
Under review as a conference paper at ICLR 2020

SAMPLES ARE USEFUL? NOT ALWAYS:
DENOISING POLICY GRADIENT UPDATES USING
VARIANCE EXPLAINED

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy gradient algorithms in reinforcement learning optimize the policy directly
and rely on efficiently sampling an environment. However, while most sampling
procedures are based solely on sampling the agent’s policy, other measures di-
rectly accessible through these algorithms could be used to improve sampling be-
fore each policy update. Following this line of thoughts, we propose the use of
SAUNA, a method where transitions are rejected from the gradient updates if they
do not meet a particular criterion, and kept otherwise. This criterion, the fraction
of variance explained Vex, is a measure of the discrepancy between a model and
actual samples. In this work, Vex is used to evaluate the impact each transition
will have on learning: this criterion refines sampling and improves the policy gra-
dient algorithm. In this paper: (a) We introduce and explore Vex, the criterion
used for denoising policy gradient updates. (b) We conduct experiments across a
variety of benchmark environments, including standard continuous control prob-
lems. Our results show better performance with SAUNA. (c) We investigate why
Vex provides a reliable assessment for the selection of samples that will positively
impact learning. (d) We show how this criterion can work as a dynamic tool to
adjust the ratio between exploration and exploitation.

1 INTRODUCTION

Learning to control agents in simulated environments has been a challenge for decades in reinforce-
ment learning (Nguyen & Widrow, 1990; Werbos, 1989; Schmidhuber & Huber, 1991; Robinson &
Fallside, 1989) and has recently led to a lot of research efforts in this direction (Mnih et al., 2013;
Burda et al., 2019; Ha & Schmidhuber, 2018; Silver et al., 2016; Espeholt et al., 2018), notably
in policy gradient methods (Schulman et al., 2016; Silver et al., 2014; Lillicrap et al., 2016; Mnih
et al., 2016). Despite the definite progress made, policy gradient algorithms still heavily suffer from
sample inefficiency (Kakade, 2003; Wu et al., 2017; Schulman et al., 2017; Wang et al., 2017).

In particular, many policy gradient methods are subject to use as much experience as possible in
the most efficient way. We make the hypothesis that not all experiences are worth to use in the
gradient update. In other words, while perhaps trajectory simulations should be as rich as possible,
some samples may instead add noise to the gradient update and hinder learning. Both the number of
samples and the quality of the sampled transitions have a critical impact on the behavior of the agent:
the better the experience, the better the resulting policy and the better the environment sampling. In
essence, the quality of the sampling procedure conditions the final performance of the agent.

SAUNA aligns the agent’s immediate ability in each environment with the experiences that will
affect its learning: the fraction of variance explained Vex will condition the rejection of samples
before the policy update. We will examine the impact of filtering some of the transitions out and
study how SAUNA affects the learning performance across a variety of tasks from MuJoCo (Todorov
et al., 2012), Roboschool, and the Atari 2600 domain (Bellemare et al., 2013). We also discuss the
limitations of our method in the context of the policy gradient theorem and show how SAUNA can
work as a dynamic tool for efficiently balancing exploration with exploitation.

We exploit this for on-policy learning: first for its unbiasedness and stability compared to off-policy
methods (Nachum et al., 2017), second because on-policy is empirically known as being less sample

1

Under review as a conference paper at ICLR 2020

ef�cient than off-policy learning and therefore increased interest in this research topic. However, our
method can be applied to off-policy methods as well, and we leave this investigation open for future
work.

The contributions of this paper are summarized as follows:

1. We propose to move from reward-centered learning to learning that takes into account the
agent's knowledge. We hypothesize that the agent's ability in an environment can partially
be measured throughVex . We explore how the use of this criterion can drive the alignment
between the samples used to update the policy and the agent's progress.

2. We provide a method that transforms policy gradient algorithms by assuming that not all
samples are useful for learning and that these disturbing samples should, therefore, be
rejected. While our method is a simple extension of policy gradient algorithms, it adds a
variance criterion to the optimization problem and introduces a novel rejection sampling
procedure.

