
Under review as a conference paper at ICLR 2020

UNDERSTANDING TOP-K SPARSIFICATION IN DIS-
TRIBUTED DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed stochastic gradient descent (SGD) algorithms are widely deployed
in training large-scale deep learning models, while the communication overhead
among workers becomes the new system bottleneck. Recently proposed gradient
sparsification techniques, especially Top-k sparsification with error compensation
(TopK-SGD), can significantly reduce the communication traffic without obvious
impact on the model accuracy. Some theoretical studies have been carried out to
analyze the convergence property of TopK-SGD. However, existing studies do not
dive into the details of Top-k operator in gradient sparsification and use relaxed
bounds (e.g., exact bound of Random-k) for analysis; hence the derived results
cannot well describe the real convergence performance of TopK-SGD. To this
end, we first study the gradient distributions of TopK-SGD during training pro-
cess through extensive experiments. We then theoretically derive a tighter bound
for the Top-k operator. Finally, we exploit the property of gradient distribution to
propose an approximate top-k selection algorithm, which is computing-efficient
for GPUs, to improve the scaling efficiency of TopK-SGD by significantly reduc-
ing the computing overhead.

1 INTRODUCTION

Training large-scale deep neural networks (DNNs) generally exploits distributed synchronous
stochastic gradient descent (SGD) optimization algorithms to reduce the overall training time. Let
P be the number of workers in a distributed setting, and x ∈ Rd denotes the model parameters with
d dimensions. Then at the t-th iteration, distributed synchronous SGD updates the model parameters
by

xt+1 = xt − ηt
1

P

P∑
p=1

gpt , (1)

where gpt ∈ Rd is the stochastic gradient with its locally selected data for the loss function
fp(x) : Rd → R and ηt is the learning rate. The aggregation of d-dimension gradients from P
workers requires a communication complexity of O(d)1, which generally limits the system scalabil-
ity. Gradient sparsification (Strom, 2015; Dryden et al., 2016; Aji & Heafield, 2017; Chen et al.,
2018; Lin et al., 2018) is a promising technique for distributed SGD, which can significantly reduce
the communication traffic while reserving the model convergence. In gradient sparsification, a com-
pressor Compk is applied on each worker to locally select k, k ≤ d, gradients for aggregation and
Compk ∈ {Topk,Randk} (Stich et al., 2018). Compk(g

p
t) ∈ Rd zeros out (d− k) elements of gpt

and keeps k elements unchanged. The zeroed-out d − k elements are stored as residual εpt for the
next iteration. Formally, the model parameters are updated by

xt+1 = xt − ηt
1

P

P∑
p=1

Compk(g
p
t + εpt) and εpt+1 = gpt + εpt − Compk(g

p
t + εpt), (2)

where εpt ∈ Rd and εp0 = 0. In theory, distributed SGD with gradient sparsification (e.g., Topk,
Randk and any other k-contraction operators) with error compensation has been proved to have the

1The ring-based AllReduce collective can achieve the bandwidth optimal performance that is not related to
the number of workers.

1

Under review as a conference paper at ICLR 2020

same order of convergence rate as vanilla SGD for both convex and non-convex problems if the
number of iterations is large (Wangni et al., 2018; Stich et al., 2018; Alistarh et al., 2018; Jiang &
Agrawal, 2018; Karimireddy et al., 2019; Tang et al., 2019; Zheng et al., 2019). The convergence
rates are derived with a key contraction property of the sparsification operator Compk (Topk or
Randk) (Stich et al., 2018; Alistarh et al., 2018), that is

EC [‖x− Compk(x)‖2] ≤ (1− k/d)‖x‖2,∀x ∈ Rd, (3)

where EC is the expectation taking on the compressor and ‖ · ‖ is the `2-norm. For any x ∈
Rd, Topk(x) ∈ Rd selects the top k largest elements (in terms of the absolute value) of x with
corresponding indices and sets other d− k elements to zeros; while Randk(x) ∈ Rd randomly (in a
uniform distribution) selects k elements from xwith corresponding indices and other d−k elements
are zeros. It is obvious that

