S

t
e = GRADEST(xt, δ)

3: gtm,S
t
m = MANIFOLDGRADEST(xt,J(xt; θt))

4: gt = βke
ke+km

gte + (1−β)km
ke+km

gtm
5: xt+1 = xt − αgt
6: θt+1, ψt+1 = arg minθ,ψ

∑t
i=1 L(xi,Sie,m, θ, ψ) + λR(θ, ψ)

7: end for
See Algorithms 1 & 2 for definitions of GRADEST and MANIFOLDGRADEST.

5 EXPERIMENTS

In order to empirically evaluate our method, we perform experiments on three sets of problems. i)
We use the MuJoCo simulator (Todorov et al., 2012) to evaluate our method on high-dimensional
control problems. ii) We use widely used continuous optimization benchmarks and select 46 single-
objective unconstrained functions from the Pagmo problem suite (Biscani et al., 2019). iii) We use
the XFoil simulator (Drela, 1989) to evaluate our method on gradient-free optimization of an airfoil.
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Figure 1: Average reward vs. number of episodes for MuJoCo locomotion tasks. We perform 5
random experiments with different seeds. Shaded areas represent 1 standard deviation. The grey
horizontal line indicates the prescribed threshold at which the task is considered ‘solved’.

We consider the following baselines. i) Augmented Random Search (ARS): Random search with
all the augmentations from Mania et al. (2018). ii) Guided ES (Maheswaranathan et al., 2018): A
recently proposed method to guide random search by adapting the covariance matrix. iii) CMA-
ES (Hansen, 2016): Adaptive derivative-free optimization based on evolutionary search. Although
CMA-ES is not based on a random search, we include it for the sake of completeness.

5.1 LEARNING CONTINUOUS CONTROL

Following the setup of Mania et al. (2018), we use random search to learn control of highly artic-
ulated systems. The MuJoCo locomotion suite (Todorov et al., 2012) includes six problems with
various difficulties, and we evaluate our method and the baselines on them. We use linear poli-
cies and include all the tricks (whitening the observation space and scaling the step size using the
variance of the rewards) from Mania et al. (2018). We report average reward over five random ex-
periments versus the number of episodes (i.e. number of function evaluations) in Figure 1. We also
report the average number of episodes required to reach the prescribed reward threshold at which the
task is considered ‘solved’ in Table 1. We include proximal policy optimization (PPO) (Schulman
et al., 2017) from stable-baselines (Hill et al., 2018) for reference. Note that our results are slightly
different from the numbers reported by Mania et al. (2018) as we use 5 random seeds instead of 3.

The results suggest that our method improves upon ARS in all environments. Our method also
outperforms all other baselines. The improvement is significant for high-dimensional problems like
Humanoid. Our method is at least twice as efficient as ARS in all environments except Swimmer,
which is the only low-dimensional problem in the suite. Interestingly, Guided-ES fails to solve the
Humanoid task, which we think is due to biased gradient estimation. Moreover, CMA-ES performs
similarly to ARS. These results suggest that a challenging task like Humanoid is out of reach for
heuristics like local adaptation of the covariance matrix due to high stochasticity and non-convexity.

Self Baselines

Task Treshold LMRS ARS CMA-ES GuidedES PPO No learning Offline l.

Swimmer 325 222 381 460 640 790 320 325
Hopper 3120 2408 6108 14640 5288 10397 5561 (4/5) 11616
HalfCheetah 3430 1128 4284 2888 8004 6820 6528 3416
Walker 4390 15525 31240 96525 62544 102440 295493 (3/5) 118640
Ant 3580 9240 20440 154440 152400 52553 24520(4/5) 63720(2/5)
Humanoid 6000 108133 220733 1923030 658658 200430 267260(2/5) 451260(2/5)

Table 1: Number of episodes required to reach the prescribed threshold on each MuJoCo locomotion
task for our method, baselines, and ablations. Lower is better. We average over five random seeds.
We denote the number of successful trials as (success/trial) and average over successful trials only.
If the number of successful trials is not noted, the method solved the task for all random seeds.
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Quantifying manifold learning performance.
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Figure 2: Manifold learning accuracy. We plot
1
T

∑T
t=1 ‖∇xf(xt)−PJq(xt,θt)(∇xf(xt))‖2. In

order to estimate the gradient, we use GRADEST
with a high number of directions.

In order to evaluate the learning performance,
we project the gradient of the function to the
tangent space of the learned manifold and plot
the norm of the residual. Since we do not
have access to the gradients, we estimate them
at 30 time instants, evenly distributed through
the learning process. We perform an accu-
rate gradient estimation using a very large
number of directions (2000). We compute
the norm of the residual of the projection as
1
T

∑T
t=1 ‖∇xf(xt) − PJq(xt,θt)(∇xf(xt))‖2,

where PA(·) is a projection operator to the col-
umn space of A. We plot the results in Figure 2.
As the figure suggests, our method successfully
and quickly learns the manifold in all cases.

Ablation studies. Our method uses three major ideas. i) We learn a manifold that the function lies
on. ii) We learn this manifold in an online fashion. iii) We perform random search on the learned
manifold. To study the impact of each of these ideas, we perform the following experiments. i) No
learning: We randomly initialize the manifold r(·; θ) by sampling the entries of θ from the standard
normal distribution. Then, we perform a random search on this random manifold. ii) No online
learning: We collect an offline training dataset by sampling xi values uniformly at random from a
range which includes the optimal solutions. We evaluate function values at sampled points and learn
the manifold. We use the learned model in a random search without any update. iii) No search: We
use the gradients of the estimated function (∇xg(r(x; θt)ψt)) as surrogate gradients and minimize
the function of interest using first-order methods.

We list the results in Table 1 and do not include the no-search baseline since it fails to solve any of
the tasks. In other words, the estimated functions are powerful enough to guide the search, but they
are not accurate enough to optimize. This is not surprising since a tangent space is a local property
whereas optimality is a global one. The no-learning baseline outperforms random search in lower-
dimensional tasks, but fails in the high-dimensional setting, suggesting that a random set of features
is good enough for low-dimensional problems but not for high dimensionalities. Although the offline
learning baseline solves more tasks than the no-learning one, it has worse sample complexity since
initial offline sampling is expensive. This study indicates that all three of the ideas we use are crucial.

