
Under review as a conference paper at ICLR 2020

MULTI-AGENT INTERACTIONS MODELING WITH COR-
RELATED POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-agent systems, complex interacting behaviors arise due to heavy corre-
lations among agents. However, prior works on modeling multi-agent interac-
tions from demonstrations have largely been constrained by assuming the inde-
pendence among policies and their reward structures. In this paper, we cast the
multi-agent interactions modeling problem into a multi-agent imitation learning
framework with explicit modeling of correlated policies by approximating oppo-
nents’ policies. Consequently, we develop a Decentralized Adversarial Imitation
Learning algorithm with Correlated policies (CoDAIL), which allows for decen-
tralized training and execution. Various experiments demonstrate that CoDAIL
can better fit complex interactions close to the demonstrators and outperforms
state-of-the-art multi-agent imitation learning methods.

1 INTRODUCTION

Modeling complex interactions among intelligent agents from real world is essential for understand-
ing and creating intelligent multi-agent behaviors, which are typically formulated as a multi-agent
learning (MAL) problem under multi-agent systems. When the system dynamics are agnostic and
non-stationary due to the adaptive agents with implicit goals, multi-agent reinforcement learning
(MARL) is the most commonly used technique for MAL. MARL has recently drawn much atten-
tion and achieved impressive progress on various non-trivial tasks, such as multi-player strategy
games (OpenAI, 2018; Jaderberg et al., 2018), traffic light control (Chu et al., 2019), taxi-order
dispatching (Li et al., 2019) etc.

A central challenge in MARL is to specify a good learning goal, as the agents’ rewards are correlated
and thus cannot be maximized independently (Bu et al., 2008). Without explicit access to the reward
signals, imitation learning could be the most intuitive solution for learning good policies directly
from demonstrations. Common solutions such as behavior cloning (BC) (Pomerleau, 1991) learn
the policy in a supervised manner with requiring numerous data while suffering from compounding
error (Ross & Bagnell, 2010; Ross et al., 2011). Inverse reinforcement learning (IRL) (Ng et al.,
2000; Russell, 1998) alleviates these shortcomings by recovering a reward function but is always
expensive to obtain the optimal policy due to the forward reinforcement learning procedure in an
inner loop. Generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016) leaves a better
candidate for its model-free structure without compounding error, which is highly effective and
scalable. However, real-world multi-agent interactions could be much difficult to imitate because of
the strong correlations among adaptive agents’ policies and rewards. Consider if a football coach
wants to win the league, he must make targeted tactics against various opponents, addition to the
situation of his own team. Moreover, the multi-agent environment tends to give rise to more serious
compounding error with more expensive running cost.

Motivated by these challenges, we investigate the problem of modeling complicated multi-agent
interactions from a pile of off-line demonstrations, and recover their on-line policies which can re-
generate analogous multi-agent behaviors. Prior studies for multi-agent imitation learning typically
limit the complexity in demonstrated interactions by assuming isolated reward structures (Barrett
et al., 2017; Le et al., 2017; Lin et al., 2014; Waugh et al., 2013) and independence in per-agent poli-
cies that overlook the heavy correlations among agents (Song et al., 2018; Yu et al., 2019). In this
paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning
framework with correlated policies by approximating opponents’ policies, in order to reach inacces-

1

Under review as a conference paper at ICLR 2020

sible opponents’ actions due to concurrently execution of actions among agents when making deci-
sions. Consequently, with approximated opponents model we develop a Decentralized Adversarial
Imitation Learning algorithm with Correlated policies (CoDAIL) suitable for learning correlated
policies under our proposed framework, which allows for decentralized training and execution. We
prove that our framework treats the demonstrator interactions as one of ε-Nash Equilibrium (ε-NE)
solutions under the recovered reward.

In experiments, we conduct multi-dimensional comparisons for both the reward difference between
learned agents and demonstrators, along with the distribution divergence between demonstrations
and regenerated interactions from learned policies. And the results reveal that CoDAIL can better fit
correlated multi-agent policy interactions than other state-of-the-art multi-agent imitation learning
methods in several multi-agent scenarios. We further illustrate the distributions of regenerated inter-
actions, which indicates that CoDAIL yields the closest interaction behaviors to the demonstrators.

2 PRELIMINARIES

2.1 MARKOV GAME AND ε-NASH EQUILIBRIUM

Markov game (MG), or stochastic game (Littman, 1994), can be regarded as an extension
of Markov Decision Process (MDP). Formally, we define an MG for N agents as a tuple
〈N,S,A(1), . . . ,A(N), P, r(1), . . . , r(N), ρ0, γ〉, where S is the set of states, A(i) represents the
action space of agent i, where i ∈ {1, 2, . . . , N}, P : S × A(1) × A(2) × · · · × A(N) × S → R is
the state transition probability distribution, ρ0 : S → R is the distribution of the initial state s0, and
γ ∈ [0, 1] is the discounted factor. Each agent i holds its policy π(i)(a(i)|s) : S × A(i) → [0, 1] to
make decisions and receive rewards defined as r(i) : S×A(1)×A(2)×· · ·×A(N) → R. We use−i
to represent the set of agents except i, and variables without superscript i to denote the concatenation
of all variables for all agents (e.g., π represents the joint policy and a denotes actions of all agents).
For an arbitrary function f : 〈s, a〉 → R, there is a fact that Eπ[f(s, a)] = Es∼P,a∼π[f(s, a)] ,
E [
∑∞
t=0 γ

tf(st, at)], where s0 ∼ ρ0, at ∼ π, st+1 ∼ P (st+1|at, st). The objective of agent i is to
maximize its own total expected return R(i) , Eπ[r(i)(s, a)] = E

[∑∞
t=0 γ

tr(i)(st, at)
]
.

In Markov games, however, the reward function for each agent depends on the joint agent actions.
Such a fact implies that one’s optimal policy must also depend on others’ policies. For the solution
to the Markov games, ε-Nash equilibrium (ε-NE) is a commonly used concept that extends Nash
equilibrium (NE) (Nash, 1951).

Definition 1. An ε-NE is a strategy profile (π
(i)
∗ , π

(−i)
∗) such that ∃ε > 0:

v(i)(s, π
(i)
∗ , π

(−i)
∗) ≥ v(i)(s, π(i), π

(−i)
∗)− ε,∀π(i) ∈ Π(i) , (1)

where v(i)(s, π(i), π(−i)) = Eπ(i),π(−i),s0=s

[
r(i)(st, a

(i)
t , a

(−i)
t)

]
is the value function of agent i

under state s, and Π(i) is the set of policies available to agent i.