‖x− Topk(x)‖2 ≤ ‖x− Randk(x)‖2 and ER[‖x− Randk(x)‖2] = (1− k/d)‖x‖2. (4)

Existing studies use the same error estimate for both Topk and Randk in distributed SGD by ex-
ploiting the properties of (4), which cannot differentiate the convergence behavior of two operators.
In practice, however, TopK-SGD has a much faster convergence speed (in term of iterations) than
SGD with Randk (RandK-SGD) as empirically shown in (Stich et al., 2018). We also compare
the convergence performance between TopK-SGD and RandK-SGD on a 16-worker distributed set-
ting with three popular convolutional neural networks (VGG-16 (Simonyan & Zisserman, 2014),
ResNet-20 and ResNet-50 (He et al., 2016)). Our results are shown in Fig. 1. We observe that
TopK-SGD achieves very similar performance to the original distributed SGD (Dense-SGD), while
RandK-SGD has much slower convergence than TopK-SGD. RandK-SGD even cannot converge on
ImageNet. Therefore, though existing studies show that TopK-SGD and RandK-SGD have the same
convergence bound, their theoretical results cannot explain the performance gap between TopK-SGD
and RandK-SGD. Even some work (Karimireddy et al., 2019; Tang et al., 2019) exploits δ ≤ 1 to
replace k/d in (3), they also fail to identify exact δ to distinguish Topk and Randk.

0 20 40 60 80 100 120
epochs

20

40

60

80

va
l a

cc
ur

ac
y

Dense-SGD
TopK-SGD
RandK-SGD

(a) VGG-16 on CIFAR10

0 20 40 60 80 100 120
epochs

20

40

60

80

va
l a

cc
ur

ac
y

Dense-SGD
TopK-SGD
RandK-SGD

(b) ResNet-20 on CIFAR10

0 10 20 30 40 50 60 70
epochs

0
10
20
30
40
50
60
70

va
l a

cc
ur

ac
y

Dense-SGD
TopK-SGD
RandK-SGD

(c) ResNet-50 on ImageNet

Figure 1: Convergence comparison between original distributed SGD (Dense-SGD), Topk spar-
sification (TopK-SGD) and Randk sparsification (RandK-SGD) at 16 distributed workers on the
CIFAR10 (Krizhevsky et al., 2010) and ImageNet (Deng et al., 2009) data sets.

In this paper, we dive into the details of the Topk operator in distributed SGD when training DNNs
and provide a tighter bound than inequality (3) to explain the good convergence performance of
TopK-SGD. The observation of gradients with Topk sparsification further enables us to propose a
new computational-efficient selection algorithm for gradient which preserves the convergence prop-
erty. Our contributions are summarized as follows.

Contributions. (1) We empirically study the details of local stochastic gradients and observe that
the elements of gradient follow Gaussian-like distributions through extensive experiments. (2) The
Gaussian-like distribution enables us to intuitively explain that Topk should have a much tighter
bound than Randk, and we exploit the distribution property to formulate how Topk outperforms
Randk. (3) We design and implement an approximate top-k selection algorithm2, which is much
more efficient than existing top-k selection algorithms on GPUs. As compared with the existing
sampling-based approximate top-k selection algorithm, we improve the scaling efficiency by 12-
50% on our 16-GPU cluster.

2Our system implementation will be made open-source after the review process.

2

Under review as a conference paper at ICLR 2020

2 RELATED WORK

Gradient Quantization. In distributed training of neural networks, the communicated gradients
can be quantized to low-bit precision (e.g., 16-bit (Micikevicius et al., 2018; Jia et al., 2018), 3-bit
(Wen et al., 2017), 2.8-bit (Alistarh et al., 2017; Karimireddy et al., 2019) and even 1-bit (Seide
et al., 2014; Strom, 2015)) while preserving nearly consistent convergence performance with the
full precision (32-bit) counterpart. Recently general frameworks of gradient quantization with error
compensation are proposed to generalize the theoretical results of low-bit communication (Wu et al.,
2018; Jiang & Agrawal, 2018; Karimireddy et al., 2019; Tang et al., 2019; Haddadpour et al., 2019).
However, the quantization method can only reduce the communication traffic in 32× (i.e., 1-bit vs.
32-bit), and it could not be enough for large-scale models or low-bandwidth network connections.