5.2 CONTINUOUS OPTIMIZATION BENCHMARKS

We use continuous optimization problems from the Pagmo problem suite (Biscani et al.,
2019). This benchmark includes minimization of 46 widely used functions such as
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Figure 3: Performance profiles of our method and
baselines on an optimization benchmark.

Rastrigin, Rosenbrock, Schwefel, etc. (See
Appendix B for the complete list.) We use
ten random starting points and report the av-
erage number of function evaluations required
to reach a stationary point. Figure 3 reports
the results as performance profiles (Dolan &
Moré, 2002). Performance profiles represent
how frequently a method is within distance
τ of optimality. Specifically, when we de-
note the number of function evaluations that
a method m requires to solve problem p as
Tm(p) and the optimal number of function
evaluations as T ?(p) = minm Tm(p), the per-
formance profile is the fraction of problems for
which the method is within τ of optimality:
1
Np

∑
p 1[Tm(p) − T ?(p) ≤ τ ], where 1[·] is

the indicator function and Np is the number of
problems.
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Airfoil after 1500 Simulations

Initialization ARS GuidedES CMA-ES LMRS

Lift −0.229 0.567 1.231 1.418 2.0126
Drag 0.040 0.007 0.0598 0.0249 0.0389

Foil

Table 2: Generated airfoils with their lift and drag values after 1500 calls to XFoil (Drela, 1989).

Figure 3 suggests that our method outperforms all baselines. More importantly, for a modest τ
(∼ 10), our method is optimal on almost all problems. This is not surprising because most of the
functions lie on low-dimensional manifolds since they are defined as non-convex functions of some
statistics. Moreover, both CMA-ES and Guided-ES outperform ARS. CMA-ES and Guided-ES
perform similarly: there is no statistically significant difference between them. Although many of
the functions have low-dimensional manifold structure, they are highly non-convex and nonlinear.
The results indicate that linear covariance adaptation does not capture this complexity.

5.3 OPTIMIZATION OF AN AIRFOIL

We apply our method to gradient-free optimization of a 2D airfoil. We use a widely used computa-
tional fluid dynamics (CFD) simulator, XFoil (Drela, 1989), which can simulate an airfoil using its
contour plot. We parametrize the airfoils using smooth polynomials of up to 36 degrees. We model
the upper and lower parts of the airfoil with different polynomials. The dimensionality of the prob-
lem is thus 72. XFoil can simulate various viscosity properties, speeds, and angles of attack. We
discuss the implementation details in Appendix B. We plot the resulting airfoil after 1500 simulator
calls in Table 2. We also report the lift and drag of the resulting shape. The reward function we op-
timize is LIFT−DRAG. Table 2 suggests that all methods find airfoils that can fly (LIFT > DRAG).
Our method yields the highest LIFT − DRAG.

6 RELATED WORK

Derivative-free optimization. We summarize the work on DFO that is relevant to our paper. For a
complete review, readers are referred to Custódio et al. (2017) and Conn et al. (2009). We are specif-
ically interested in random search methods, which have been developed as early as Matyas (1965)
and Rechenberg (1973). Convergence properties of these methods have recently been analyzed by
Agarwal et al. (2010); Bach & Perchet (2016); Nesterov & Spokoiny (2017), and Dvurechensky
et al. (2018). A lower bound on the sample complexity for the convex case has been given by Duchi
et al. (2015) and Jamieson et al. (2012). Bandit convex optimization is also highly relevant and we
utilize the work of Flaxman et al. (2005) and Shamir (2013).

Random search for learning continuous control. Learning continuous control is an active research
topic that has received significant interest in the reinforcement learning community. Recently, Sal-
imans et al. (2017) and Mania et al. (2018) have shown random search methods to be competitive
with state-of-the-art policy gradient methods in this setting. Vemula et al. (2019) analyzed this
phenomenon theoretically and characterized the sample complexity of random search and policy
gradient methods for continuous control.

Adaptive random search. There are various methods in the literature that adapt the search space by
using anisotropic covariance as in the case of CMA-ES (Hansen et al., 2003; Hansen, 2016), guided
evolutionary search (Maheswaranathan et al., 2018), and active subspace methods (Choromanski
et al., 2019). There are also methods that enforce structure such as orthogonality in the search
directions (Choromanski et al., 2018). There are also methods that use information geometry tools
as in Wierstra et al. (2014) and Glasmachers et al. (2010). When a neuro-evolutionary search is
used, Lehman et al. (2018) uses gradient magnitudes of the models to guide the search. As a slightly
different approach, Staines & Barber (2012) use a variational lower bound to guide the search. In
contrast to these methods, we explicitly make a nonlinear manifold assumption and directly learn
this manifold via online learning. Our method is the only one which can learn an arbitrary nonlinear
search space given a parametric class defining the geometry.

8
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Adaptive Bayesian optimization. Bayesian optimization (BO) is another approach to zeroth-order
optimization. Although BO methods typically do not scale to the dimensionalities of the problems
we consider, some of the ideas we use have been utilized in BO. Calandra et al. (2016) used the
manifold assumption for Gaussian processes. In contrast to our method, they use autoencoders for
learning the manifold, which requires offline data. Similarly, Djolonga et al. (2013) consider the case
where the function of interest lies on some linear manifold and collect offline data to identify this
manifold. In contrast, we only use online information and our models are nonlinear. One interesting
approach is using random low-dimensional features instead of adaptation as proposed by Wang et al.
(2016) and later utilized by Kirschner et al. (2019). Finally, Rolland et al. (2018) design adaptive BO
methods for additive models. Major distinctions between our work and the adaptive BO literature
include our use of nonlinear manifolds, performing no offline exploration, and posing the problem
as online learning.