ε-NE is weaker than NE, which can be seen as sub-optimal NE. Every NE is equivalent to an ε-NE
where ε = 0.

2.2 GENERATIVE ADVERSARIAL IMITATION LEARNING

Imitation learning aims to learn the policy directly from expert demonstrations without any access
to the reward signals. In single-agent settings, such demonstrations are often provided with behavior
trajectories sampled from the expert policy, denoted as τE = {(st, a(i)

t)}∞t=0. However, in multi-
agent settings, demonstrations are interrelated trajectories, which are sampled from the interactions
of policies among all agents, denoted as ΩE = {(st, a(1)

t , ..., a
(N)
t)}∞t=0. For simplicity, we will use

the term interactions directly as the concept of interrelated trajectories, and we refer to trajectories
for a single agent.

Typically, behavior cloning (BC) and inverse reinforcement learning (IRL) are two main approaches
for imitation learning. Although IRL theoretically alleviates compounding error and outperforms

2

Under review as a conference paper at ICLR 2020

to BC, it is less efficient since it requires resolving an RL problem inside the learning loop. Re-
cent work has been proposed to directly learn the policy without estimating the reward function,
notably, GAIL (Ho & Ermon, 2016), which takes advantage of Generative Adversarial Networks
(GAN (Goodfellow et al., 2014)), showing that IRL is the dual problem of occupancy measure
matching. GAIL regards the environment as a black-box, which is non-differentiable but can be
leveraged through Monte-Carlo estimation of policy gradients. Formally, its objective can be ex-
pressed as

min
π

max
D

EπE [logD(s, a)] + Eπ [log (1−D(s, a))]− λH(π) , (2)

where D is a discriminator that identifies the expert trajectories with agents’ sampled from policy
π, which tries to maximize its evaluation from D; H is the causal entropy for the policy and λ is the
hyperparameter.

2.3 CORRELATED POLICY

In multi-agent learning tasks, each agent imakes decisions independently while the resulting reward
r(i)(st, a

(i)
t , a

(−i)
t) depends on others’ actions, which makes its cumulative return subjected to the

joint policy π. One common joint policy modeling method is to decouple the π with assuming
conditional independence of actions from different agents (Albrecht & Stone, 2018):

π(a(i), a(−i)|s) = π(i)(a(i)|s)π(−i)(a(−i)|s) . (3)

However, such a non-correlated factorization on the joint policy is a vulnerable simplification which
ignores the influence of opponents (Wen et al., 2019). And the learning process of agent i lacks sta-
bility since the environment dynamics depends on not only the current state but also the joint actions
of all agents (Tian et al., 2019). To solve this, recent work has taken opponents into consideration
by decoupling the joint policy as a correlated policy conditioned on state s and a(−i) as

π(a(i), a(−i)|s) = π(i)(a(i)|s, a(−i))π(−i)(a(−i)|s) , (4)

where π(i)(a(i)|s, a(−i)) is the conditional policy, with which agent i regards all potential ac-
tions from its opponent policies π(−i)(a(−i)|s), and makes decisions through the marginal policy
π(i)(a(i)|s) =

∫
a(−i)

π(i)(a(i)|s, a(−i))π(−i)(a(−i)|s) da(−i) = Ea(−i)π(i)(a(i)|s, a(−i)).

3 METHODOLOGY

3.1 GENERALIZE CORRELATED POLICIES TO MULTI-AGENT IMITATION LEARNING

In multi-agent settings, for agent i with policy π(i), it seeks to maximize its cumulative reward
against demonstrator opponents who equip with expert policies π(−i)

E via reinforcement learning:

RL(i)(r(i)) = arg max
π(i)

λH(π(i)) + E
π(i),π

(−i)
E

[r(i)(s, a(i), a(−i))] , (5)

whereH(π(i)) is the γ-discounted entropy (Bloem & Bambos, 2014; Haarnoja et al., 2017) of policy
π(i) and λ is the hyperparameter. By coupling with Eq. (5), we define an IRL procedure which aims
to find a reward function r(i) such that the expert joint policy outperforms all other policies, with
the regularizer ψ : RS×A(1)×···×A(N) → R:

IRL
(i)
ψ (π

(i)
E) = arg max

r(i)
−ψ(r(i))−max

π(i)
(λH(π(i)) + E

π(i),π
(−i)
E

[r(i)(s, a(i), a(−i))])

+ EπE [r(i)(s, a(i), a(−i))] .

(6)

It is worth noting that we cannot obtain the expert policies from the demonstrated dataset directly.
To address this problem, we first introduce the occupancy measure, namely, the unnormalized dis-
tribution of 〈s, a〉 pairs correspond to the agent interactions navigated by joint policy π:

ρπ(s, a) = π(a|s)
∞∑
t=0

γtP (st = s|π) . (7)

3

Under review as a conference paper at ICLR 2020

With the definition in Eq. (7), we can further formulate ρπ from agent i’s perspective as

ρπ(s, a(i), a(−i)) = π(a(i), a(−i)|s)
∞∑
t=0

γtP (st = s|π(i), π(−i))

= π(i)(a(i)|s)π(−i)(a(−i)|s)︸ ︷︷ ︸
non-correlated form

∞∑
t=0

γtP (st = s|π(i), π(−i))

= π(i)(a(i)|s)π(−i)(a(−i)|s, a(i))︸ ︷︷ ︸
correlated form

∞∑
t=0

γtP (st = s|π(i), π(−i))

= ρπ(i),π(−i)(s, a(i), a(−i)) ,

(8)

where a(i) ∼ π(i) and a(−i) ∼ π(−i). Further, such an expression allows us to write

Eπ(i),π(−i) [·] = Es∼P,a(i)∼π(i) [Ea(−i)∼π(−i) [·]]

=
∑

s,a(i),a(−i)

ρπ(i),π(−i)(s, a(i), a(−i))[·] . (9)

In analogy to the definition of occupancy measure of that in a single-agent environment, we follow
the derivation from Ho & Ermon (2016) and state the conclusion directly1.
Proposition 1. The IRL regarding demonstrator opponents is a dual form of following occupancy
measure matching problem with regularizer ψ, and the induced optimal policy is the primal opti-
mum:

RL(i) ◦ IRL(i) = arg min
π(i)

−λH(π(i)) + ψ∗(ρ
π(i),π

(−i)
E

− ρπE) . (10)

With setting the regularizer ψ = ψGA similar to Ho & Ermon (2016), we can obtain a GAIL-like
imitation algorithm to learn π(i)

E from πE given demonstrator counterparts π(−i)
E by introducing the

adversarial training procedures of GANs which lead to a saddle point (π(i), D(i)):

min
π(i)

max
D(i)
−λH(π(i)) + EπE

[
logD(i)(s, a(i), a(−i))

]
+ E

π(i),π
(−i)
E

[
log (1−D(i)(s, a(i), a(−i)))

]
,

(11)
where D(i) denotes the discriminator for agent i, which plays a role of surrogate cost function and
guides the learning direction of the policy.

