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ABSTRACT

Over the past decade, knowledge graphs became popular for capturing structured
domain knowledge. Relational learning models enable the prediction of miss-
ing links inside knowledge graphs. More specifically, latent distance approaches
model the relationships among entities via a distance between latent representa-
tions. Translating embedding models (e.g., TransE) are among the most popu-
lar latent distance approaches which use one distance function to learn multiple
relation patterns. However, they are mostly inefficient in capturing symmetric
relations since the representation vector norm for all the symmetric relations be-
comes equal to zero. They also lose information when learning relations with
reflexive patterns since they become symmetric and transitive. We propose the
Multiple Distance Embedding model (MDE) that addresses these limitations and
a framework which enables collaborative combinations of latent distance-based
terms (MDE). Our solution is based on two principles: 1) using limit-based loss
instead of margin ranking loss and 2) by learning independent embedding vectors
for each of terms we can collectively train and predict using contradicting dis-
tance terms. We further demonstrate that MDE allows modeling relations with
(anti)symmetry, inversion, and composition patterns. We propose MDE as a neu-
ral network model which allows us to map non-linear relations between the em-
bedding vectors and the expected output of the score function. Our empirical
results show that MDE outperforms the state-of-the-art embedding models on sev-
eral benchmark datasets.

1 INTRODUCTION

While machine learning methods conventionally model functions given sample inputs and outputs,
a subset of Statistical Relational Learning (SRL) (De Raedt, 2008} |[Nickel et al., [2015) approaches
specifically aim to model “things” (entities) and relations between them. These methods usually
model human knowledge which is structured in the form of multi-relational Knowledge Graphs
(KG). KGs allow semantically rich queries and are used in search engines, natural language pro-
cessing (NLP) and dialog systems. However, they usually miss many of the true relations (West
et al., 2014), therefore, the prediction of missing links/relations in KGs is a crucial challenge for
SRL approaches.

A KG usually consists of a set of facts. A fact is a triple (head, relation, tail) where heads and tails
are called entities. Among the SRL models, distance-based KG embeddings are popular because of
their simplicity, their low number of parameters, and their efficiency on large scale datasets. Specif-
ically, their simplicity allows integrating them into many models. Previous studies have integrated
them with logical rule embeddings (Guo et al., 2016), have adopted them to encode temporal infor-
mation (Jiang et al.;,2016)) and have applied them to find equivalent entities between multi-language
datasets (Muhao et al.||2017)).

Soon after the introduction of the first multi-relational distance-based method TransE (Bordes et al.,
2013) it was acknowledged that it is inefficient in learning of symmetric relations, since the norm
of the representation vector for all the symmetric relations in the KG becomes close to zero. This
means the model cannot distinguish well between different symmetric relations in a KG.



Under review as a conference paper at ICLR 2020

To extend this model many variations are studied afterwards, e.g., TransH (Wang et al 2014b),
TransR (Lin et al.|[2015b), TransD (Ji et al.,[2015), and STransE (Dat et al.,[2016). Even though they
solved the issue of symmetric relations, they introduced a new problem: these models were no longer
efficient in learning the inversion and composition relation patterns that originally TransE could
handle. Besides, as noted in (Kazemi & Poole}, 2018} Sun et al.,2019), within the family of distance-
based embeddings, usually reflexive relations are forced to become symmetric and transitive. In this
study, we take advantage of independent vector representations of vectors that enable us to view the
same relations from different aspects and put forward a translation-based model that addresses these
limitations and allows the learning of all three relation patterns.

In addition, we address the issue of the limit-based loss function in finding an optimal limit and
suggest an updating limit loss function to be used complementary to the current limit-based loss
function which has fixed limits.

Moreover, we frame our model into a neural network structure that allows it to learn non-linear
patterns between embedding vectors and the expected output which substantially improves the gen-
eralization power of the model in link prediction tasks.