Gradient Sparsification. Compared to gradient quantization, gradient sparsification is a much
more promising communication traffic reduction technique as it can sparsify up to three orders of
magnitude gradients be zero with little impact on the model convergence (Strom, 2015; Dryden
et al., 2016; Aji & Heafield, 2017; Chen et al., 2018; Lin et al., 2018; Shi et al., 2019a). Due to
the much success of gradient sparsification (e.g., Top-k sparsification) in significantly reducing the
communication traffic in practice, much recent work tries to build theoretical guarantees for the
SGD optimization algorithm with gradient specification (Wangni et al., 2018; Stich et al., 2018;
Alistarh et al., 2018; Jiang & Agrawal, 2018; Shi et al., 2019b; Karimireddy et al., 2019; Tang et al.,
2019). These theoretical frameworks try to generalize the sparsification operator with the bound of
inequality (3) to derive the convergence results for SGD with gradient sparsification. However, the
existing analysis fails to go insight into the details of gradient sparsification of Topk which is much
success applied in real-world application than other compression operators (e.g., Randk).

Gradient Distribution. To understand the behaviors of Topk on stochastic gradients, we should
study the gradient properties. Glorot & Bengio (2010) study the distribution of activation values
of DNNs and also their corresponding gradients. They empirically showed that back-propagated
gradients have Gaussian-like distribution, which helps understand the difficulty of training deep
neural networks. A similar plot is shown in (Micikevicius et al., 2018), where the distribution of
gradients helps analyze if the 16-bit representation of gradients would be overflow or underflow.
These work has demonstrated that the gradients during training are likely located near zeros. We
extend the similar studies on the gradient distribution for TopK-SGD.

3 STUDY ON STOCHASTIC GRADIENTS

3.1 GRADIENT DISTRIBUTION

In previous gradient sparsification studies (Strom, 2015; Dryden et al., 2016; Aji & Heafield, 2017;
Chen et al., 2018; Lin et al., 2018), the basic rule of sparsification is to select “significant” elements
of the gradients because they contribute more to the updates. The Topk operator selects the exact
local top-k elements of gradients so that it achieves nearly consistent convergence performance with
Dense-SGD. Therefore, we would like to understand what is the difference between “significant”
elements of the gradients and randomly selected elements of gradient. We conduct extensive ex-
periments to study the gradient distributions on three areas of deep learning applications, including
image classification, language modeling, and speech recognition. The selected models are: 1) Feed-
forward Neural Networks (FNNs). We build an FNN with three hidden fully connected layers
(FNN-3) on the MNIST (LeCun, 1998) data set. 2) Convolutional Neural Networks (CNNs). We
conduct experiments with LeNet-5 (LeCun et al., 2015) on MNIST, ResNet-20 (He et al., 2016) and
VGG-16 (Simonyan & Zisserman, 2014) architectures on CIFAR10 (Krizhevsky et al., 2010). And
3) Recurrent Neural Networks (RNNs). We use Long Short Term Memory networks (LSTMs) on
the Penn Treebank (PTB) (Marcus et al., 1993) and the AN4 (Acero, 1990) data sets. For PTB, we
adopt a 2-layer LSTM model (LSTM-PTB) with 1500 hidden units per layer, and for AN4, we use
a 5-layer LSTM model (LSTM-AN4) with 800 hidden units per layer.

The details of the experimental settings are shown in Table 1. As the compression operator is applied
on the gradients, we first measure the distributions of the gradient’s elements (histograms) on Dense-
SGD. The results demonstrate the similar shapes as (Glorot & Bengio, 2010), while ours covers
various applications (refer to Appendix A.1). Our interest is on TopK-SGD to check if gradients
distributions perverse the same properties as Dense-SGD. During the training process of TopK-SGD

3

Under review as a conference paper at ICLR 2020

Table 1: Experimental settings. All models are trained by SGD with a 0.9 momentum. “BS” is the
mini-batch size at each worker. “LR” is the initial learning rate which is decayed during training.