However, such an algorithm is not practical, since we are unable to access the policies of demonstra-
tor opponents π(−i)

E because the demonstrated policies are always given through sets of interactions
data. To alleviate this deficiency, it is necessary to deal with accessible counterparts. Thereby we
propose Proposition 2.

Proposition 2. Let µ be an arbitrary function such that µ holds a similar form as π(−i), then

Eπ(i),π(−i) [·] = Eπ(i),µ

[
ρ
π(i),π(−i) (s,a(i),a(−i))

ρ
π(i),µ

(s,a(i),a(−i))
·
]
.

Proof. Substituting π(−i) with u in Eq. (9) by importance sampling.

Proposition 2 raises an important point that the demonstrator opponents can, in fact, be quantified
by a term of importance weight. By replacing µ with π(−i), Eq. (11) is equivalent with Eq. (12) as

min
π(i)

max
D(i)

−λH(π(i)) + EπE
[
logD(i)(s, a(i), a(−i))

]
+ Eπ(i),π(−i)

[
α log (1−D(i)(s, a(i), a(−i)))

]
,

(12)

where α =
ρ
π(i),π

(−i)
E

(s,a(i),a(−i))

ρ
π(i),π(−i) (s,a(i),a(−i))

is the importance sampling weight. In practice, it is challenging to

estimate the densities and the learning methods might suffer from large variance. Thus, we fix α = 1

1Note that Ho & Ermon (2016) proved the conclusion under the goal to minimize the cost instead of maxi-
mizing the reward of an agent.

4

Under review as a conference paper at ICLR 2020

in our implementation, and as the experimental results have shown, it has no significant influences
on performance. Besides, a similar approach can be found in Kostrikov et al. (2018).

So far, we’ve built a multi-agent imitation learning framework, which can be easily generalized to
correlated policies or non-correlated policies settings. No prior has to be considered in advance
since the discriminator is able to learn the implicit goal for each agent.

3.2 LEARN WITH THE OPPONENTS MODEL

With the objective shown in Eq. (11), interactions can be imitated by updating discriminators to
offer surrogate rewards and learning their policies alternately. Formally, the update of discriminator
for each agent i can be expressed as:

∇ωJD(ω) =Es∼P,a(−i)∼π(−i)

[∫
a(i)

π
(i)
θ (a(i)|s, a(−i))∇ω log (1−D(i)

ω (s, a(i), a(−i))) da(i)

]
+ E(s,a(i),a(−i))∼ΩE

[
∇ω logD(i)

ω (s, a(i), a(−i))
]
,

(13)
and the update of policy is:

∇θJπ(θ) = Es∼P,a(−i)∼π(−i)

[
∇θ(i)

∫
a(−i)

π
(i)
θ (a(i)|s, a(−i))A(i)(s, a(i), a(i)) da(i)

]
, (14)

where discriminator D(i) is parametrized by ω, and the policy π(i) is parametrized by θ. It is worth
noting that the agent i considers opponents’ action a(−i) while updating its policy and discriminator,
with integrating all its possible decisions to find the optimal response. However, it is unrealistic to
have the access to opponent joint policy π(a(−i)|s) for agent i. Thus, it is essential to estimate
opponents actions via approximating π(−i)(a(−i)|s) using opponent modeling. By denoting the
joint opponents model for agent i as σ(i)(a(−i)|s), we can rewrite Eq. (13) and Eq. (14) as:

∇ωJD(ω) ≈ E
s∼P,â(−i)∼σ(i),a(i)∼π(i)

θ

[
∇ω(i) log(1−D(i)

ω (s, a(i), â(−i)))
]

+ E(s,a(i),a(−i))∼ΩE

[
∇ω logD(i)

ω (s, a(i), a(−i))
] (15)

and

∇θJπ(θ) ≈ E
s∼P,â(−i)∼σ(i),a(i)∼π(i)

θ

[
∇θ(i) log π

(i)
θ (a(i)|s, â(−i))A(i)(s, a(i), â(−i))

]
(16)

respectively. Therefore, each agent i must infer the opponents model σ(i) to approximate the un-
observable policies π(−i), which can be achieved via supervised learning. Specifically, we learn in
discrete action space by minimizing a cross-entropy (CE) loss, and a mean-square-error (MSE) loss
in continuous action space:

L =

{
1
2Es∼p

[∥∥σ(i)(a(−i)|s)− π(−i)(a(−i)|s)
∥∥2
]
, continuous action space

Es∼p
[
π(−i)(a(−i)|s) log σ(i)(a(−i)|s)

]
, discrete action space.

(17)

With opponents modeling, agents are able to be trained in a fully decentralized manner. We name
our algorithm as Decentralized Adversarial Imitation Learning with Correlated policies (Correlated
DAIL, a.k.a. CoDAIL) and present the training procedure in Appendix Algo. 1, which can be easily
scaled to a distributed algorithm. As a comparison, we also present a non-correlated DAIL algorithm
with non-correlated policy assumption in Appendix Algo. 2.

3.3 THEORETICAL ANALYSIS

In this section, we prove that the reinforcement learning objective againsts demonstrator counterparts
shown in the last section is equivalent to reaching an ε-NE.

Since we fix the policies of agents −i as π(−i)
E , the RL procedure mentioned in Eq. (5) can be

regarded as a single-agent RL problem. Similarly, with fixed π(−i)
E , the IRL process of Eq. (6) is

5

Under review as a conference paper at ICLR 2020

cast to a single-agent IRL problem, which recovers an optimal reward function r(i)
∗ which achieves

the best performance following the joint action πE . Thus we have

RL(i)(r
(i)
∗) = arg max

π(i)

λH(π(i)) + E
π(i),π

(−i)
E

[r(i)(s, a(i), a(−i))]

= π
(i)
E .