7 CONCLUSION

We described an approach to high-dimensional derivative free optimization. Our approach is based
on the online learning of the underlying structure of the problem while performing the optimization.
Our experiments suggest that the resulting method is effective in a wide range of problems and
significantly increases the sample efficiency.
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A PROOFS

A.1 GRADIENT ESTIMATOR

In this section, we show that when random directions are sampled in the column space of the or-
thonormal matrix U, perturbations give biased gradient estimates of the manifold smoothed func-
tion. Moreover, when U = U?, resulting gradients are unbiased. We formalize this with the
following lemma.

Lemma 1. Let U? be an orthonormal basis for the tangent space of the n-dimensional manifoldM
at point x ∈ M, U be another orthonormal matrix, and f be a function defined on this manifold.
Fix δ > 0. Then

Es∼Sn−1 [f(x + δUs)Us] =
δ

n
∇xf̃U(x) + BIAS(U)

where BIAS(U) = Es∈Sn−1 [f(x + δUs)[U−U?]s]. Moreover, bias is 0 and the resulting estima-
tor is unbiased when U = U?.

Proof. Without loss of generality, we can assume detU = 1 and detU? = 1. Using this remark, we
can state the proof of the lemma as the straightforward application of the manifold Stoke’s theorem

Es∈Sn−1 [f(x + δUs)Us] = Es∈Sn−1 [f(x + δUs)U?s] + Es∈Sn−1 [f(x + δUs)[U−U?]s]

(a)
=

1

vol(δSn−1)

∫
δSn−1

f(x + δUs)U?sds + Es∈Sn−1 [f(x + δUs)[U−U?]s]︸ ︷︷ ︸
BIAS(U)

=
1

vol(δSn−1)

∫
δSn−1

f(x + δUs)U? detU? s

‖s‖
ds + BIAS(U)

(b)
=

1

vol(δSn−1)
∇x

∫
δBn

f(x + δUv)dv + BIAS(U)

=
vol(δBn)

vol(δSn−1)
∇x

∫
δBn f(x + δUv)dv

vol(δBn)
+ BIAS(U)

(c)
=

δ

n
∇xf̃U(x) + BIAS(U).

(8)

where vol denotes volume, and we use the definition of the expectation in (a, c), manifold Stoke’s
theorem in (b) and the fact that the ratio of volume to the surface area of a n−dimensional ball of
radius δ is δ

n in (c). Moreover, bias vanishes when U = U?.

A.2 SAMPLE COMPLEXITY FOR RANDOM SEARCH AND MANIFOLD RANDOM SEARCH

In this section, we bound the sample complexity of the random search (Algorithm 1) and the man-
ifold random search (Algorithm 2). Our analysis starts with studying the relationship between the
function (f ) and its smoothed (f̂ ) as well as manifold smoothed (f̃U) versions in section A.2.2. We
show that L−Lipschitzness and µ−smoothness of the function extend to the smoothed functions.
Moreover, we also bound the difference between the gradients of the original function and the gra-
dients of the smoothed versions. Next, we study the second moment of the gradient estimator in
section A.2.3. Finally, we state the sample complexity of SGD on non-convex functions in sec-
tion A.2.1. Combining these results, we state the final sample complexity of random search and
manifold random search in section A.2.4&A.2.5.

A.2.1 CONVERGENCE OF SGD FOR NON-CONVEX FUCTIONS

The convergence of the SGD has been widely studied and here we state its convergence result for
non-convex functions from Ghadimi & Lan (2013) as a Lemma and give its proof for the sake of
completeness.

Lemma 2 (Convergence of SGD (Ghadimi & Lan, 2013; Vemula et al., 2019)). Consider running
SGD on f(x) that is µ-smooth and L-Lipschitz for T steps starting with initial solution x0. Denote

12
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Ω0 = f(x0)− f(x?) where x? is the globally optimal point and assume that the unbiased gradient
estimate has second moment bounded with V . Then,

1

T

T∑
t=1

E‖∇xf(xt)‖22 ≤
√

8Ω0µV

T
(9)

Proof. We denote the step size as α and the unbiased gradient estimate as gt. We analyze the step
at t as;

f(xt+1) = f(xt − αgt)

≤ f(xt)− α∇xf(xt)ᵀgt +
µα2

2
‖gt‖22

(10)

where we used the µ−smoothness of the function. Taking expectation of the inequality,

Egt [f(xt+1)] ≤ f(xt)− α‖∇xf(xt)‖22 +
µα2

2
E[‖gt‖22] (11)

Using the bounded second moment of the gradient, and summing from step 1 to T ,

T∑
t=1

Egt [f(xt+1)] ≤
T∑
t=1

f(xt)− α
T∑
t=1

‖∇xf(xt)‖22 +
µα2TV

2
(12)

Re-arranging the terms, we obtain,

T∑
t=1

‖∇xf(xt)‖22 ≤
1

α
Eg0,...,gt [f(x0)− f(xt+1)] +

µαTV

2

≤ ∆0

α
+ µTαV

(13)

Set α =
√

2∆0

µTV , and divide the inequality to T in order to obtain the required inequality as

1

T

T∑
t=1

‖∇xf(xt)‖22 ≤
√

8∆0µV

T
. (14)

A.2.2 PRELIMINARY RESULTS ON SMOOTHED FUNCTIONS

First, we will show that the µ−smoothness and L− Lipschitness properties of f applies to f̂ and f̃ .

|f̃U(x1)− f̃U(x2)| = |Ev∈Bn [f(x1 + δUv)]− Ev∈Bn [f(x2 + δUv)]|
= |Ev∈Bn [f(x1 + δUv)− f(x2 + δUv)]|
≤ |Ev∈Bn

[L‖x1 − x2‖2]|
(a)
= L‖x1 − x2‖2

(15)

where we use L−Lipschitz continuity of f in (a), and,

‖∇f̃U(x1)−∇f̃U(x2)‖2 = ‖∇Ev∈Bn [f(x1 + δUv)]−∇Ev∈Bn [f(x2 + δUv)]‖2
= ‖Ev∈Bn [∇f(x1 + δUv)]− Ev∈Bn [∇f(x2 + δUv)]‖2
= ‖Ev∈Bn [∇f(x1 + δUv)−∇f(x2 + δUv)]‖2
(b)

≤ Ev∈Bn [‖∇f(x1 + δUv)−∇f(x2 + δUv)‖2]

(c)

≤ µ‖x1 − x2‖2

(16)
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where we use Jensen’s inequality and convexity of the norm in (b) and µ−smoothness of f in (c).
Hence, µ−smoothness and L− Lipschitness applies to f̃U for any U. Take n = d and U = I, then
the µ−smoothness and L− Lipschitness applies to f̂ .