The model performs well in the empirical evaluations, improving upon the state-of-the-art results in
link prediction benchmarks. Since our approach involves several elements that model the relations
between entities as the geometric distance of vectors from different views, we dubbed it multiple-
distance embeddings (MDE).

2 BACKGROUND AND NOTATION

Given the set of all entities £ and the set of all relations R, we formally define a fact as a triple of the
form (h, r, t) in which h is the head and t is the tail, h, t € £ andr € R is arelation. A knowledge
graph /CG is a subset of all true facts G C ( and is represented by a set of triples. An embedding
is a mapping from an entity or a relation to their latent representation. A latent representation is
usually a (set of) vector(s), a matrix or a tensor of numbers. A relational learning model is made
of an embedding function and a prediction function that given a triple (h,r,t) it determines if
(h,r,t) € (. We represent the embedding representation of an entity h with a lowercase letter h if
it is a vector and with an uppercase letter [ if it is a matrix. The ability to encode different patterns
in the relations can show the generalization power of a model:

Definition 1. A relation r is symmetric (antisymmetric) if Vz, y

r(@,y) =ry.z) (r(z,y) = -ry,z)).
A clause with such a structure has a symmetry (antisymmetry) pattern.
Definition 2. A relation r; is inverse to relation ry if Va, y

7‘2(1', y) =T (ya Sﬂ)
A clause with such a form has an inversion pattern.
Definition 3. A relation 71 is composed of relation r5 and relation r3 if Vz, y, 2
ra(z,y) Ars(y, z) = ri(z, 2)

A clause with such a form has a composition pattern.

3 RELATED WORK

Tensor Factorization and Multiplicative Models define the score of triples via pairwise multipli-
cation of embeddings. DistMult (Yang et al., 2015) simply multiplies the embedding vectors of a
triple element by element (h, r, t) as the score function. Since multiplication of real numbers is sym-
metric, DistMult can not distinguish displacement of head relation and tail entities and therefore, it
can not model anti-symmetric relations.

ComplEx (Trouillon et al.| [2016) solves the issue of DistMult by the idea that the complex conjugate
of the tail makes it non-symmetric. By introducing complex-valued embeddings instead of real-
valued embeddings to DistMult, the score of a triple in ComplEx is Re(h' diag(r)t) with ¢ the
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conjugate of t and Re(.) is the real part of a complex value. ComplEx is not efficient in encoding
composition rules (Sun et al., 2019). In RESCAL (Nickel et al.,[2011) instead of a vector, a matrix
represents the relation r, and performs outer products of h and ¢ vectors to this matrix so that its
score function becomes h' Rt. A simplified version of RESCAL is HolE (Nickel et al., |2016) that
defines a vector for r and performs circular correlation of & and ¢ has been found equivalent (Hayashi
& Shimbo, |2017) to ComplEx.

Another tensor factorization model is Canonical Polyadic (CP) (Hitchcockl |1927). In CP decom-
position, each entity e is represented by two vectors h,, t. € R?, and each relation r has a single
embedding vector v, € R%. MDE is similarly based on the idea of independent vector embeddings.
A study (Trouillon et al., 2017) suggests that in CP, the independence of vectors causes the poor per-
formance of CP in KG completion, however, we show that the independent vectors can strengthen a
model if they are combined complementarily.

SimplE (Kazemi & Poolel 2018) analogous to CP, trains on two sets of subject and object entity
vectors. SimplE’s score function, 3 (he,,7,te,) + 3 (he,, 7", tc,), is the average of two terms.
The first term is similar to DistMult. However, its combination with the second term and using a
second set of entity vectors allows SimplE to avoid the symmetric issue of DistMult. SimplE allows
learning of symmetry, anti-symmetry and inversion patterns. However, it is unable to efficiently

encode composition rules, since it does not model a bijection mapping from h to t through relation r.