(18)

We can also rewrite Eq. (18) as

λH(π
(i)
E) + E

π
(i)
E ,π

(−i)
E

[r(i)(s, a(i), a(−i))] ≥ λH(π(i)) + E
π(i),π

(−i)
E

[r(i)(s, a(i), a(−i))] (19)

for all π(i) ∈ Π(i), which is equivalent to

E
a
(i)
t ∼π

(i)
E ,a

(−i)
t ∼π(−i)

E ,s0=s

[∞∑
t=0

γtr
(i)
∗ (st, a

(i)
t , a

(−i)
t)

]
≥ (20)

E
a
(i)
t ∼π(i),a

(−i)
t ∼π(−i)

E ,s0=s

[∞∑
t=0

γtr
(i)
∗ (st, a

(i)
t , a

(−i)
t)

]
+ λ(H(π(i))−H(π

(i)
E)),∀π(i) ∈ Π(i) .

Given the value function defined in Eq. (1) for each agent i, forH(π(i))−H(π
(i)
E) < 0, ∀π(i) ∈ Π(i),

we have
v(i)(s, π

(i)
E , π

(−i)
E) ≥ v(i)(s, π(i), π

(−i)
E)− λ(H(π

(i)
E)−H(π(i))) . (21)

For H(π(i))−H(π
(i)
E) ≥ 0, ∀π(i) ∈ Π(i) we have

v(i)(s, π
(i)
E , π

(−i)
E) ≥ v(i)(s, π(i), π

(−i)
E) + λ(H(π(i))−H(π

(i)
E))

≥ v(i)(s, π(i), π
(−i)
E)− λ(H(π(i))−H(π

(i)
E)) .

(22)

Let ε = λmax
{∣∣H(π(i))−H(π

(i)
E)
∣∣,∀π(i) ∈ Π(i)

}
, then we finally obtain

v(i)(s, π
(i)
E , π

(−i)
E) ≥ v(i)(s, π(i), π

(−i)
E)− ε,∀π(i) ∈ Π(i) , (23)

which is exactly the ε-NE defined in Definition 1. We can always prove that ε is bounded in small
values such that the ε-NE solution concept is meaningful. Generally, random policies that keep vast
entropy are not always considered as sub-optimal solutions or demonstrated policies π(i)

E in most
reinforcement learning environments. As we do not require those random policies, we can remove
them from the candidate policy set Π(i), which indicates that H(π(i)) is bounded in small values, so
as ε. Empirically, we adopt a small λ, and attain the demonstrator policy πE with efficient learning
algorithm to become a close-to-optimal solution.

Thus, we conclude that the objective of our CoDAIL assumes that demonstrated policies institute
an ε-NE solution concept (but not necessarily unique) that can be controlled the hyperparameter λ
under some specific reward function, from which the agent learns a policy. It is worth noting that Yu
et al. (2019) claimed that NE is incompatible with maximum entropy inverse reinforcement learning
(MaxEnt IRL) because NE assumes that the agent never takes sub-optimal actions. Nevertheless,
we prove that given demonstrator opponents, the multi-agent MaxEnt IRL defined in Eq. (6) is
equivalent to finding an ε-NE.

4 RELATED WORK

Albeit non-correlated policy learning guided by a centralized critic has show great properties in
couples of methods, including MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), MA
Soft-Q (Wei et al., 2018), it lacks in modeling complex interactions because its decisions making
relies on the independent policy assumption which only considers private observations while ignores
the impact of opponent behaviors. To behave more rational, agents must take other agents into con-
sideration, which leads to the studies of opponent modeling (Albrecht & Stone, 2018) where an agent

6

Under review as a conference paper at ICLR 2020

models how its opponents behave based on the interaction history when making decisions (Claus &
Boutilier, 1998; Greenwald et al., 2003; Wen et al., 2019; Tian et al., 2019).

For multi-agent imitation learning, however, prior works fail to learn from complex demonstra-
tions and many of them are bounded with spacial reward assumptions. For instance, Bhattacharyya
et al. (2018) proposed Parameter Sharing Generative Adversarial Imitation Learning (PS-GAIL)
that adopts parameter sharing trick to directly extend GAIL to handle multi-agent problems, but it
does not utilize the properties of Markov games with strong constraints on the action space and the
reward function. Besides, there are many works built in Markov games that are restricted under
tabular representation and known dynamics but with specific prior of reward structures, as fully co-
operative games (Barrett et al., 2017; Le et al., 2017; Šošic et al., 2016; Bogert & Doshi, 2014),
two-player zero-sum games (Lin et al., 2014), two-player general-sum games (Lin et al., 2018), and
linear combinations of specific features (Reddy et al., 2012; Waugh et al., 2013).

Recently, there are many works that take the advantages of GAIL to solve Markov games. Inspired
by a specific choice of Lagrange multipliers for a constraint optimization problem (Yu et al., 2019),
Song et al. (2018) derived a performance gap for multi-agent from NE and proposed multi-agent
GAIL (MA-GAIL), where they formulated the reward function for each agent using private actions
and observations. As an improvement, Yu et al. (2019) presented a multi-agent adversarial inverse
reinforcement learning (MA-AIRL) based on logistic stochastic best response equilibrium and Max-
Ent IRL. However, both of them are inadequate to model agent interactions with correlated policies
with independent discriminators. By contrast, our approach can generalize correlated policies to
model the interactions from demonstrations and employ a fully decentralized training procedure
without to get access to know the exact opponent policies.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

5.1.1 ENVIRONMENT DESCRIPTION

We test our method on the Particle World Environments (Lowe et al., 2017), which is a popular
benchmark for evaluating multi-agent algorithms, including several cooperative and competitive
tasks. Specifically, we consider two cooperative scenarios and two competitive ones as follows: 1)
Cooperative-communication, with 2 agents and 3 landmarks, where an unmovable speaker knowing
the goal, cooperates with a listener to reach a particular landmarks who achieves the goal only
through the message from the speaker; 2) Cooperative-navigation, with 3 agents and 3 landmarks,
where agents must cooperate via physical actions and it requires each agent to reach one landmark
while avoiding collisions; 3) Keep-away, with 1 agent, 1 adversary and 1 landmark, where the agent
has to get close to the landmark, while the adversary is rewarded by pushing away the agent from the
landmark without knowing the target; 4) Predator-prey, with 1 prey agent with 3 adversary predators,
where the slower predactor agents must cooperate to chase the prey agent that moves faster and try
to run away from the adversaries.

5.1.2 EXPERIMENTAL DETAILS

We aim to compare the quality of interactions modeling in different aspects. Since the ground-truth
reward in those simulated environments is accessible, we train the demonstrators given the ground-
truth rewards via a learning algorithm regarding others’ policies into decision making, which is able
to generate complicated interactions. Specifically, we choose a multi-agent version ACKTR (Wu
et al., 2017; Song et al., 2018), an efficient model-free policy gradient algorithm, with keeping a
conditional policy for each agent with an auxiliary opponents model which transforms the original
centralized on-policy learning algorithm to be decentralized. Note that we do not necessarily need
experts that can do well in our designated environments, instead any demonstrator will be treated as
it is from an ε-NE strategy concept under some unknown reward functions, which will be recovered
by the discriminator.