Next, we will study the impact of using the gradients of the smoothed function instead of the original
function.

1

T

T∑
t=1

‖∇xf(x)‖22 =
1

T

T∑
t=1

‖∇xf(x)−∇xf̃U(x) +∇xf̃U(x)‖22

≤ 2

T

T∑
t=1

‖∇xf(x)−∇xf̃U(x)‖22 +
2

T

T∑
t=1

‖∇xf̃U(x)‖22.

(17)

where we use ‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22. We further bound the left term as

‖∇xf(x)−∇xf̃U(x)‖22 = ‖∇xf(x)−∇xEv∼Bn
[f(x + δUv)]‖22

(a)
= ‖Ev∼Bn

[∇xf(x)−∇xf(x + δUv)]‖22
(b)

≤ ‖Ev∼Bn
[δµ‖Uv‖2]‖22

(c)

≤ δ2µ2

(18)

using dominated convergence theorem in (a), the µ−smoothness of f in (b) and orthonormality of
U and the fact that norm of any point in a unit ball is bounded by 1. By taking n = d and U = I,
this result also implies the same for f̂ . Hence,

1

T

T∑
t=1

‖∇xf(x)‖22 ≤
2

T

T∑
t=1

‖∇xf̂(x)‖22 + 2δ2µ2

1

T

T∑
t=1

‖∇xf(x)‖22 ≤
2

T

T∑
t=1

‖∇xf̃Ut(x)‖22 + 2δ2µ2 ∀U1,...,UT

(19)

A.2.3 SECOND MOMENT OF THE GRADIENT ESTIMATOR

We will start with studying the second moment of our gradient estimate for the manifold case. We
bound the expected square norm of the gradient estimate as

Es∈Sn,ξ

[∥∥gtm∥∥2

2

]
= Es∈Sn,ξ

[∥∥∥ n
2δ

[
F (xt + δUs, ξ1)− F (xt − δUs, ξ2)

]
Us
∥∥∥2

2

]
(a)
=

n2

4δ2
Es∈Sn,ξ

[(
F (xt + δUs, ξ1)− F (x− δUs, ξ2)

)2]
(b)

≤ n2

2δ2
Es∈Sn

[
(f(x + δUs)− f(x− δUs))

2
]

+
n2

δ2
Es∈Sn,ξ

[
(F (x + δUs, ξ)− f(x + δUs))

2
]

+
n2

δ2
Es∈Sn,ξ

[
(F (x− δUs, ξ)− f(x− δUs))

2
]

(c)

≤ 2n2L2 +
2n2VF
δ2

(20)

where we use orthonormality of U and unit norm property of s in (a), add and substract
f(x + δUs)− f(x− δUs) and use (a + b)2 ≤ 2a2 + 2b2 in (b), use the bounded variance of
F and the Lipschitz smoothness of f in (c).
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Second moment of the random search estimator can also computed similarly. And, the resulting
bound would be

Es∈Sn,ξ

[∥∥gte∥∥2

2

]
≤ 2d2L2 +

2d2VF
δ2

(21)

A.2.4 PROOF OF PROPOSITION 1

Proof. Analysis of SGD from Lemma 2 shows that

1

T

T∑
t=1

‖∇xf(xt)‖22 ≤
√

8Ω0µV

T
. (22)

Using the bound on the second moment of the estimator we derive in (21),

1

T

T∑
t=1

‖∇xf(xt)‖22 ≤
√

8Ω0µ

T

√
2d2L2 +

2d2VF
δ2

(23)

Using the relationship between f and f̂ we derive in (19),

1

T

T∑
t=1

‖∇xf̂(x)‖22 ≤ 2δ2µ2 + 2

√
8Ω0µ

T

√
2d2L2 +

2d2VF
δ2

. (24)

We use the property
√
a+ b ≤

√
a+
√
b, and solve for α. After we substituted the resulting δ,

1

T

∑
t

‖∇xf(xt)‖22 ≤
c0 + c1d

T
1
2

+
c2d

2
3

T
1
3

(25)

where c0 = 4L
√

2Ω0µ, c1 =
√

2c0, and c2 = (4VFΩ0)
1
3 (2µ+ 4µ

5
6 ).

A.2.5 PROOF OF PROPOSITION 2

Proof. Sample complexity of the manifold random search follows closely the proof of Proposition 1.
We summarize here for the sake of completeness. Using the analysis of SGD from Lemma 2,

1

T

T∑
t=1

‖∇xf(xt)‖22 ≤
√

8Ω0µV

T
. (26)

Using the bound on the second moment of the estimator we derive in (21), and the relationship
between f and f̃U? we derive in (19),

1

T

T∑
t=1

‖∇xf̂(x)‖22 ≤ 2δ2µ2 + 2

√
8Ω0µ

T

√
2n2L2 +

2n2VF
δ2

. (27)

We first use the property
√
a+ b ≤

√
a+
√
b, then solve for α and δ. Finally, we substitute resulting

δ to get the final result as;

1

T

∑
t

‖∇xf(xt)‖22 ≤
c0 + c1n

T
1
2

+
c2n

2
3

T
1
3

(28)

where c0 = 4L
√

2Ω0µ, c1 =
√

2c0, and c2 = (4VFΩ0)
1
3 (2µ+ 4µ

5
6 ).