3. By combining (1) and (2), we obtain a learning algorithm that is empirically effective in
learning neural network policies for challenging control tasks. In addition to showing that
all samples are not useful and that some should be rejected, our results extend the state-of-
the-art in using reinforcement learning for high-dimensional continuous control.

2 PRELIMINARIES

We consider a Markov Decision Process (MDP) with state spaceS, action spaceA and reward
functionr (s; a) wheres 2 S, a 2 A . Let � = f � (ajs); s 2 S; a 2 Ag denote a stochastic policy
and let the objective function be the traditional expected discounted reward:

J (�) , E
� � �

"
1X

t =0

 t r (st ; at)

#

; (1)

where 2 [0; 1) is a discount factor (Puterman, 1994) and� = (s0; a0; s1; : : :) is a trajectory
sampled from the environment.

Policy gradient methods aim at modelling and optimizing the policy directly (Williams, 1992). The
policy � is generally implemented with a function parameterized by� . In the sequel, we will use
� to denote the parameters as well as the policy (assuming the architecture of the neural net is
�xed and well de�ned). In deep reinforcement learning (DRL), the policy is represented in a neural
network called the policy network and is assumed to be continuously differentiable with respect to
its parameters� .

2.1 POLICY GRADIENT METHOD WITH CLIPPED SURROGATE OBJECTIVE

We use PPO (Schulman et al., 2017), an on-policy gradient-based algorithm. In previous work, PPO
has been tested on a set of benchmark tasks and has proven to produce impressive results in many
cases despite a relatively simple implementation. For instance, instead of imposing a hard constraint
as does TRPO (Schulman et al., 2015), PPO formalizes the constraint as a penalty in the objective
function. In PPO, at each iteration, the new policy� new is obtained from the old policy� old :

� new argmax
�

E
st ;a t � � � old

�
L PPO (st ; at ; � old ; �)

�
: (2)

We use the clipped version of PPO whose objective function is:

L PPO (st ; at ; � old ; �) = min
�

� � (at jst)
� � old (at jst)

A � � old (st ; at); g(�; A � � old (st ; at))
�

; (3)

where

g(�; A) =
�

(1 + �)A; A � 0
(1 � �)A; A < 0: (4)

2

Under review as a conference paper at ICLR 2020

A is the advantage function,A(s; a) , Q(s; a) � V (s) (see Appendix F). The expected advantage
functionA � � old is estimated by an old policy and then re-calibrated using the probability ratio be-
tween the new and the old policies. By taking the minimum of the two terms in Eq. (3), the ratio is
constrained to stay within a small interval around 1, making the training updates more stable.

2.2 RELATED WORK

Our method incorporates three key ideas: (a) policy and value function approximation with a neu-
ral network architecture combining or separating the actor and the critic, (b) an on-policy setting
enabling more expected unbiasedness and stability than an off-policy formulation and (c) a policy
gradient update improved by conditioning the use of samples with the fraction of variance explained
to allow for better sampling and more ef�cient learning. Below, we consider previous works that
build on some of these approaches.

Actor-critic algorithms essentially use the value function to alternate between policy evaluation and
policy improvement (Sutton & Barto, 1998; Barto et al., 1983). In order to update the actor, many
methods adopt the on-policy formulation (Peters & Schaal, 2008; Mnih et al., 2016; Schulman et al.,
2017). However, despite their important successes, these methods suffer from sample complexity.

In the literature, research has also been conducted in prioritization sampling. While Schaul et al.
(2016) makes the learning from experience replay more ef�cient by using the TD error as a mea-
sure of these priorities in an off-policy setting, our method directly selects the samples on-policy.
Schmidhuber (1991) is related to our method in that it calculates the expected improvement in pre-
diction error, but with the objective to maximize the intrinsic reward through arti�cial curiosity.
Instead, our method estimates the expected fraction of variance explained and �lters out some of the
samples to improve the learning ef�ciency.