In our training procedure, we first obtain demonstrator policies induced by the ground-truth rewards,
and then generate demonstrations, i.e., the interactions data for imitation training. Then we train the
agents through the surrogate rewards from discriminators. We compare CoDAIL with MA-AIRL,

7

Under review as a conference paper at ICLR 2020

Table 1: Average absolute reward differences between demonstrators and learned agents in 2 cooperative tasks.
Means and standard deviations are taken across different random seeds.

Algorithm Coop.-Comm. Coop.-Navi.
Demonstrators 0 ± 0 0 ± 0

MA-AIRL 0.780 ± 0.917 6.696 ± 3.646
MA-GAIL 0.638 ± 0.624 7.596 ± 3.088
NC-DAIL 0.692 ± 0.597 6.912 ± 3.971
CoDAIL 0.632 ± 0.685 6.249 ± 2.779
Random 186.001 ± 16.710 322.1124 ± 15.358

Table 2: Average absolute reward differences between demonstrators and learned agents in 2 competitive tasks,
where ‘agent+’ and ‘agent-’ represent 2 teams of agents and ‘total’ is their sum. Means and standard deviations
are taken across different random seeds.

Algorithm Keep-away Pred.-Prey
Total Agent+ Agent- Total Agent+ Agent-

Demonstrators 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
MA-AIRL 12.273 ± 1.817 4.149 ± 1.912 8.998 ± 4.345 279.535 ± 77.903 35.100 ± 1.891 174.235 ± 73.168
MA-GAIL 1.963 ± 1.689 1.104 ± 1.212 1.303 ± 0.798 15.788 ± 10.887 4.800 ± 2.718 8.826 ± 3.810
NC-DAIL 1.805 ± 1.695 1.193 ± 0.883 1.539 ± 1.188 27.611 ± 14.645 8.260 ± 7.087 6.975 ± 5.130
CoDAIL 0.269 ± 0.078 0.064 ± 0.041 0.219 ± 0.084 10.456 ± 6.762 4.500 ± 3.273 4.359 ± 2.734
Random 28.272 ± 2.968 25.183 ± 2.150 53.455 ± 2.409 100.736 ± 6.870 37.980 ± 2.396 13.204 ± 8.444

Table 3: KL divergence of agents’ positions (x, y) between learned agents and demonstrators per agent and the
overall KL divergence in different scenarios. ‘Total’ is the KL divergence for state-action pairs of all agents and
‘Per’ is the averaged KL divergence of each agent. Experiments are conducted under the same random seed.
Note that unmovable agents are not recorded since they never move from the start point, and there is only one
movable agent in Cooperative-communication.

Algorithm Coop.-Comm. Coop.-Navi. Keep-away Pred.-Prey
Total/Per Total Per Total Per Total Per

Demonstrators 0 0 0 0 0 0 0
MA-AIRL 3552.516 1807.083 4724.107 6914.624 9824.762 7156.822 11851.083
MA-GAIL 3468.068 1503.419 4554.988 5172.078 6981.990 999.840 2711.567
NC-DAIL 3800.175 1620.159 4604.040 4656.311 6177.964 1669.839 3330.657
CoDAIL 642.742 903.334 2310.002 311.273 573.454 862.143 2259.975
Random 21745.556 17489.218 22120.852 19134.424 23482.896 3755.483 8236.088

MA-GAIL, non-correlated DAIL (NC-DAIL) (the only difference of MA-GAIL and NC-DAIL is
whether the reward function is depend on joint actions or individual action) and a random agent. We
do not apply any prior of the reward structure for all tasks to let the discriminator learn the implicit
goals. All training procedures are pre-trained via behavior cloning2 to reduce the sample complexity,
and we use 200 episodes of demonstrations, each with maximum 50 timesteps.

5.2 REWARD DIFFERENCE

Tab. 1 and Tab. 2 show the absolute difference of reward for learned agents compared to the demon-
strators in cooperative and competitive tasks respectively. The learned interactions are considered
superior if there are smaller reward differences. Since cooperative tasks are reward-sharing, we show
only a group reward for each task in Tab. 1. Compared to the baselines, CoDAIL achieves smaller
differences in both cooperative and competitive tasks, which suggests that our algorithm has a robust
imitation learning capability of modeling the demonstrated interactions. It is also worth noting that
CoDAIL achieves higher performance gaps in competitive tasks than cooperative ones, for which
we think that conflict goals motivate more complicated interactions than a shared goal. Besides,
MA-GAIL and NC-DAIL are about the same, indicating that less important is the surrogate reward
structure on these multi-agent scenarios. To our surprise, MA-AIRL does not perform well in some
environments, and even fails in Predator-prey. We list the raw obtained rewards in Appendix C and
we provide more hyperparameter sensitivity results in Appendix D .

5.3 DIVERGENCE OVER INTERACTIONS

Since we aim to recover the interactions of agents generated by the learned policies, it is proper
to evaluate the relevance between distributions of regenerated interactions and demonstration data.
Specifically, we collect positions of agents over hundreds of state-action tuples, which can be seen as

2Note that other opponent modeling methods such as PR2 (Wen et al., 2019) and ROMMEO (Tian et al.,
2019) can be seamlessly adopted here but they not the focus of this paper.

8

Under review as a conference paper at ICLR 2020

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(a) Demonstrators (KL = 0)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(b) MA-GAIL (KL = 5172.078)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(c) MA-AIRL (KL = 6914.624)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(d) CoDAIL (KL = 311.273)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(e) NC-DAIL (KL = 4656.311)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(f) Random (KL = 19134.424)

Figure 1: The density and marginal distribution of agents’ positions, (x, y), in 100 repeated episodes with
different initialized states, generated from different learned policies upon Keep-away. Experiments are done
under the same random seed. The top of each sub-figure is drawn from state-action pairs of all agents while
the below explains for each one. KL is the KL divergence between generated interactions (top figure) with the
demonstrators.

the low-dimension projection of the state-action interactions. We start each episode from a different
initial state but the same for each algorithm in one episode. We run all the experiments under the
same random seed, and collect positions of each agent in the total 100 episodes, each with maximum
50 timesteps.