A.3 PROOF OF THE THEOREM 1

Proof. We will prove our main theorem using a three major arguments. First, we analyze the SGD
of a non-convex function with biased gradients in section A.3.1. Second, we show that the expected
value of our loss function is equal to the bias term in section A.3.2. In order to bound the differ-
ence between the empirical loss function we minimize and its expectation, we use the Freedman’s
inequality Freedman (1975). Third, we bound the empirical loss in section A.3.3 in terms of the dis-
tance travelled by the iterates of the optimization ‖xt+1 − xt‖2. Finally, we optimize the resulting
bound in terms of the finite difference step (δt), SGD step size (αt), and mixing coefficients (β) to
obtain the final statement of the theorem in section A.3.4.
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A.3.1 ANALYSIS OF SGD WITH BIAS

In order to analyze the SGD with bias, we will denote the gradient at the iteration t, as gt. Moreover,
we will assume that its bias is bt as E[gt] = bt + ∇xF̃ (x, ξ). Using the µ−smoothness of the
function F̃ , we can state that

F̃ (xt+1, ξ) = F̃ (ξt − αgt, ξ) ≤ F̃ (xt, ξ)− α∇xF̃ (xt, ξ)gt +
µα2

2
‖gt‖22. (29)

Let’s assume the effect of the bias is bounded as |∇xF̃ (xt, ξ)ᵀbt| ≤ Bt, then

F̃ (xt+1, ξ) ≤ F̃ (xt, ξ)− α∇xF̃ (xt, ξ)[gt − bt] +
µα2

2
‖gt‖22 + αBt. (30)

Taking the expectation with respect to s and ξ, we get

α‖∇xf̃(xt)‖22 ≤ Es,ξ[f̃(xt+1)]− f̃(xt) +
µα2Vg

2
+ αBt (31)

where Vg = E[‖gt‖22]. Summing up from t = 1 to T and dividing by α, we obtain

T∑
t=1

‖∇xf̃(xt)‖22 ≤
Ω

α
+
µαTVg

2
+

T∑
t=1

Bt. (32)

We now compute the bound on the bias term (Bt) using Lemma 1 and gt = βgte + (1− β)gtm,

∇xF̃ (xt, ξ)ᵀbt = (1− β)Es∈Sn−1

[
F (x + δUs, ξ)∇xF̃ (xt, ξ)ᵀ[U−U?]s

]
≤ (1− β)ΩEs∈Sn−1

[
|∇xF̃ (xt, ξ)ᵀ[U−U?]s|

] (33)

where we used the fact that function is bounded as F (x, ξ) ≤ Ω. Since∇xF̃ (x, ξ) lies in the column
space of U?, for some p,

pᵀU?ᵀ[U−U?] = pᵀ[U?ᵀU− I] = pᵀ[U?ᵀU−UᵀU] = [∇xF̃ (x, ξ)ᵀ − pᵀUᵀ]U (34)

Choice of bases (U?) is not unique in Lemma 1. It can be any orthonormal basis spanning the
tangent space of the manifold. In order to minimize Es∈Sn−1

[
|∇xF̃ (xt, ξ)ᵀ[U−U?]s|

]
, choose

the basis which will set Up to the projection of ∇xF̃ (xt, ξ) into the column space of U. Then,

‖∇xF̃ (xt, ξ)ᵀ[U−U?]‖2 ≤ min
q∈Rn

‖∇xF̃ (xt, ξ)−Uq‖2 ≤ ‖∇xF̃ (xt, ξ)−∇xg(r(xt; θt);ψt)‖2
(35)

where last inequality is due to∇xg(r(xt; θt);ψt) being in the column space of U. Combining with
(32), (19), and 0 ≤ β ≤ 1;

1

T

T∑
t=1

‖∇xf(xt)‖22 ≤
Ω

αT
+
µαVg

2
+

Ω

T

T∑
t=1

‖∇xF̃ (xt, ξ)−∇xg(r(xt; θt);ψt)‖2 + δ2µ2. (36)

We proceed to bound
∑T
t=1 ‖∇xF̃ (xt, ξ)−∇xg(r(xt; θt);ψt)‖2 in the next section.

A.3.2 ROLE OF THE BANDIT FEEDBACK

The true loss we are interested in is the effect of bias on the SGD. The bias is the sum of the
differences between the gradients of the true function (F̃ (x, ξ)) and the estimated one (g(r(x; θ);ψ))
as derived in (36). On the other hand, the empirical information we have is the projection of this
loss to a random direction (s) with an additional noise term. In this section, we will analyze the
difference between the bias and the empirical loss without the noise. We will include the discussion
on the noise in section A.3.3.
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First, we will show that expectation of the empirical loss over a direction uniformly chosen from
a unit sphere is the bias term. In order to show this, we need an elementary result which is
Es∈Sd−1 [(stv)2] = ‖v‖2

d . We show this result in Section A.4.1. Using this result,

Es∈Sd−1

[(
sᵀ
(
∇xF̃ (x, ξ)−∇xg((r(x; θ);ψ)

))2]
=

1

d

∥∥∇xF̃ (x, ξ)−∇xg((r(x; θ);ψ)
∥∥2

2
(37)

We introduce the notation ∆(s,x, ξ, θ, ψ) =
(
sᵀ
(
∇xF̃ (x, ξ)−∇xg((r(x; θ);ψ)

))2

for clarity and,

proceed to bound the difference
∣∣∆(s,x, ξ, θ, ψ) − Es[∆(s,x, ξ, θ, ψ)]

∣∣. Consider the sequence of
differences as,

Zt = ∆(st,xt, ξt, θt, ψt)− 1

d

∥∥∇xF̃ (xt, ξt)−∇xg((r(xt; θt);ψt)
∥∥2

2
, (38)

it is clear that E[Zt] = 0 for all t. Moreover, the differences are bounded due to the Lipschitz conti-
nuity. Hence, Zt is a martingale difference sequence. We use the Freedman’s inequality (Freedman,
1975) in order to bound

∑
Zt, similar to the seminal work studying the generalization of online

learning by Kakade & Tewari (2009). Freedman’s inequality (Freedman, 1975) states that if Zt is a
martingale difference sequence,

P

 T∑
t=1

Zt ≥ max

2

√√√√ T∑
i=1

V ar(Zt), 3b
√

ln (1/γ)