Finally, motion control in physics-based environments is a long-standing and active research �eld.
In particular, there are many prior works on continuous action spaces (Schulman et al., 2016; Levine
& Abbeel, 2014; Lillicrap et al., 2016; Heess et al., 2015) that demonstrate how locomotion behavior
and other skilled movements can emerge as the outcome of optimization problems.

3 METHOD

3.1 VARIANCE EXPLAINED: Vex

For a trajectory� , we de�neVex
� as thefraction of variance explained. It is the fraction of variance

that the value function explains about the returns and corresponds to the proportion of the variance
in the dependent variableV that is predictable from the independent variablest . We computeVex

�
at each policy gradient update with the samples used for the gradient computation. In statistics,
this quantity is also known as the coef�cient of determinationR2 (Kv	alseth, 1985). For the sake of
clarity, instead of using the notationR2 we will refer to this criterion asVex

� :

Vex
� , 1 �

P
t 2 �

�
R̂t � V (st)

� 2

P
t 2 �

�
R̂t � R

� 2 ; (5)

whereR̂t andV(st) are respectively the return and the expected return from statest 2 � , andR
is the mean of all returns in trajectory� . It should be noted that this criterion may be negative for
non-linear models, indicating a severe lack of �t (Kv	alseth, 1985) of the corresponding function:

� V ex
� = 1 if the �tted value functionV perfectly explains the returns;

� V ex
� = 0 corresponds to a simple average prediction;

� V ex
� < 0 if the value function provides a worse �t to the outcomes than the mean of the

discounted rewards.

Interpretation. Vex measures the ability of the value function to �t the returns.Vex = 0 :43implies
that43%of the variability of the dependent variablêR has been accounted for, and the remaining
57% of the variability is still unaccounted for. By its de�nition, this quantity is a highly relevant
indicator for assessing self-performance in reinforcement learning.

3

Under review as a conference paper at ICLR 2020

3.2 Vex APPLIED TO PPO

When applying policy gradient methods using a neural network for function approximation, we use
either shared parameters for the policy (actor) and value (critic) function or a copy of the same
architecture for both. For shared parameters con�gurations, an error term on the value estimation
is added to the PPO objective. In addition to the policy and the value functions, our method adds a
third head to the shared network. LetVex

� (st) be the prediction ofVex
� under parameters� at state

st 2 � . The �nal objective becomes:

L (st ; at ; � old ; �) = E
�
L PPO (st ; at ; � old ; �) � c1

�
V� (st) � R̂t

� 2
� c2 (Vex

� (st) � V ex
�)2

�
; (6)

wherec1 andc2 are respectively the coef�cient for the squared-error loss of the value function and
of the fraction of variance explained function. It is important to note that althoughVex

� is de�ned
for a sampled trajectory� , the model predicts its value at each statest 2 � . For cases where the
network is not shared between the policy and the value function,Vex

� is added to the value function
network. Appendix A illustrates well how the new head is embedded in the original architecture. The
rest of the network is unchanged, making it very easy to use SAUNA without altering the complexity
of existing policy gradient methods.

3.3 SAUNA:Vex -DIRECTED UPDATE

For simplicity, we rewriteVex
� (st) asVex

t . Let ~Vex
0:t � 1 be the median ofVex

� between timesteps0
andt � 1. The �ltering condition is:

jVex
t j

j ~Vex
0:t � 1j + � 0

� threshold; (7)

where� 0 = 10 � 8 is to avoid division by zero. At each timestept, if the statest complies with
this condition, then its associated transition is added to the current on-policy buffer (i.e. added as
a training sample for the on-policy gradient update). If not, the action is simply executed and the
model considers the next statest +1 . The process continues until the trajectory isT-steps long.

Figure 1: Grey samples: kept for the gradient update. White samples: discarded (threshold = 0.3).

Interpretation. Fig. 1 illustrates where the accepted (grey area) and excluded (white area) samples
stand with respect to theirVex

t , and relative to the median of the previousVex
0:t � 1 in the trajectory. The

�gure depicts how the �ltering condition dynamically selects the transitions for whichVex
t is either

high or low, but not in between: those are the transitions that will impact the most the learning.
Indeed, a high score means that the sample corresponds to a state for which the value function
estimates well its utility. On the contrary, a low score means that the value function does not �t well
in this particular state. Finally, a score near zero means that the value function is performing just as
good as taking the empirical mean of the returns.