Type Model # Params Weight Init. Activation BS LR Data Set
FNN FNN-3 199,210 Xavier ReLU 128 0.01 MNIST

CNN
LeNet-5 61,706 Xavier ReLU 128 0.01

ResNet-20 269,722 Xavier, Kaiming ReLU 32 0.1 CIFAR10VGG-16 14,728,266 Kaiming ReLU 128 0.1

RNN LSTM-PTB 66,034,000 Uniform Tanh 20 22 PTB
LSTM-AN4 27,569,568 Xavier Tanh 4 0.0002 AN4

(k = 0.001d for a d-dimension model), we measure the histograms of local gradients accumulated
with the residuals (i.e., up

t = gpt + εpt). The histograms of u1
t with different t on different models

are shown in Fig. 2, where we only show the gradients from the first worker as different workers
have very close gradient distributions. It is seen that different models have different shapes on the

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
gradient value 1e 1

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

1e3

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(a) FFN-3

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
gradient value 1e 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fre
qu

en
cy

1e3

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(b) LeNet-5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
gradient value 1e 1

0
1
2
3
4
5
6
7
8

fre
qu

en
cy

1e2

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(c) ResNet-20

1.5 1.0 0.5 0.0 0.5 1.0 1.5
gradient value 1e 2

0

1

2

3

4

5

fre
qu

en
cy

1e5

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(d) VGG-16

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
gradient value 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

1e7

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(e) LSTM-PTB

3 2 1 0 1 2 3
gradient value

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

fre
qu

en
cy

1e6

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(f) LSTM-AN4

Figure 2: The histograms of u1
t of TopK-SGD. For each model, the gradient histograms are plotted

every 200 iterations from iteration 200 to 1600 (other iterations have similar shapes).

accumulated gradients, but one common feature is that most coordinates of ut are close to zero.
Compared to the full gradient SGD (Appendix A.1), TopK-SGD shows wider distributions, which
could be mainly caused by residual accumulation. When selecting top-k largest values (in terms
of absolute values) from ut, the selected values should be located at the left and right sides on the
histograms. Therefore, performing Topk on ut should generate a vector whose `2-norm is very close
to that of ut, that is ‖Topk(ut)‖2 / ‖ut‖2. The intuitive result inspires us to formulate how much
close of ‖Topk(ut)‖2 to ‖ut‖2. Specifically, we would like to derive a variable γ ≤ (1− k/d) such
that ‖ut − Topk(ut)‖2 ≤ γ‖ut‖2 holds.

3.2 THEORETICAL ANALYSIS AND RESULTS

We investigate the Topk operator on up
t = gpt +ε

p
t (for ease of presentation, we use u to denote up

t).

Error estimation of Topk Operator. Let π denote a sorted vector of |u|/‖u‖∞ in descending
order. That is π(i) ≥ π(i+1) ≥ 0 for i = 1, 2, ..., d − 1, where π(i) is the ith element of π ∈ Rd.
Then we have

‖u− Topk(u)‖2

‖u‖2
=
‖u− Topk(u)‖2/‖u‖∞

‖u‖2/‖u‖∞
=
‖ũ− Topk(ũ)‖2

‖ũ‖2
, (5)

4

Under review as a conference paper at ICLR 2020

where ũ = u/‖u‖∞ and

‖ũ− Topk(ũ)‖2

‖ũ‖2
=

∑d
i=k+1 π

2
(i)∑d

i=1 π
2
(i)

. (6)

Assume that u(i) follows a zero-mean normal distribution (e.g., Fig. 3(a)), then π is a decreasing
function w.r.t. i as shown in Fig. 3(b). In order to evaluate Eq. (6), it is essential to calculate the area
under the curve of π. One can easily prove that π is convex and it is always less than the reference
line (y = −i/d + 1) if u follows bell shaped distributions as illustrated in Fig. 2. Considering the
areas of A1, A2, A3, and A4 shown in Fig. 3(c), we have∑d

i=k+1 π
2
(i)∑d

i=1 π
2
(i)