We first estimate the distribution of position (x, y) via Kernel Density Estimation (KDE) (Rosen-
blatt, 1956) with Gaussian kernel to compute the Kullback-Leibler (KL) divergence between the
generated interactions with the demonstrated ones, shown in Tab. 3. It is obvious that in terms of
the KL divergence between regenerated interactions with demonstrator interactions, CoDAIL gen-
erates the interaction data that obtains the minimum gap with the demonstration interaction, and
highly outperforms other baseline methods. Besides, MA-GAIL and NC-DAIL reflect about-the-
same performance to model complex interactions, while MA-AIRL behaves the worst, even worse
than random agents on Predator-prey.

5.4 VISUALIZATIONS OF INTERACTIONS

To further understand the interactions generated by learned policies compared with the demonstra-
tors, we visualize the interactions for demonstrator policies and all learned ones. We plot the density
distribution of positions, (x, y) and marginal distributions of x-position and y-position. We illus-
trate the results conducted on Keep-away in Fig. 1, other scenarios can be found in the Appendix E.
Higher frequency positions in collected data are colored darker in the plane, and the value with
respect to its marginal distributions is higher.

9

Under review as a conference paper at ICLR 2020

As shown in Fig. 1, the interaction densities of demonstrators and CoDAIL agents are highly similar
(and with the smallest KL divergence), which tend to walk in the right-down side, while other
learned agents fail to recover the demonstrator interactions. It is worth noting that even different
policies can interact to earn similar rewards but still keep vast differences among their generated
interactions, which reminds us that the true reward is not the best metric to evaluate the quality of
modeling the demonstrated interactions or imitation learning (Li et al., 2017).

6 CONCLUSION

In this paper, we focus on modeling complex multi-agent interactions via imitation learning on
demonstration data. We develop a decentralized adversarial imitation learning algorithm with corre-
lated policies (CoDAIL) with approximated opponents modeling. CoDAIL allows for decentralized
training and execution and is more capable of modeling correlated interactions from demonstra-
tions shown by multi-dimensional comparisons against other state-of-the-art multi-agent imitation
learning methods on several experiment scenarios. In the future, we will consider covering more im-
itation learning tasks and modeling the latent variables of policies for diverse multi-agent imitation
learning.

REFERENCES

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. Making friends on the fly: Cooperating
with new teammates. Artificial Intelligence, 242:132–171, 2017.

Raunak P Bhattacharyya, Derek J Phillips, Blake Wulfe, Jeremy Morton, Alex Kuefler, and Mykel J
Kochenderfer. Multi-Agent imitation learning for driving simulation. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 1534–1539. IEEE, 2018.

Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse rein-
forcement learning. In 53rd IEEE Conference on Decision and Control, pp. 4911–4916. IEEE,
2014.

Kenneth Bogert and Prashant Doshi. Multi-robot inverse reinforcement learning under occlusion
with interactions. In Proceedings of the 2014 international conference on Autonomous agents
and Multi-Agent Systems, pp. 173–180. International Foundation for Autonomous Agents and
Multiagent Systems, 2014.

Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38(2):156–172, 2008.

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-Agent deep reinforcement learning
for large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems,
2019.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. AAAI/IAAI, 1998(746-752):2, 1998.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-Agent policy gradients. In Proceedings of the 32th Conference on
Association for the Advancement of Artificial Intelligence, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of the 28th
Conference on Advances in Neural Information Processing Systems, pp. 2672–2680, 2014.

Amy Greenwald, Keith Hall, and Roberto Serrano. Correlated q-Learning. In ICML, volume 3, pp.
242–249, 2003.

10

Under review as a conference paper at ICLR 2020

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the 34th International Conference on Machine
Learning, volume 70, pp. 1352–1361. JMLR. org, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Proceedings of the
30th Conference on Advances in Neural Information Processing Systems, pp. 4565–4573, 2016.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in first-person multiplayer games with population-based deep reinforcement
learning. arXiv preprint arXiv:1807.01281, 2018.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-Actor-Critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. 2018.

Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated multi-Agent imitation learn-
ing. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp.
1995–2003. JMLR. org, 2017.

Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin Wu, and Jieping
Ye. Efficient ridesharing order dispatching with mean field multi-Agent reinforcement learning.
In Proceedings of the 30th conference on International World Wide Web Conferences, pp. 983–
994. ACM, 2019.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from vi-
sual demonstrations. In Proceedings of the 31st Conference on Advances in Neural Information
Processing Systems, pp. 3812–3822, 2017.

Xiaomin Lin, Peter A Beling, and Randy Cogill. Multi-Agent inverse reinforcement learning for
zero-Sum games. arXiv preprint arXiv:1403.6508, 2014.

Xiaomin Lin, Stephen C Adams, and Peter A Beling. Multi-Agent inverse reinforcement learning
for general-sum stochastic games. arXiv preprint arXiv:1806.09795, 2018.

Michael L Littman. Markov games as a framework for multi-Agent reinforcement learning. In
Proceedings of the 11st Machine Learning International Conference, pp. 157–163. Elsevier, 1994.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
Agent actor-Critic for mixed cooperative-Competitive environments. In Proceedings of the 31st
Conference on Advances in Neural Information Processing Systems, pp. 6379–6390, 2017.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. In Proceedings of the 32nd conference on International Conference on Machine
Learning, pp. 2408–2417, 2015.

John Nash. Non-Cooperative games. Annals of Mathematics, pp. 286–295, 1951.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Proceedings
of the 17th International Conference on Machine Learning, volume 1, pp. 2, 2000.

OpenAI. Openai five. http://blog.openai.com/openai-five/, 2018.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neu-
ral Computation, 3(1):88–97, 1991.

Tummalapalli Sudhamsh Reddy, Vamsikrishna Gopikrishna, Gergely Zaruba, and Manfred Huber.
Inverse reinforcement learning for decentralized non-Cooperative multiagent systems. In 2012
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1930–1935. IEEE,
2012.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of
Mathematical Statistics, pp. 832–837, 1956.

11

http://blog.openai.com/openai-five/

Under review as a conference paper at ICLR 2020

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
13th International Conference on Artificial Intelligence and Statistics, pp. 661–668, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-Regret online learning. In Proceedings of the 14th International Conference
on Artificial Intelligence and Statistics, pp. 627–635, 2011.

Stuart J Russell. Learning agents for uncertain environments. In Proceedings of the 11st Annual
Conference on Computational Learning Theory, volume 98, pp. 101–103, 1998.

Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-Agent generative adversarial
imitation learning. In Proceedings of the 32ed Conference on Advances in Neural Information
Processing Systems, pp. 7461–7472, 2018.

Adrian Šošic, Wasiur R KhudaBukhsh, Abdelhak M Zoubir, and Heinz Koeppl. Inverse reinforce-
ment learning in swarm systems. stat, 1050:17, 2016.