√ln (1/γ)

 ≤ 4γ ln(T ) (39)

where b is the bound on Zt as |Zt| ≤ b for all t. Before we substitute the Zt in the Freedman’s
inequality, we need to compute the variance of the Zt. We bound the variance using the definition
of the variance as

Es∈Sd−1

[((
st

ᵀ(∇xF̃ (xt, ξt)−∇xg((r(xt; θt);ψt)
))2
− 1

d

∥∥∇xF̃ (xt, ξt)−∇xg((r(xt; θt);ψt)
∥∥2)2]

≤ Es∈Sd−1

[(
1

d

(
∇xF̃ (xt, ξt)−∇xg((r(xt; θt);ψt)

)ᵀ(
dst −∇xF̃ (xt, ξt) +∇xg((r(xt; θt);ψt)

))2]
(a)

≤
‖∇xF̃ (xt, ξt)−∇xg((r(xt; θt);ψt)

∥∥2
2

d2
Es∈Sd−1

[(
νᵀ
(
dst −∇xF̃ (xt, ξt) +∇xg((r(xt; θt);ψt)

))2]
(b)

≤ 1

d2
‖∇xF̃ (xt, ξt)−∇xg((r(xt; θt);ψt)

∥∥2
2

(
d2Es∈Sd−1 [(νᵀst)2] + 2L2)

=

(
2L2 + d

d2

)
‖∇xF̃ (xt, ξt)−∇xg((r(xt; θt);ψt)

∥∥2
2

(40)
where we denote the unit vector in the direction of ∇xF̃ (xt, ξt) −∇xg((r(xt; θt);ψt) as ν in (a)

and use the Lipschitz property as well as (63) in (b). Finally we substitute this result in Freedman’s
inequality and use the expectation ∆(st,xt, ξt, θt, ψt) from (37). We also introduce the shorthand
notation ∆t = ∆(st,xt, ξt, θt, ψ). With probability at least 1− 4γ ln(T ),

T∑
t=1

E[∆t] ≤
T∑
t=1

∆t + max

2

√
2L2 + d

d

√√√√ T∑
t=q

E[∆t], 6L2

(
1 + d

d

)√
ln(1/γ)

√ln(1/γ)

(41)

We can further bound
∑T
t=1 E[∆t] by using the fact that (41) is in the form of

s2 ≤ r + max{2as, 6bc}c which can be solved for s using quadratic formula. We solve this
quadratic in Section A.4.2, and show that it implies s ≤ r + 2ac

√
r + max{4a2, 6b}c2. Using

the solution of the quadratic formula, we get the following final result describing the effect of bandit
feedback. With probability 1− 4γ ln(T ),

T∑
t=1

E[∆t] ≤
T∑
t=1

∆t+2

√
2L2 + d

d

√√√√ T∑
t=1

∆t
√

ln(1/γ)+max

{
8L2 + 4d

d
, 6L2

(
1 + d

d

)}
ln(1/γ)

(42)
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In summary, we bound the difference between the effect of the bias
∑T
t=1 E[∆t] and the empirical

loss we minimize
∑T
t=1 ∆t without the noise term. In the next section, we procede to bound the

empirical loss
∑T
t=1 Lt and the effect of the noise term

∑T
t=1 |∆t − Lt|.

A.3.3 ANALYSIS OF THE EMPIRICAL LOSS

In this section, we will analyze the empirical loss. Our analysis is similar to the regret analysis of
follow the regularized leader (FTRL). However, we do not get an adverserial bound. Our resulting
bound is the function of distances of iterates denoted as ‖xt − xt−1‖2. Such a bound would not
be useful in adverserial setting since adversary chooses the iterates. However, we also design the
optimization method. Hence, we bound ‖xt − xt−1‖2 by setting step sizes accordingly.

We start our analysis with bounding the total empirical loss in terms of the length of the trajectory
the learner takes. As a consequence of the FTL-BTL Lemma (Kalai & Vempala, 2005),

T∑
t=1

L(st,xt, ξt, θt, ψt) ≤
T∑
t=1

[
L(st,xt, ξt, θt, ψt)− L(st,xt, ξt, θt+1, ψt+1)

]
+R(θT , ψT ).

(43)
We use the Lipschitz smoothness property to convert this into distance travelled by the learner as

L(st,xt, ξt, θt, ψt)− L(st,xt, ξt, θt+1, ψt+1)

=

(
y(xt, st, ξt)

2δ
− st

ᵀ∇xg(r(xt; θt);ψt)

)2

−

(
y(xt, st, ξt)

2δ
− st

ᵀ∇xg(r(xt; θt+1);ψt+1)

)2

≤ 4L

T∑
t=1

st
ᵀ
(∇xg(r(xt; θt);ψt)−∇xg(r(xt; θt+1);ψt+1))

≤ 4L

T∑
t=1

‖∇xg(r(xt; θt);ψt)−∇xg(r(xt; θt+1);ψt+1)‖2︸ ︷︷ ︸
LEARNERPATHLENGTH

(44)

With properly chosen λ, our regularizer enforces the smallest possible update, in terms of learner
path length, which is consistent with the current sampled directions. This is due to the representabil-
ity assumption which guarantees that manifold can be fit perfectly using the parametric family.
Hence, there is a solution with L = 0. Considering the regularizer is the learner path length, with
proper choice of λ, the FTRL will choose the shortest learner path length.