=
A1

A1 +A2 +A3
. (7)

By simple calculation, we have

A1

A1 +A2 +A3
≤ A1 +A4

A1 +A2 +A4
=

Area of MDB

Area of OCB
=

Area of EBD
Area of OAB

=

(
1− k

d

)2

, (8)

where the second equality can be obtained from the similarity of triangle 4MDB ∼ 4COB and
4EDB ∼ 4AOB, i.e.,

Area of MDB

Area of OCB
=
MD

CO
=
DB

OB
=
ED

AO
=

Area of EBD
Area of OAB

. (9)

Putting altogether, we have

‖u− Topk(u)‖2/‖u‖2 ≤ (1− k/d)2 =: γ (10)

and eventually
‖u− Topk(u)‖2 ≤ γ‖u‖2 ≤ (1− k/d) ‖u‖2, (11)

where γ = (1 − k/d)2. The last inequality is always true as |1 − k/d| ≤ 1. Our results can be

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
(i)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

fre
qu

en
cy

1e3

(a) Gaussian distribution

0 20000 40000 60000 80000 100000
i

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
va

lu
e

reference line

(b) Sorted shape

A2

A1

A3

A4

A5

A6

k d

k d

A

B

C

O D

M

E

A4

A1

A2

A3

(c) Illustrated areas

Figure 3: The shape of π(i) with different i with d = 100, 000 and σ = 1.

summarized as the following theorem.

Theorem 1. Assume that u ∈ Rd follows a bell shaped distribution, then we have

‖u− Topk(u)‖2 ≤ (1− k/d)2‖u‖2. (12)

Furthermore, it can be rearranged into the form that

‖u− Topk(u)‖2 ≤ (1− δ) ‖u‖2, where δ = (2kd− k2)/d2. (13)

Convergence Bound of TopK-SGD. We use the same assumptions on the objective function f :
Rd → R as (Karimireddy et al., 2019). The assumptions are: 1) f is L-smooth and 2) f has a
moment bound (i.e., E[g] = ∇f(x) and E[‖g‖2] ≤ G2 for some G > 0, where g is a stochastic
gradient and x is the model parameter). Therefore, we can directly use the the bound formulation of
convergence rate with δ from (Karimireddy et al., 2019) in Remark 4.

5

Under review as a conference paper at ICLR 2020

Theorem 2. If we set ηt = 1√
T+1

for running TopK-SGD and under the assumptions of f , we have

min
t∈[T]

E[‖∇f(xt)‖2] ≤
4(f(x0)− f∗) + LG2

2
√
T + 1

+
4L2G2(1− δ)
δ2(T + 1)

, (14)

where f∗ is the optimal solution.

The theorem indicates that after T ≥ O(1/δ2) iterations, the first term of the right-hand side of
inequality (14) will dominate the bound so that the convergence rate becomes O(1/

√
T) which

matches the rate of vanilla SGD. Note that our derived bound of δ = (2kd− k2)/d2 is much tighter
than k/d in previous studies (Stich et al., 2018; Alistarh et al., 2018; Jiang & Agrawal, 2018; Shi
et al., 2019b; Karimireddy et al., 2019). Let c = d/k denote the compression ratio of gradients.
Previous results (δ = 1/c) indicate that RandK-SGD or TopK-SGD should run after T ≥ O(c2)
iterations to make it catch up the convergence rate of Dense-SGD. Using inequality (11) for TopK-
SGD, it just requires T ≥ O(c4/(2c−1)2) iterations to have the full gradient convergence rate. The
result gives the explanation to why TopK-SGD can easily achieve nearly consistent convergence
performance to Dense-SGD, while RandK-SGD could not (as shown in Fig. 1).