Zheng Tian, Ying Wen, Zhichen Gong, Faiz Punakkath, Shihao Zou, and Jun Wang. A regularized
opponent model with maximum entropy objective. arXiv preprint arXiv:1905.08087, 2019.

Kevin Waugh, Brian D Ziebart, and J Andrew Bagnell. Computational rationalization: The inverse
equilibrium problem. arXiv preprint arXiv:1308.3506, 2013.

Ermo Wei, Drew Wicke, David Freelan, and Sean Luke. Multiagent soft q-Learning. In 2018 AAAI
Spring Symposium Series, 2018.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
multi-Agent reinforcement learning. arXiv preprint arXiv:1901.09207, 2019.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-Region
method for deep reinforcement learning using kronecker-Factored approximation. In Proceedings
of the 31st Advances in Neural Information Processing Systems, pp. 5279–5288, 2017.

Lantao Yu, Jiaming Song, and Stefano Ermon. Multi-Agent adversarial inverse reinforcement learn-
ing. arXiv preprint arXiv:1907.13220, 2019.

12

Under review as a conference paper at ICLR 2020

Appendices
A ALGORITHM OUTLINES

A.1 CODAIL ALGORITHM

Algo. 1 demonstrates the outline for our CoDAIL algorithm with non-correlated policy structure
defined in Eq. (4), where we approximate the opponents model σ(i)(a(−i)|s), improve the discrimi-
nator D(i) and the policy π(i) iteratively.

Algorithm 1 CoDAIL Algorithm

1: Input: Expert interactive demonstrations ΩE ∼ πE , N policy parameters θ(1), ..., θ(N), N
value parameters φ(1), ..., φ(N), N opponents models parameters ψ(1), ..., ψ(N) and N discrim-
inator parameters ω(1), ..., ω(N);

2: for k = 0, 1, 2, . . . do
3: Sample interactions among N agents Ωk ∼ π with policy pi(1), pi(2), . . . , pi(N).
4: for agent i = 1, 2, . . . , N do
5: Use state-action pairs (s, a(−i)) ∈ Ωk to update ψ(i) to minimize the objective as shown in

Eq. (17).
6: For every state-action pair (s, a(i)) ∈ Ωk, sample estimated opponent policies from oppo-

nents model: â(−i) ∼ σ(i)(a(i)|s), and update ω(i) with the gradient as shown in Eq. (15).

7: Compute advantage estimation A(i) for each tuple (s, a(i), , â(−i)) with surrogate reward
function r(i)(s, a(i), â(−i)) = log(D

(i)

ω(i)(s, a
(i), â(−i)))− log(1−D(i)

ω(i)(s, a
(i), â(−i)))

A(i)(st, a
(i)
t , â

(−i)
t) =

T−1∑
k=0

(γtr(i)(st+k, a
(i)
t+k, â

(−i)
t+k)) + γTV

(i)

φ(i)(s, a
(−i)
T−1) (24)

− V (i)

φ(i)(s, a
(−i)
t−1) (25)

8: Update φ(i) to minimize the objective:

L(φ(i)) =

∥∥∥∥∥
T∑
t=0

γtr(i)(s, a
(i)
t , a

(−i)
t)− V̂ (i)(st, a

(−i)
t−1)

∥∥∥∥∥
2

(26)

9: Update θ(i) following the gradient shown in Eq. (16):

ÊΩk

[
∇θ(i) log π(i)(a(i), s)A(i)(s, a)

]
− λ∇θ(i)H(θ(i)) (27)

10: end for
11: end for

13

Under review as a conference paper at ICLR 2020

A.1.1 NC-DAIL ALGORITHM

We outline the step by step NC-DAIL algorithm with non-correlated decomposition of joint policy
defined in Eq. (3) in Algo. 2.

Algorithm 2 NC-DAIL Algorithm

1: Input: Expert interactive demonstrations ΩE ∼ πE , N policy parameters θ(1), ..., θ(N), N
value parameters φ(1), ..., φ(N) and N discriminator parameters ω(1), ..., ω(N);

2: for k = 0, 1, 2, . . . do
3: Sample interactions between N agents Ωk ∼ π.
4: for agent i = 1, 2, . . . , N do
5: Use (s, a(i), a(−i)) ∈ Ωkto update ω(i)with the gradient:

ÊΩk

[
∇ω log(D

(i)

ω(i)(s, a
(i), a(−i)))

]
+ ÊΩE [∇ω(i) log(D

(i)

ω(i)(s, a
(i), a(−i)))] . (28)

6: Compute advantage estimation A(i) for (s, a(i), a(−i)) ∈ Ωk with surrogate reward func-
tion r(i)(s, a(i), a(−i)) = log(D

(i)

ω(i)(s, a
(i), a(−i)))− log(1−D(i)

ω(i)(s, a
(i), a(−i)))

A(i)(st, a
(i)
t , a

(−i)
t) =

T−1∑
k=0

(γtr(i)(st+k, a
(i)
t+k, a

(−i)
t+k)) + γTV

(i)

φ(i)(s, a
(−i)
T−1) (29)

− V (i)

φ(i)(s, a
(−i)
t−1) (30)

7: Update φ(i) to minimize the objective:

L(φ(i)) =

∥∥∥∥∥
T∑
t=0

γtr(i)(s, a
(i)
t , a

(−i)
t)− V̂ (i)(st, a

(−i)
t−1)

∥∥∥∥∥
2

(31)

8: Update θ(i) by taking a gradient step with:

ÊΩk

[
∇θ(i) log π(i)(a(i), s)A(i)(s, a)

]
− λ∇θ(i)H(θ(i)) . (32)

9: end for
10: end for

B MODEL ARCHITECTURES

During our experiments, we use two layer MLPs with 128 cells in each layer, for policy networks,
value networks and discriminator networks on all scenarios. The batch size is set to 1000. The
policy is trained using K-FAC optimizer (Martens & Grosse, 2015) with learning rate of 0.1 and
with a small λ of 0.05. All other parameters for K-FAC optimizer are the same in (Wu et al., 2017).
We train each algorithm for 55000 epochs with 5 random seeds to gain its average performance on
all environments.

14

Under review as a conference paper at ICLR 2020

C RAW RESULTS

We list the raw obtained rewards of all algorithms in each scenarios.

Table 4: Raw average total rewards in 2 comparative tasks. Means and standard deviations are taken across
different random seeds.