4

Under review as a conference paper at ICLR 2020

Algorithm 1 SAUNA: Vex -directed update.

Initialize policy parameters� 0
Initialize value function parameters� 0 andVex function parameters 0

for k = 0 ; 1; 2; : : : do . For each update step

Initialize trajectory� to capacity T
while size(�) � T do . For each timestept

at � � � k (st), vt = V� k (st), Vex
t = Vex

 k
(st)

executeactionat and observe rewardr t +1 and next statest +1

if jV ex
t j

j ~V ex
0: t � 1 j+ � 0

� thresholdthen

collect transition(st ; at ; r t ; vt ; st +1 ; Vex
t) in �

else
continuewithout collecting the transition

Gradient Update

� k+1 argmax
�

X

t 2 �

min
�

� � (at jst)
� � k (at jst)

A � � k (st ; at) ; g (�; A � � k (st ; at))
�

(8)

� k+1 argmin
�

X

t 2 �

�
V� k (st) � R̂t

� 2
(9)

 k+1 argmin

X

t 2 �

�
Vex

 k
(st) � V̂ex

�

� 2
(10)

Algorithm 1 illustrates how learning is achieved, in particular, the �tting of theVex function
in Eq. (10) and how only collected samples are used for updates in theif statement. We have chosen
to depict a con�guration where the parameters between the policy network, the value function and
theVex function are not shared, since from this con�guration the shared parameter case is direct.

4 EXPERIMENTS

In this section, unless otherwise stated, all curves correspond to the average of 6 runs with differ-
ent seeds, and shaded areas are standard deviations. For ease of reproducibility and sharing, we
have forked the originalbaselinesrepository from OpenAI and modi�ed the code to incorporate
our method1. The complete list of hyperparameters and details of our implementation are given
in Appendix B and C respectively. A discussion about additional experiments whose results are
non-positive, but which we think contribute positively to this paper, can be found in Appendix E.

4.1 COMPARISON IN THE CONTINUOUS DOMAIN: MUJOCO

We begin by comparing SAUNA (PPO+Vex in red) with its natural baseline PPO introduced in
section 2 (PPO in blue). We use 6 simulated robotic tasks from OpenAI Gym (Brockman et al., 2016)
using the MuJoCo physics engine. Except for the two hyperparameters required by our method,
namelythreshold= 0 :3 from Eq. (5) andc2 = 0 :5 from Eq. (6), all the others are exactly the same
in both methods and identical to those in Schulman et al. (2017). We made this choice within a clear
and objective framework of comparison between the two methods. Thus, we have not optimized the
rest of the hyperparameters for SAUNA, and its reported performance is not necessarily the best that
could be obtained with more intensive tuning. From the results reported in Fig. 2, we see that our
method surpasses all continuous control tasks. We also present in Table 1 the scores obtained for
each task.

1Code is available here: https://github.com/iclr2020-submission/denoising-gradient-updates

5

Under review as a conference paper at ICLR 2020

Figure 2: Comparison of SAUNA with PPO on 6 MuJoCo environments (106 timesteps, 6 different
seeds). Red is our method PPO+Vex. Line: average performance. Shaded area: standard deviation.

Table 1: Average total reward of the last 100 episodes over 6 runs on the 6 MuJoCo environments.
Boldfacemean � std indicate better mean performance.

Task PPO Ours
HalfCheetah 2277� 432 2929 � 169
Hopper 2106� 133 2250 � 73
InvertedDoublePendulum 6100� 143 6893 � 350
InvertedPendulum 532� 19 609 � 24
Reacher � 7:5 � 0:8 � 7:2 � 0:3
Swimmer 99:5 � 5:4 100:8 � 10:4

4.2 THE ADVANTAGE OF FILTERING OUT SAMPLES

We further study the impact of �ltering out noisy samples by conducting additional experiments in
predictingVex while omitting the �ltering step before the gradient update: theif statement in Al-
gorithm 1 is removed and all transitions are collected in� . Indeed, the SAUNA algorithm could
improve the agent's performance by simply training the shared network to optimize the variance
explained head. Fig. 3 (full results are provided in Appendix D) demonstrates the positive effects of
�ltering out the samples.