3.3 GAUSSIANk : AN APPROXIMATE TOPk OPERATOR

Though the Topk operator has good convergence property with significantly reduced communica-
tion size in distributed SGD, the top-k selection problem is not friendly to the current many-core
processors like GPUs (Shanbhag et al., 2018). Inefficient Topk could make the overall wall-clock
worse. For example, training a ResNet-50 (He et al., 2016) model on the ImageNet (Deng et al.,
2009) data set on an Nvidia Tesla V100 GPU with a mini-batch size of 128 requires around 0.46
second per iteration3. When we distribute the training to 16 Tesla V100 GPUs connected with 10
Gbps Ethernet, the communication time of full gradients (d = 25, 557, 032) is around 0.2 second.
However, the Topk operator with k = 0.001d on the ResNet-50 model with the Tesla V100 GPU
consumes 0.4 seconds. The 0.2-second communication overhead is saved, but it introduces another
0.4 second overhead at each iteration, which makes the training efficiency even worse. In DGC-
SGD (Lin et al., 2018), the authors have noticed this problem, and they proposed to sample only
0.1% to 1% of the gradients to estimate the threshold hierarchically, which requires to invoke top-k
selection twice on the subsets of the original vector. For ease of reference, we use DGCk to denote
the hierarchical sampling method in selecting the largest top-k gradients.

Algorithm 1 Gaussiank

Input: Stochastic gradients with residuals up
t

Input: k and dimension d
1: Initialize û as a zero vector with d dimensions;
2: µ,σ = mean and std of vector up

t ;
3: p = 1− k/d;
4: thres = ppf(up

t , p, µ, σ);
5: for i = 0→ 3 do
6: masks = |up

t | > thres;
7: estimatedk= # of True values in masks;
8: if estimatedk < 2k/3 then
9: thres = 0.5× thres;

10: else if estimatedk > 4k/3 then
11: thres = 1.5× thres;
12: else
13: break;
14: û[masks] = up

t [masks];
15: Return ũ;

1 2 3 4
of parameters 1e8

0

1

2

3

4

5

GP
U

co
m

pu
ta

tio
n

tim
e

(s
) Top-k

DGC-k
Gaussian-k

Figure 4: The GPU computation time (lower is
better) of Topk, DGCk and Gaussiank. We use the
PyTorch tensor API, “tensor.topk()”, for the Topk
operator.

We propose an approximate Topk operator named Gaussiank by exploiting the Gaussian-like dis-
tribution property of gradients. The key ideas of Gaussiank are: 1) We regard the d-dimensional
gradients (i.e., up

t) at each iteration as a normal distribution with the mean (µ) and standard vari-
ance (σ) which can be directly calculated in an O(d) complexity and the calculations are friendly to

3Note that the model is trained with the single-precision floating point (32-bit), so the Tensor Core of Tesla
V100 GPU is not used.

6

Under review as a conference paper at ICLR 2020

GPUs. 2) We estimate the threshold by exploiting the percent point function (ppf) of up
t with three

parameters: p = 1 − k/d, µ and σ. 3) As the distribution is not exactly normal, the ppf estimation
could result in a threshold that could be slightly smaller or larger than the true threshold. We move
to the estimated threshold to the left or right side several times such that we can have very close
top-k largest absolute values. The algorithm of Gaussiank is shown in Algorithm 1.

4 EXPERIMENTS

As we mainly focus on gradient sparsification, we use the fp32 operations instead of exploiting
lower precision for training models. The related software libraries are CUDA-10.1, cuDNN-7.5.0,
NCCL-2.3.7, PyTorch-1.1.0, OpenMPI-4.0.1, and Horovod-0.16.4 (Sergeev & Balso, 2018).

4.1 NUMERICAL RESULTS OF THE TOPk OPERATOR

To validate the bound of inequality (11), we randomly (in Gaussian distribution) generate a 100, 000
dimension vector and compare the exact value of ‖u − Topk(u)‖2/‖u‖2 and 1 − k/d with ours
derived (1 − k/d)2. We also compare the three bounds in the real-world model training process.
The results are shown in Fig. 5. It is seen that both ours and the previous result are in the upper
side of the exact value, which indicates the derived bounds hold. With increased k, ours becomes
better and better than the previous result. However, one may notice that the exact value is still much
lower than ours. The reason is that our bound is derived by the reference line (Fig. 3(b)) but not the
original function. Therefore, if the shape of π(i) can be exactly formulated, one can derive a tighter
bound for the Topk operator than (1− k/d)2 and we will leave this as our future work.