In Latent Distance Approaches the score function is the distance between embedding vectors of
entities and relations. In the view of social network analysis, (Hoff et al., 2002) originally proposed
distance of entities —d(h, t) as the score function for modeling uni-relational graphs where d(., .)
means any arbitrary distance, such as Euclidean distance. SE (Bordes et al., 2011) generalizes the
distance for multi-relational data by incorporating a pair of relation matrices into it. TransE (Bordes
et al.| 2013) represents relation and entities of a triple by a vector that has this relation

Sy=[htr—tl, (1)
where || . ||, is the p-norm. To better distinguish entities with complex relations, TransH (Wang
et al.,|2014a) projects the vector of head and tail to a relation-specific hyperplane. Similarly, TransR
follows the idea with relation-specific spaces and extends the distance function to || M,h + r —
M.t ||,. RotatE (Sun et al., 2019) combines translation and rotation and defines the distance of a
t from tail h which is rotated the amount r as the score function of a triple —d(h o r,t) where o is
Hadamard product.

Neural Network Methods train a neural network to learn the interaction of the h, r and t. ER-MLP
(Dong et al., 2014) is a two layer feedforward neural network considering h, r and ¢ vectors in the
input. NTN (Socher et al.}[2013) is neural tensor network that concatenates head h and tail ¢ vectors
and feeds them to the first layer that has r as weight. In another layer, it combines i and ¢ with
a tensor R that represents r and finally, for each relation, it defines an output layer r to represent
relation embeddings. In SME (Bordes et al., [2014) relation r is once combined with the head A to
get g, (h, r), and similarly it is combined with the tail ¢ to get g, (¢, 7). SME defines a score function
by the dot product of this two functions in the hidden layer. In the linear SME, g(e, r) is equal to
Mle + M2r + b, and in the bilinear version, it is Mle o M2r + b,. Here, M refers to weight
matrix and b is a bias vector.

4 MDE: MULTIPLE DISTANCE EMBEDDINGS

The score function of MDE involves multiple terms. We first explain the intuition behind each term
and then explicate a framework that we suggest to efficiently utilize them such that we benefit from
their strengths and avoid their weaknesses.

Inverse Relation Learning: Inverse relations can be a strong indicator in knowledge graphs. For
example, if IsParentO f(m, c) represents that a person m is a parent of another person c¢, then
this could imply 7sChildO f (¢, m) assuming that this represents the person ¢ being the child of m.
This indication is also valid in cases when this only holds in one direction, e.g. for the relations
IsMotherOf and I1sChildOf. In such a case, even though the actual inverse IsParentO f may
not even exist in the KG, we can still benefit from inverse relation learning. To learn the inverse of
the relations, we define a score function S5 :

Sy =l t+r—hl|, )
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Symmetric Relations Learning: It is possible to easily check that the formulation || h +r — ¢ ||
allowy!|learning of anti-symmetric pattern but when learning symmetric relations, || || tends toward
zero which limits the ability of the model in separating entities specially if symmetric relations are
frequent in the KG. For learning symmetric relations, we suggest the term S5 as a score function. It
learns such relations more efficiently despite it is limited in the learning of antisymmetric relations.

Sz =[l b+t =7 @)

Lemma 1. S; allows modeling antisymmetry, inversion and composition patterns and Sy allows
modeling symmetry patterns. (See proof in Appendix A)

Relieving Limitations on Learning of Reflexive Relations: A previous study (Kazemi & Poole,
2018) highlighted the common limitations of TransE, FTransE, STransE, TransH and TransR for
learning reflexive relations where these translation-based models force the reflexive relations to be-
come symmetric and transitive. To relieve these limitations, we define S4 as a score function which
is similar to the score of RotatE i.e., || h o r — t ||, but with the Hadamard operation on the tail. In
contrast to RotatE which represents entities as complex vectors, Sy only holds in the real space:

Sy=|[h—rot], )

Lemma 2. The following restrictions of translation based embeddings approaches do not apply to
the Sy score function. R1: if a relation r is reflexive, on A € &, r it will be also symmetric on A.
R2: if r is reflexive on A € &, r it will be also be transitive on A. (See proof in Appendix B)

Model Definition: To incorporate different views to the relations between entities, we define these
settings for the model:

1. Using limit-based loss instead of margin ranking loss.

2. Each aggregated term in the score represents a different view of entities and relations with
an independent set of embedding vectors.