Figure 3: Comparison of SAUNA with PPO on 3 MuJoCo environments (106 timesteps, 6 different
seeds). Red is our method PPO+Vex, Orange is PPO+Vex without the �ltering out of noisy samples.
Line: average performance. Shaded area: standard deviation.

The previous experiments have a threefold goal: (a) demonstrate the value of �ltering the samples
before the policy gradient update, (b) use the same con�gurations as for the reference method with-
out additional hyperparameter tuning to support the validity of the method only, (c) evaluate SAUNA
on a set of well-known continuous control environments.

6

Under review as a conference paper at ICLR 2020

4.3 ROBOSCHOOL

We then experiment with the more dif�cult, high-dimensional continuous domain environment of
Roboschool:RoboschoolHumanoidFlagrunHarder-v1. The purpose of this task is to allow the agent
to run towards a �ag whose position varies randomly over time. It is continuously bombarded by
white cubes that push it out of its path, and if it does not hold itself up it is left to fall.

(a) (b) (c)

Figure 4: Comparison of SAUNA with PPO on the more challenging Roboschool environment (108

timesteps, 6 different seeds). Red is our method PPO+Vex. Line: average performance. Shaded
area: standard deviation.

In Fig. 4a, the same fully-connected network as for the MuJoCo experiments (2 hidden layers each
with 64 neurons) is used. In Fig. 4b, the network is composed of a larger 3 hidden layers with 512,
256 and 128 neurons. We trained those agents with 32 parallel actors. In both experiments, SAUNA
performs better and faster at the beginning. Then, only when the policy and value functions bene�t
from a larger network, the gap closes, and our method does as well as the baseline. When resources
are limited in terms of number of parameters, it seems natural that �ltering out samples based on their
predicted training impact allows to remove noise from the gradient update and accelerate learning.

Finally, we investigated further and conducted the same experiment with the larger network (3 hid-
den layers with 512, 256 and 128 neurons), but with 128 actors in parallel instead of 32. Results are
reported in Fig. 4c: our method is still faster and achieves better performance than the baseline.

4.4 SAUNA: CASE STUDY

While studyingHalfCheetah-v2, we observed that for a number of seeds, PPO was converging to a
local minimum forcing the agent to move forward on its back. This is a well-known behavior (Lapan,
2018). However, we observed that SAUNA made it possible to leave from, or at least to avoid
these local minima. Those particular deterministic environments can be generated reproducibly
with speci�c seeds. This is illustrated in Fig. 5a where we can see still frames of two agents trained
for 106 timesteps on identically seeded environments.

(a) (b)

Figure 5: (a) Example of a deterministic environment where PPO gets trapped in a local minimum
(top row) while our method reaches a better optimum (bottom row). (b)Vex score for PPO (orange)
and SAUNA (green).

The behavior is entirely different for the agent trained with PPO and the agent trained with SAUNA
denoising the policy gradient updates. If we look at the explained variance in Fig. 5b, we can see
that the graphs differ quite interestingly. The orange agent seems to �nd very quickly a stable state
in which it will put itself on its back while the green agent's variance explained varies much more.

7

	Introduction
	Preliminaries
	Policy gradient method with clipped surrogate objective
	Related Work

	Method
	Variance explained: Vex
	Vex applied to PPO
	SAUNA: Vex-directed update

	Experiments
	Comparison in the continuous domain: MuJoCo
	The advantage of filtering out samples
	Roboschool
	SAUNA: case study

	Discussion
	Denoising policy gradient updates and the policy gradient theorem
	Impact of Vex on the shared network parameters

	Conclusion
	Illustration of the SAUNA architecture
	Hyperparameters
	Implementation details
	The advantage of filtering out samples
	Additional experiments with non-positive results
	Clipped surrogate objective details
	An analogy with saunas