0.0 0.1 0.2 0.3 0.4 0.5
k/d

0.0

0.2

0.4

0.6

0.8

1.0

||u
To

p k
(u

)||
2 /|

|u
||2 b

ou
nd

exact value
previous studies
ours

(a) Random

0.0 0.1 0.2 0.3 0.4 0.5
k/d

0.0

0.2

0.4

0.6

0.8

1.0

||u
To

p k
(u

)||
2 /|

|u
||2 b

ou
nd

(b) FNN-3

0.0 0.1 0.2 0.3 0.4 0.5
k/d

0.0

0.2

0.4

0.6

0.8

1.0

||u
To

p k
(u

)||
2 /|

|u
||2 b

ou
nd

(c) CNN (ResNet-20)

0.0 0.1 0.2 0.3 0.4 0.5
k/d

0.0

0.2

0.4

0.6

0.8

1.0

||u
To

p k
(u

)||
2 /|

|u
||2 b

ou
nd

(d) RNN (LSTM-PTB)

Figure 5: The comparison of bounds with a range of k.

4.2 GPU COMPUTATION EFFICIENCY OF SPARSIFICATION

To evaluate the computing efficiency of different top-k selection algorithms on GPUs, we conduct
experiments on an Nvidia Tesla V100 GPU with d ranging from 20 million to 400 million and k =
0.001d. The GPU computation speed comparison between Topk, DGCk and Gaussiank operators is
shown in Fig. 4. For DGCk, we use 1% as suggested in (Lin et al., 2018) to estimate the threshold.
Note that tensor operations (e.g., top-k selection, mean and std calculations etc.) are from PyTorch’s
tensor APIs4. The experimental results show that the Topk operator becomes very slow with a
large number of parameters, while Gaussiank only generates slight overheads. DGCk also becomes
inefficient if d is large. It is crucial for the end-to-end training to have a computing-efficient operator
on GPUs such that the extra computation overhead would not limit the system scalability.

4.3 CONVERGENCE PERFORMANCE OF GAUSSIANK-SGD.

To demonstrate the convergence performance of GaussianK-SGD, we run 120 epochs on CIFAR10
and 70 epochs on ImageNet with 16 workers. The top-1 validation accuracy of the evaluated models
is shown in Fig. 6. Note that for each model, we use the same hyper-parameters for the three
SGD algorithms. We can see that our GaussianK-SGD has nearly consistent validation accuracy
with TopK-SGD, which indicates that our proposed Gaussiank operator can select close elements
with Topk. The gradient distributions in GaussianK-SGD are similar to TopK-SGD (Appendix A.2).
In the evaluated three models, GaussianK-SGD and TopK-SGD have slight accuracy loss (around

4https://pytorch.org/docs/stable/tensors.html

7

https://pytorch.org/docs/stable/tensors.html

Under review as a conference paper at ICLR 2020

0.6%-0.8%) compared to Dense-SGD. As suggested in (Lin et al., 2018), the small residuals could
have staleness compared to the current gradients so that it could cause the slight accuracy loss. Some
optimization tricks in (Lin et al., 2018) like momentum correction would address this problem.

0 20 40 60 80 100 120
epochs

20

40

60

80

va
l a

cc
ur

ac
y

Dense-SGD
TopK-SGD
GaussianK-SGD

90 100 110 120
91

92

(a) VGG-16 on CIFAR10

0 20 40 60 80 100 120
epochs

30
40
50
60
70
80
90

va
l a

cc
ur

ac
y

Dense-SGD
TopK-SGD
GaussianK-SGD

90 100 110 120
90

91

(b) ResNet-20 on CIFAR10

0 10 20 30 40 50 60 70
epochs

0
10
20
30
40
50
60
70

va
l a

cc
ur

ac
y

Dense-SGD
TopK-SGD
GaussianK-SGD

55 60 65 70

70

72

(c) ResNet-50 on ImageNet

Figure 6: The convergence performance (top-1 validation accuracy) of distributed SGD with
GaussianK-SGD using k = 0.001d compared to TopK-SGD and Dense-SGD on 16 workers.