Among all choices of st, st = ∇xF (xt,ξt)/‖∇xF (xt,ξt)‖ would result in the longest distance. Hence,
we can bound the learner path distance of our empirical problem with the distances of this oracle
problem. We denote the θ and ψ found by this oracle problem as θ̂, ψ̂. Formally, this upper bound
leads to

LEARNERPATHLENGTH ≤
T∑
t=1

‖∇xg(r(xt; θ̂t); ψ̂t)−∇xg(r(xt; θ̂t+1); ψ̂t+1)‖2

≤
T∑
t=1

‖∇xg(r(xt; θ̂t); ψ̂t)−∇xg(r(xt−1; θ̂t+1); ψ̂t+1)‖2

+

T∑
t=1

‖∇xg(r(xt−1; θ̂t+1); ψ̂t+1)−∇xg(r(xt; θ̂t+1); ψ̂t+1)‖2

(a)

≤
T∑
t=1

‖∇xg(r(xt; θ̂t); ψ̂t)−∇xg(r(xt−1; θ̂t); ψ̂t)‖2

+
T∑
t=1

‖∇xg(r(xt−1; θ̂t+1); ψ̂t+1)−∇xg(r(xt; θ̂t+1); ψ̂t+1)‖2

(b)

≤ 2µ

T∑
t=1

‖xt − xt−1‖2,

(45)
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as the consequence of the fact that oracle problem solves all gradients perfectly (i.e.
∇xF̃ (xt, ξt) = ∇xg(r(x; θi);ψi) for all i > t) in (a), and the functions are µ−smooth in (b).
Using the fact that gradient norms are bounded,

T∑
t=1

L(st,xt, ξt, θt, ψt) ≤ 8µL

T∑
t=1

‖xt − xt−1‖2 + 2L. (46)

In order to extend this result to the ∆t, we use the smoothness of the function as

∆t =
(
st

ᵀ
[∇xF̂ (xt, ξ)−∇xg(r(xt; θt);ψt)]

)2
≤

(
st

ᵀ∇xF̂ (xt, ξ)− y(xt, st, ξt)

2δ

)2

+

(
y(xt, st, ξt)

2δ
− st

ᵀ∇xg(r(xt; θt);ψt)

)2

≤

(
Ev∈Bd

[
st

ᵀ∇xF (xt + δv, ξ)− y(xt, st, ξt)

2δ

])2

+ L(st,xt, ξt, θt, ψt)

≤ µ2δ2 + L(st,xt, ξt, θt, ψt)

(47)

By combining (47) and (46), we state∑
t=1

∆t ≤ 8µL

T∑
t=1

‖xt − xt−1‖2 + µ2δ2T + 2L. (48)

A.3.4 PROOF OF THE THEOREM

We combine the aforementioned three arguments to state the final sample complexity of our method.
Our analysis of SGD with bias from (36) combined with the definition of the ∆t gives the following
bound on the sample complexity.

1

T

T∑
t=1

‖∇xf(xt)‖22 ≤
Ω

αT
+
µαVg

2
+

Ω

T

T∑
t=1

√
dE[∆t] + δ2µ2. (49)

Using the concavity of the square root function with Jensen’s inequality, we can convert this bound
to

1

T

T∑
t=1

‖∇xf(xt)‖22 ≤
Ω

αT
+
µαVg

2
+ Ω
√
d

√√√√ 1

T

T∑
t=1

E[∆t] + δ2µ2. (50)

Next, we will bound
√

1
T

∑T
t=1 E[∆t] using (42). For simplicity, we will analyze two cases

(
∑T
t=1 ∆t ≤ 1) and (

∑T
t=1 ∆t > 1) seperately.

Case 1,
∑T
t=1 ∆t ≤ 1: We substitute this bound directly in (42). With probability 1− 4γ ln(T ),

1

T

T∑
t=1

E[∆t] ≤ 1

T
+

2

T

√
2L2 + d

d

√
ln(1/γ) + max

{
8L2 + 4d

dT
, 6L2

(
1 + d

dT

)}
ln(1/γ) (51)

Relaxing the upper bound with the fact that dimension is greater than 1,√√√√ 1

T

T∑
t=1

E[∆t] ≤
√
c1
T

(52)

where c1 = 1 +
√

(8L2 + 4) ln(1/γ) + max{8L2 + 4, 12L2} ln(1/γ).

Case 2, 1
T

∑T
t=1 ∆t > 1: Using the fact that

√
x < x for x > 1 and

√
x+ y ≤

√
x +
√
y as well

as d ≥ 1, we can state that with probability 1− 4γ ln(T ),√√√√ 1

T

T∑
t=1

E[∆t] ≤
√
c2
T

+ c3

√√√√ 1

T

T∑
t=1

∆t (53)
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where c2 = max{8L2 + 4, 12L2} ln(1/γ) and c3 = 1 +
√

2
√

(2L2 + 1) ln(1/γ). Combining this
with the bound (48) and

√
x ≤ x for x > 1,√√√√ 1

T

T∑
t=1

E[∆t] ≤
√
c2
T

+
2c3L

T
+ c3(µ2δ2 + 8µαVg) (54)

We combine two cases and substitute it in (50). The final sample complexity is,

1

T

T∑
t=1

‖∇xf(xt)‖2 ≤ Ω

αT
+µαVg

(
1

2
+ 8c3Ω

√
d

)
+µ2δ2

(
1+Ωc3

√
d
)

+
2c3ΩL

√
d

T
+

√
c1,2d

T
.

(55)
where c1,2 =

√
Ω max{c1, c2}. We minimize with respect to αt and substitute it.

1

T

T∑
t=1

‖∇xf(xt)‖2 ≤
√

2µVgΩ

T

(
1 +

√
4c3Ωd

)
+ µ2δ2

(
1 + Ωc3

√
d
)

+
2c3ΩL

√
d

T
+

√
c1,2d

T
.

(56)

Before we solve for δ, we bound Vg by choosing β = 1/d as,

E[Vg] ≤ E
[(

1

d
ge +

(
1− 1

d

)
gm

)]
≤ 4L2n2 +

4n2VF
δ2

. (57)

Next, we solve δ to obtain the statement of the theorem. With probability 1− 4γ ln(T ),

1

T

T∑
t=1

‖∇xf(xt)‖2 ≤ k1d
1
2

T
+
k2d

1
2 + k3n+ k4nd

1
2

T
1
2

+
k5n

2
3 + k6d

1
2n

2
3

T
1
3

(58)

where k1 = 2c3ΩL, k2 =
√
c1,2, k3 = 2L

√
2µΩ, k4 = 4LΩ

√
µc3, k5 = 3(2ΩVF )1/3, and

k6 = k5(3Ωc3).