3. In contrast to ensemble approaches that incorporate models by training independently and
testing them together, MDE is based on multi-objective optimization (Marler & Aroral
2004) that jointly minimizes the objective functions.

However, when aggregating different terms in the score function, the summation of opposite vectors
can cause the norm of these vectors to diminish during the optimization. For example if S; and
S5 are added together, the minimization would lead to relation(r) vectors with zero norm value. To
address this issue, we represent the same entities with independent variables in different distance
functions.

Based on CP, MDE considers four vectors e;, €5, e, €, € R? as the embedding vector of each entity
e, and four vectors 7,7, 75,77 € R? for each relation r.

The score function of MDE for a triple (h, r, t) is defined as weighted sum of listed score functions:

f]WDE :wlS{ + 'LUQS% + w35'§ + ’w;;Si —w (5)

where 1, wy, ws, w3, wy € IR are constant values. In the following, we show using ¢ and limit-
based loss, the combination of the terms in equation E] is efficient, such that if one of the terms
recognises if a sample is true F; pp would also recognize it.

Limit-based Loss: Because margin ranking loss minimizes the sum of error from directly com-
paring the score of negative to positive samples, when applying it to translation embeddings, it is
possible that the score of a correct triplet is not small enough to hold the relation of the score func-
tion (Zhou et al.,|2017). To enforce the scores of positive triples become lower than those of negative
ones, (Zhou et al.,[2017)) defines limited-based loss which minimizes the objective function such that

"We used the term it allows™ to imply that the encoding of such patterns do not inhibit the learning of
relations having a particular pattern. Meanwhile in the literature SimplE uses it can encode” and RotatE uses
”the model infers”.
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Figure 1: Geometric illustration of the translation terms considered in MDE

the score for all the positive samples become less than a fixed limit. [Sun et al.| (2018)) extends the
limit-based loss so that the score of the negative samples become greater than a fixed limit. We train
our model with the same loss function which is:

loss = (1 Z [f(T) =]+ + B2 Z [v2 = f(7)]+ (6)

TeT+ T'eT—

where ]+ = max(.,0), v1,72 € RT. TT, T~ are the set of positive and negative samples and
81,82 > 0 are constants denoting the importance of the positive and negative samples. This ver-
sion of limit-based loss minimizes the aggregated error such that the score for the positive samples
become less than «; and the score for negative samples become greater than ~». To find the op-
timal limits for the limit-based loss, we suggest updating the limits during the training. (See the
explanation in Appendix D).

Lemma 3. There exist ¢» and 1,72 > 0 (71 > 72), such that only if one of the terms in fy;pp
estimates a fact as true, fy;pp also predicts it as a true fact. Consequently, the same also holds for
the capability of MDE to allow learning of different relation patterns. (See proof in Appendix C)

It is notable that without the introduction of ¢ and the limits 77, 2 from the limit-based loss, Lemma
3 does not hold and framing the model with this settings makes the efficient combination of the terms
in fyspE possible.

In contrast to SimplE that ties the relation vectors of two terms in the score together, MDE does not
directly relate them to take advantage of the independent relation and entity vectors in combining
opposite terms.

The learning of the symmetric relations is previously studied (e.g. in (Yang et al., 2014} |Sun et al.,
2019)) and (Lin et al.l [2015a) studied the training over the inverse of relations, however providing a
way to gather all these benefits in one model is a novelty of MDE. Besides, complementary modeling
of different vector-based views of a knowledge graph is a novel contribution.