Algorithm Coop.-Comm. Coop.-Navi.
Demonstrators -24.560 ± 1.213 -178.597 ± 6.383

MA-AIRL -25.366 ± 1.492 -172.733 ± 5.595
MA-GAIL -25.081 ± 1.421 -172.169 ± 4.105
NC-DAIL -25.177 ± 1.371 -171.685 ± 4.591
CoDAIL -25.107 ± 1.486 -183.846 ± 5.728
Random -247.606 ± 17.842 -1139.569 ± 19.192

Table 5: Raw average rewards of each agent in 2 competitive tasks, where agent+ and agent- represent 2 teams
of agents and total is their sum. Means and standard deviations are taken across different random seeds.

Algorithm Keep-away
Total Agent+ Agent-

Demonstrators -18.815 ± 0.909 -12.092 ± 0.617 -6.723 ± 0.430
MA-AIRL -31.088 ± 2.371 -15.367 ± 3.732 -15.721 ± 4.448
MA-GAIL -20.778 ± 0.994 -12.818 ± 1.105 -7.959 ± 0.796
NC-DAIL -20.619 ± 0.957 -12.357 ± 1.424 -8.262 ± 1.310
CoDAIL -19.084 ± 0.882 -12.142 ± 0.578 -6.942 ± 0.433
Random -47.086 ± 2.485 13.091 ± 2.032 -60.177 ± 2.225

Algorithm Pred.-Prey
Total Agent+ Agent-

Demonstrators 65.202 ± 18.661 44.820 ± 4.663 -69.258 ± 5.361
MA-AIRL -210.546 ± 80.333 8.040 ± 3.626 -234.666 ± 71.165
MA-GAIL 65.202 ± 18.661 44.820 ± 4.663 -69.258 ± 5.361
NC-DAIL 59.553 ± 30.684 42.320 ± 10.323 -67.407 ± 3.700
CoDAIL 79.445 ± 5.913 47.480 ± 4.067 -61.909 ± 6.367
Random -31.747 ± 7.865 5.160 ± 1.170 -47.227 ± 7.830

15

Under review as a conference paper at ICLR 2020

D HYPERPARAMETER SENSITIVITY

Table 6: Results of different training frequency (1:4, 1:2, 1:1, 2:1, 4:1) of D and G on Communication-
navigation.

Training Frequency Total Reward Difference
1:4 2541.144 ± 487.711
1:2 12.004 ± 5.496
1:1 6.249 ± 2.779
2:1 1136.255 ± 1502.604
4:1 2948.878 ± 1114.528

0.0 0.2 0.4 0.6 0.8 1.0
Entropy Coefficient

2

4

6

8

10

12

14

To
ta

l R
ew

ar
d

D
iff

er
en

ce

Figure 2: Results of different entropy coefficient λ.

We evaluate how the stability of our algorithm when the hyperparameters change during our ex-
periments on Communication-navigation. Tab. 6 shows the total reward difference between learned
agents and demonstrators when we modify the training frequency of D and G (i.e., the policy),
which indicates that the frequencies of D and G are more stable when D is trained slower than G,
and the result reaches a relative better performance when the frequency is 1:2 or 1:1. Fig. 2 illus-
trates that the choice of λ has little effect on the total performance. The reason may be derived from
the discrete action space in this environment, where the policy entropy changes gently.

16

Under review as a conference paper at ICLR 2020

E INTERACTION VISUALIZATIONS UPON OTHER SCENARIOS

We show the density of interactions for different methods along with demonstrator policies con-
ducted upon Cooperative-communication in Fig. 3.

2 1 0 1 22

1

0

1

2

(a) Demonstrators, KL = 0

2 1 0 1 22

1

0

1

2

(b) MA-GAIL, KL = 3468.068

2 1 0 1 22

1

0

1

2

(c) MA-AIRL, KL = 3552.516

2 1 0 1 22

1

0

1

2

(d) CoDAIL, KL = 642.742

2 1 0 1 22

1

0

1

2

(e) NC-DAIL, KL = 3800.175

2 1 0 1 22

1

0

1

2

(f) Random, KL = 21745.556

Figure 3: The density and marginal distribution of agents’ positions, (x, y), in 100 repeated episodes with differ-
ent initialized states, generated from different learned policies upon Cooperative-communication. Experiments
are done under the same random seed, and we only consider one movable agent. KL is the KL divergence
between generated interactions (top figure) with the demonstrators.

17

Under review as a conference paper at ICLR 2020

We show the density of interactions for different methods along with demonstrator policies con-
ducted upon Cooperative-navigation in Fig. 4.

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(a) Demonstrators (KL = 0)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(b) MA-GAIL (KL = 1503.419)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(c) MA-AIRL (KL = 1807.083)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(d) CoDAIL (KL = 903.334)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(e) NC-DAIL (KL = 1620.159)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(f) Random (KL = 17489.218)

Figure 4: The density and marginal distribution of agents’ positions, (x, y), in 100 repeated episodes with
different initialized states, generated from different learned policies upon Cooperative-navigation. Experiments
are done under the same random seed. The top of each sub-figure is drawn from state-action pairs of all agents
while the below explain for each one. KL is the KL divergence between generated interactions (top figure) with
the demonstrators.

18

Under review as a conference paper at ICLR 2020

We show the density of interactions for different methods along with demonstrator policies con-
ducted upon Predator-prey in Fig. 5.

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(a) Demonstrators (KL = 0)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(b) MA-GAIL (KL = 999.840)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(c) MA-AIRL (KL = 7156.822)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(d) CoDAIL (KL = 862.143)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(e) NC-DAIL (KL = 1669.839)

2 1 0 1 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

2 0 22

1

0

1

2

(f) Random (KL = 3755.483)

Figure 5: The density and marginal distributions of agents’ positions, (x, y), in 100 repeated episodes with
different initialized states, generated from different learned policies upon Predator-prey. Experiments are con-
ducted under the same random seed. The top of each sub-figure is drawn from state-action pairs of all agents
while the below explains for each one. The KL term means the KL divergence between generated interactions
(top figure) with the demonstrators.

19

	Introduction
	Preliminaries
	Markov Game and -Nash Equilibrium
	Generative Adversarial Imitation Learning
	Correlated Policy

	Methodology
	Generalize Correlated Policies to Multi-Agent Imitation Learning
	Learn with the Opponents Model
	Theoretical Analysis

	Related Work
	Experiment
	Experimental Settings
	Environment Description
	Experimental Details

	Reward Difference
	Divergence over Interactions
	Visualizations of Interactions

	Conclusion
	Algorithm Outlines
	CoDAIL Algorithm
	NC-DAIL Algorithm

	Model Architectures
	Raw results
	Hyperparameter Sensitivity
	Interaction Visualizations upon Other Scenarios