A.4 USEFUL ELEMENTARY RESULTS

A.4.1 EXPECTATION OF (sᵀv)2 WHEN s IS CHOSEN UNIFORMLY FROM Sd−1

Consider
∫
F (Oe)µ(O) where

∫
[·]µ(O) is an integral over orthogonal matrices with Haar measure.

If e is a unit vector, we can show that

Es∈Sd−1 [F (s)] =

∫
F (Oe)µ(O). (59)

Before we use this result, we define ‖v‖2 as an integral over orthogonal matrices O. Using orthog-
onality and cyclic property of the trace,

vᵀv = Tr(vvᵀ) =

∫
Tr(vvᵀ)µ(O) =

∫
Tr (OOᵀvvᵀ)µ(O) =

∫
Tr (OᵀvvᵀO)µ(O). (60)

Since the indentity matrix is sum of outer products of one hot vectors ei as I =
∑
i eie

ᵀ
i ,∫

Tr (OᵀvvᵀO)µ(O) =

∫
Tr

(∑
i

eie
ᵀ
iO

ᵀvvᵀO

)
µ(O) =

∑
i

∫
Tr (eᵀiO

ᵀvvᵀOei)µ(O).

(61)
Using (59), we can further show∑

i

∫
Tr (eᵀiO

ᵀvvᵀOei)µ(O) =
∑
i

Es∈Sd−1 [Tr(sᵀvvᵀs)] = dEs∈Sd−1 [(sᵀv)] (62)

Hence, combining all,

Es∈Sd−1 [(sᵀv)] =
‖v‖2

d
. (63)
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A.4.2 BOUNDING THE QUADRATIC FORM

We need to bound s when the following quadratic inequality is correct;

s ≤ r + max{2a
√
s, 6bc}c. (64)

We first consider the max as two separate options. Given the original inequality, one of the following
is correct;

s ≤ r + 2ac
√
s, or s ≤ r + 6bc2. (65)

For the first case, (
√
s)2 − 2ac

√
s − r ≤ 0. Using the quadratic formula,

√
s is smaller than the

largest root as
√
s ≤ ac+

√
a2c2 + r. Hence,

s = (
√
s)2 ≤ (ac+

√
a2c2 + r)2 = a2c2 +a2c2 +r+2ac

√
a2c2 + r ≤ 4a2c2 +2ac

√
r+r (66)

Combining the resulting bound with the other option gives the final bound as,

s ≤ r + 2ac
√
r + max{4a2, 6b}c2 (67)

B ADDITIONAL IMPLEMENTATION DETAILS

In this section, we discuss the main details of the implementation. We will also share the code
for our method, all baselines and all experiments open source upon acceptance. One key ele-
ment of our method is the parametric family we use to learn the manifold. We consider a multi-
layered perceptron with one to three hidden layers as Linear(d, 2n) → ReLU → Linear(2n, n) →
ReLU→ Linear(n, n) for d < 1000 and Linear(d, 1/2d)→ ReLU→ Linear(1/2d, 2n)→ ReLU→
Linear(2n, n)→ ReLU→ Linear(n, n) for d > 1000. We set the dimensionality of the manifold as
the number of directions k which is a hyper parameter. We use grid search over δ and n = k values
and choose the best performing one in all experiments. Moreover, we also reinitialize the manifold
parameters whenever the estimated gradient’s magnitude is less than 1e−6. We perform online gra-
dient descent to learn the model parameters using SGD with momentum as 0.9. We also grid search
for learning rate over {1e−4, 1e−3, 1e−2}. We further discuss experiment-specific details below:

MuJoCo Experiments: We use linear policies and initialize them as zeros, which corresponds
to no action. We use v2−t algorithm from (Mania et al., 2018), which includes whitening of the
observation space and using top-k directions instead of all. We use grid search over the parameter
space described in (Mania et al., 2018) for n = k, α and δ.

Low Dimensional Unconstrained Optimization Suite: We use the following functions: sphere,
noisysphere, cigar, tablet, cigtab, cigtab2, elli, rosen, rosen chained, diffpow, rosenelli, ridge, ridge-
circle, happycat, branin, goldsteinprice, rastrigin, schaffer, schwefel2 22, lincon, rosen nesterov,
styblinski tang, bukin with dimensions d = 10 and d = 100 resulting in total 46 problems. We
initialize all solutions with zero mean unit variance Normal variables and use grid search over
δ ∈ {1e−4, 1e−3, 1e−2, 1e−1}, k ∈ {2, 5, 10, 50}, and α ∈ {1e−4, 1e−3, 1e−2, 1e−1}.

Airfoil Optimization: We initialize the parameters of the manifold with zero-mean unit-variance
Normal variables. We use grid search over δ ∈ {1e−4, 1e−3, 1e−2, 1e−1}, k ∈ {2, 5, 10, 50},
and α ∈ {1e−4, 1e−3, 1e−2, 1e−1}. For choosing hyper-parameters, we simulate all models with
Reynold number 12e6, speed 0.4 mach, and angle of attack 5 degrees. After the hyper-parameters
are set, we used Reynold number 14e6, speed 0.6 mach and angle of attack 2 degrees for evaluation.

21


	Introduction
	Preliminaries
	Online Learning to Guide Random Search
	Warm-up: Random Search over a Known Manifold
	Joint Optimization and Manifold Learning

	Implementation Details and Limitations
	Experiments
	Learning Continuous Control
	Continuous Optimization Benchmarks
	Optimization of an Airfoil

	Related Work
	Conclusion
	Proofs
	Gradient Estimator
	Sample Complexity for Random Search and Manifold Random Search
	Convergence of SGD for non-convex fuctions
	Preliminary Results on Smoothed Functions
	Second Moment of the Gradient Estimator
	Proof of Proposition 1
	Proof of Proposition 2

	Proof of the Theorem 1
	Analysis of SGD with bias
	Role of the Bandit Feedback
	Analysis of the Empirical Loss
	Proof of the Theorem

	Useful Elementary Results
	Expectation of (sv)2 when s is chosen uniformly from Sd-1
	Bounding the quadratic form


	Additional Implementation Details