4.1 MDExnpN: MDE AS A NEURAL NETWORK

The score of MDE is already aggregating a multiplication of vectors to weights. We take advantage
of this setting to model MDE as a layer of a neural network that allows learning the embedding
vectors and multiplied weights jointly during the optimization. To create such a neural network
we multiply ¢ by a weight ws and we feed the MDE score to an activation function. We call this
extension of MDE as MDE v

fupExy = 0(w1 S 4+ waS) + w3Sk + waSYy + wseh) (7)

where o is logistic sigmoid function and w;, ws, ..., ws are elements of the latent vector w
that are estimated during the training of the model. This framing of MDE reduces the number of
hyperparameters. The major advantage of MDE yy in comparison to the current distance-based
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models is that the logistic sigmoid activation function allows the non-linear mappings between the
embedding vectors and the expected output for positive and the negative samples.

4.2 TIME COMPLEXITY AND PARAMETER GROWTH

Considering the ever growth of KGs and the expansion of the web, it is crucial that the time and
memory complexity of a relational mode be minimal. Despite the limitations in expressivity, TransE
is one of the popular models on large datasets due to its scalability. With O(d) time complexity (of
one mini-batch), where d is the size of embedding vectors, it is more efficient than RESCAL, NTN,
and the neural network models. Similar to TransE, the time complexity of MDE is O(d). Due to
the additive construction of MDE, the inclusion of more distance terms keeps the time complexity
linear in the size of vector embeddings.

5 EXPERIMENTS

Datasets: We experimented on four standard datasets: WN18 and FB15k are extracted by (Bordes
et al.l 2013) from Wordnet (Miller, [1995) Freebase (Bollacker et al., |2008). We used the same
train/valid/test sets as in (Bordes et al., [2013). WN18 contains 40,943 entities, 18 relations and
141,442 train triples. FB15k contains 14,951 entities, 1,345 relations and 483,142 train triples.
In order to test the expressiveness ability rather than relational pattern learning power of models,
FB15k-237 (Toutanova & Chenl 2015) and WN18RR (Dettmers et al., 2018) exclude the triples
with inverse relations from FB15k and WN18 which reduced the size of their training data to 56%
and 61% respectively.

Baselines: We compare MDE with several state-of-the-art relational learning approaches. Our base-
lines include TransE, RESCAL, DistMult, NTN, ER-MLP, ComplEx and SimplE. We report the
results of TransE, DistMult, and ComplEx from (Trouillon et al., 2016)) and the results of TransR
and NTN from (Nguyen, 2017), and ER-MLP from (Nickel et al.,|2016)). The results on the inverse
relation excluded datasets are from (Sun et al.,[2019), Table 13 for TransE and RotatE and the rest
are from (Dettmers et al., 2018ﬂ

Evaluation Settings: We evaluate the link prediction performance by ranking the score of each
test triple against its versions with replaced head, and once for tail. Then we compute the hit at
N (Hit@N), mean rank (MR) and mean reciprocal rank (MRR) of these rankings. We report the
evaluations in the filtered setting.

Implementation: We implemented MDE in PyTorc Following (Bordes et al., 2011), we gen-
erated one negative example per positive example for all the datasets. We used Adadelta (Zeiler,
2012) as the optimizer and fine-tuned the hyperparameters on the validation dataset. The ranges of
the hyperparameters are set as follows: embedding dimension 25, 50, 100, 200, batch size 100, 150,
and iterations 50, 100, 1000, 1500, 2500, 3600. We set the initial learning rate on all datasets to 10.
For MDE, the best embedding size and ~; and - and 3; and 35 values on WN18 were 50 and 1.9,
1.9, 2 and 1 respectively and for FB15k were 200, 10, 13, 1, 1. The best found embedding size and
~1 and 2 and 1 and B2 values on FB15k-237 were 100, 9, 9, 1 and 1 respectively and for WN18RR
were 50, 2,2, 5and 1.

We selected the coefficient of terms in equation [5] by grid search in the range 0.1 to 1.0 and test-
ing those combinations of the coefficients where they create a convex combination. Found values
are wy = 0.16, wy = 0.33, wz = 0.16, wy=0.33. We also tested for the best value for 1) between
{0.1,0.2,...,1.5}. We use ¢ = 1.2 for all the experiments.

For MDE y v, we use the same 1, 2, 51 and 35 values except for WN18 that the v; and v, are
4. We use the embedding size 50 for WN18RR, 200 for WN18, 200 for FB15k-237 and 200 for
FB15k. We use ¢ = 2 for all the MDE x5y experiments. To regulate the loss function and to avoid
over-fitting, we estimate the score function for two sets of independent vectors and we take their
average in the prediction. Another advantage of this operation is the reduction of required training
iterations. As a result, MDE reaches to the 99 percent of its ranking performance in 100 iterations,
and MDE y  reaches its best performance in the benchmarks in just 50 iterations.

2Scores of ConvE on FB15k is from https://github.com/TimDettmers/ConvE/issues/26
*https://pytorch.org
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WN18 FB15k

Model MR MRR Hit@l0 | MR MRR Hit@10
TransE - 0.454 0.934 - 0.380 0.641
RESCAL - 0.890 0.928 - 0.354 0.587
DistMult = 0.822 0.936 = 0.654 0.824
SimplE - 0.942 0.947 - 0.727 0.838
NTN = 0.53 0.661 — 0.25 0.414
ER-MLP - 0.712 0.863 — 0.288 0.501
ConvE 504 0.942 0.955 51 0.657 0.831
ComplEx - 0.941 0.947 - 0.692 0.84
RotatE 309  0.949 0.959 40 0.797 0.884
MDE 118 0.871 0.956 49 0.652 0.857
MDEn N 3 0916 0.980 2 0.56 0.976

Table 1: Results on WN18 and FB15k. Best results are in bold.

WN18RR FB15k-237

Model MR MRR Hit@10 | MR MRR Hit@10
DistMult | 5110 0.43 0.49 254 0.241 0.419
ComplEx | 5261 0.44 0.51 339 0.247 0.428
ConvE | 5277 0.46 0.48 246 0.316 0.491
RotatE | 3340 0.476 0.571 177 0.338 0.533
MDE 3121 0.455 0.536 189 0.288 0.484
MDEn v S 0.662 0.962 2 0.500 0.999

Table 2: Results on WN18RR and FB15k-237. Best results are in bold.

5.1 ENTITY PREDICTION RESULTS

Table[I|summarizes our results on FB15k and WN18 showing MDE y x outperforms all the state-of-
the-art models in MR and Hit@ 10 tests and Table |2 shows the result of our experiment on FB15k-
237 and WN18RR, where the improvement is much more significant.

Due to the existence of hard limits in the limit-based loss, the mean rank in both MDE and MDE y n
is much lower than other methods.

The comparison of MDE to other state-of-the-art models, regardless of the MDE y, shows the
competitive performance of MDE. It is observable that while MDE generates only one negative
sample per positive sample and is using vector sizes between 50 to 200, it challenges RotatE which
employs relatively large embedding dimensions (from 125 up to 1000) and high number of negative
samples (up to 1024).

We observe that the application of sigmoid in MDE y  improves it significantly in all the bench-
marks. Particularly, in the more challenging tests over WN18RR and FB15k-237, the improvement
is more significant. For example, we can see that the construction of the neural network from the
model increased its Hit@10 result on FB15k-237 from 0.484 to 0.999.

From analyzing the MRR scores, we can see that RotatE must be totally off in few cases whereas
the MDE y y model almost never seems to be far off, but frequently fails to put the correct entity on
top.

To our knowledge, MDE y  outperforms all the current embedding models in the MR and Hit@10
measures and specially performs better than all the existing models in all the measures on WN18RR
and FB15k-237 benchmarks.

5.2 ABLATION STUDY

To better understand the role of each term in the score function of MDE, we embark two ablation
experiments. First, we train MDE using one of the terms alone, and observe the link prediction
performance of each term in the filtered setting. In the second experiment, we remove one of the
terms at a time and test the effect of the removal of that term on the model after 100 iterations.
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Table [3] summarizes the results of the first experiment on WN18RR and FB15k-237. We can see
that S, outperforms the other terms while .S; and S5 performs very similar on these two datasets.
Between the four terms, S5 performs the worst since most of the relations in the test datasets follow
an antisymmetric pattern and Ss is not efficient in modeling them.

Table [ shows the results of the second experiment. The evaluations on WN18RR and WN18 show
that removal of S, has the most negative effect on the performance of MDE. The removal of .S; that
was one of the good performing terms in the last experiment has the least effect. Nevertheless, S
improves the MRR in the MDE. Also, when we remove Ss, the MRR and Hit@ 10 are negatively
influenced, indicating that there exist cases that S5 performs better than the other terms, although,
in the individual tests, it performed the worst between all the terms.

WN18RR FB15k-237
Individual Term | MR MRR Hit@10 | MR MRR Hit@10
St 3137 0.184 0.447 187 0.260 0.454
So 8063 0.283 0.376 | 439 0.204 0.342
Ss 3153 0.183 0.449 | 186 0.258 0.455
Sy 2245 0.323 0.467 | 220 0.273 0.462

Table 3: Results of each individual term in MDE on WN18RR and FB15k-237. Best results are in
bold.

WNI18RR WIN18
Removed Term | MR MRR Hit@10 | MR MRR Hit@10
S1 3983 0.417 0.501 113 0.838 0.946
Sy 3727 0.358 0.490 131 0.823 0.943
S3 3960 0.427 0.499 161 0.850 0.943
S4 3921 0.366 0.478 163 0.705 0.929
None 3985 0.428 0.501 151 0.844 0.946

Table 4: Results of MDE after 100 iterations when removing one of the terms. Best results are in
bold.

6 CONCLUSION

In this study, we showed how MDE relieves the expressiveness restrictions of the distance-based
embedding models and proposed a general method to override these limitations for the older mod-
els. Beside MDE and RotatE, most of the existing KG embedding approaches are unable to allow
modeling of all the three relation patterns. We framed MDE into a Neural Network structure and
validated our contributions via both theoretical proofs and empirical results.

We demonstrated that with multiple views to translation embeddings and using independent vectors
(that previously were suggested to cause poor performance (Trouillon et al.l 2017; Kazemi & Poole}
2018))) a model can outperform the existing state-of-the-art models for link prediction. Our experi-
mental results confirm the competitive performance of MDE and particularly MDE y » that achieves
state-of-the-art MR and Hit@ 10 performance on all the benchmark datasets.
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APPENDIX

A  PROOF OF LEMMA 1.

Let 71,732, 73 be relation vector representations and e;, e;, e are entity representations. A relation
r1 between (e;, ex) exists when a triple (e;,r1, ex) exists and we show it by r;(e;, ex). Formally,
we have the following results:

Antisymmetric Pattern. If r1(e;, e;) and 71 (e;, e;) hold, in equationfor S1, then:
€i+7‘1:€j A\ 6j+7’17é61' = 6¢+2T17é6i O

Therefore .S; allows encoding of relations with antisymmetric patterns.

Symmetric Pattern. If 71 (e;, e;) and 1 (e;, €;) hold, for S we have:

€i+€j—’r'1:0 N €j+€i—’l“1:0 = e te=mn

O
Therefore S, allows encoding relations with symmetric patterns. For S; we have:
Inversion Pattern. If r1(e;, e;) and 2(e;, e;) hold, from Equation|[I] we have:
6i+T1:6j AN €j+7"2:€i = r = —T9 O
Therefore .S; allows encoding relations with inversion patterns.
Composition Pattern. If r1(e;, ex) , r2(e;, €;) and, 73(e;, e) hold, from equationwe have:
e;+ri=e, AN e+ro=e N e+rzg=e = Tot+r3=r] O

Therefore .S; allows encoding relations with composition patterns.

B PROOF OF LEMMA 2.

Proof. R1: For such reflexive 71, if 71 (e;, €;) then ;(e;, €;). In this equation we have:
e;=riesNej=rie; =11 =U % e; =185

where U is unit tensor.

R2: For such reflexive 1, if r1(e;, e;) and r;(e;, ex) then 71 (e;, e;) and 7;(ex, e;). In the above

equation we have:

ei=riej Nej =riep => e =ririejep ATy =U = ¢, = ejer, 2 e, + e =1y ]

C PROOF OF LEMMA 3.

We show there is boundries for 71, 2, wy, we, w3, wy, such that learning a fact by one of the terms
in fy;pg is enough to classify a fact correctly.

Proof. We show the boundaries for three aggregated terms in the the distance function, it is easily
possible to extend it to four and more terms. It is enough to show that there is at least one set of
boundaries for the positive and negative samples that follows the constraints. The case to prove is
when three of the distance functions classify a fact negative /N and the one distance function e.g. s
classify it as positive P, and the case that s; and s3 classify a fact as positive and sy classify it as
negative. We set w; = w3 = 1/4 and wy = 1/2 and assume that Sum is the value estimated by the
score function of MDE, we have:

N Y2 Y1 P Y1 Y2
a>2_2A2>2_0:>a+2>Sum+1/)_2 ®)

There exist a = 2 and y; = 72 = 2 and ¢) = 1 that satisfy 71 > Sum > 0 and the inequality[§] [
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Algorithm 1 Guided Limit Loss

1: Initilize: 6,7, =2 € RT, v € R, i =0, £ € R, threshold € R™T.
2: Inside training iterations. . .
3: if Using 085 gyided instead of [05S}imit—based then

4 dosst =1 ) epef(T) — (m = 9]+

500 lossT = P23 ep-1(2 —0') = F(T)]4+

6: loss = loss™ + loss™

7: if loss™ =0 & ~; > £ then

8: 0=0+¢

9: if loss™ > threshold & 7o > £thend’ = § + €&
10:

11: if Using [0SS1imit—baseqd then

12: loss = the result from equation [6)]

It can be easily checked that without introduction of %, there is no value of Sum that can satisfy
both 77 > Sum > 0 and the inequality [8| and we calculated the value of i) based on the values of
71, 72 and a. In case that future studies discover new interesting distances, this Lemma shows how
to basically integrate them into MDE.

D SEARCHING FOR THE LIMITS IN THE LIMIT-BASED LOSS

While the limit-based loss resolves the issue of margin ranking loss with distance based embeddings,
it does not provide a way to find the optimal limits. Therefore the mechanism to find limits for each
dataset and hyper-parameter is the try and error. To address this issue, we suggest updating the limits
in the limit-based loss function during the training iterations. We denote the moving-limit loss by
1055 gyide-

lossguiae = lim B1 3 f(N) = (n =0+ 8 3 (2 =)= f@)] O
TET+ T'eT—

where the initial value of ¢, d; is 0. In this formulation, we increase the do, §, toward ~y; and 72
during the training iterations such that the error for positive samples minimizes as much as possible.
We test on the validation set after each 50 epoch and take those limits that give the best value during
the tests. The details of the search for limits is explained in Algorithm 1. After observing the most
promising values for limits in the preset number of iterations, we stop the search and perform the
training while having the ¢ values fixed(fixed limit-base loss) to allow the adaptive learning to reach
loss values smaller than the threshold.

We based this approach on the idea of adaptive learning rate (Zeiler, 2012), where the Adadelta
optimizer adapts the learning rate after each iteration, therefore in the l0ssgyi4.4 We can update the
limits without stopping the training iterations. In our experiments, the variables in the Algorithm 1,
are as follows. threshold = 0.05, £ = 0.1.
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