4.4 END-TO-END TRAINING SCALING EFFICIENCY OF GAUSSIANK-SGD.

We evaluate the average iteration time of GaussianK-SGD on the ImageNet (Deng et al., 2009) data
set with four popular models (AlexNet (Krizhevsky et al., 2012), VGG-16 (Simonyan & Zisser-
man, 2014), ResNet-50 (He et al., 2016) and Inception-V4 (Szegedy et al., 2017)) on a 16-GPU
cluster compared to Dense-SGD with full gradients, TopK-SGD with the original top-k selection
and DGC-SGD (Lin et al., 2018) with hierarchical sampling. The cluster has four nodes connected
with 10 Gbps Ethernet (10GbE), and each node contains four Nvidia Tesla V100 GPUs (the PCIe
version with 32GB memory). We also set k = 0.001d for all the sparsified algorithms. The re-
sults are shown in Table 2, which shows that TopK-SGD is even slower than Dense-SGD on the
16-GPU cluster, while our GaussianK-SGD runs much faster than Dense-SGD, TopK-SGD, and
DGC-SGD. Specifically, GaussianK-SGD is 1.19×-2.33× faster than Dense-SGD, 1.36×-3.63×
faster than TopK-SGD, and 1.11×-1.51× faster than DGC-SGD, respectively. Even on the VGG-
16 model, which has several large-size fully connected layers, GaussianK-SGD can achieve 85.5%
scaling efficiency on the 16-GPU cluster with low-bandwidth Ethernet.

Table 2: Wall-clock time of end-to-end training with ImageNet on 16 Tesla V100 GPUs connected
with 10 GbE. The batch size for each GPU is 128, and the input image resolution is 224×224.

Model # Params Iteration Time (s) Scaling Efficiency (%)
(Million)Dense-S.TopK-S.DGC-S.Gaussian-S.Dense-S.TopK-S.DGC-S.Gaussian-S.

AlexNet 61 0.571 0.891 0.369 0.245 14.1 9.0 21.8 32.8
VGG-16 138 2.068 3.010 1.540 1.311 54.2 37.2 72.8 85.5

ResNet-50 25 0.699 0.810 0.655 0.586 65.8 56.8 70.2 78.5
Inception-V4 42 1.022 1.268 0.916 0.787 67.5 54.4 75.3 87.7

5 CONCLUSION

In this paper, we first identified that existing theoretical results fail to explain the convergence per-
formance of distributed SGD algorithms with Top-k gradient sparsification (TopK-SGD). Then we
empirically studied gradient distributions during training with TopK-SGD through extensive experi-
ments, and observe that the elements of stochastic gradients are mostly located near zero (Gaussian-
like distribution). The observation enables us to build a theoretically tighter bound for the Topk
operator, which makes the convergence property of TopK-SGD explainable. According to the distri-
bution of gradients, we propose an approximate top-k selection algorithm named Gaussiank which
is much efficient than the existing top-k selection algorithms on GPUs. We finally conduct extensive
experiments to verify our derived bound for the Topk operator and the convergence performance of
distributed SGD with Gaussiank (GaussianK-SGD). In terms of the scaling efficiency, GaussianK-
SGD achieves up to 2.33×, 3.63× and 1.51× faster training speed than full gradient SGD, TopK-
SGD and DGC-SGD on a 16-GPU cluster connected with 10 Gbps Ethernet, respectively.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Alejandro Acero. Acoustical and environmental robustness in automatic speech recognition. In
Proc. of ICASSP, 1990.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
440–445, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pp. 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In Advances in Neural Information
Processing Systems, pp. 5977–5987, 2018.

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash Gopalakr-
ishnan. AdaComp: Adaptive residual gradient compression for data-parallel distributed training.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. IEEE, 2009.

Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communication quantization
for data-parallel training of deep neural networks. In 2016 2nd Workshop on Machine Learning
in HPC Environments (MLHPC), pp. 1–8. IEEE, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Trading
redundancy for communication: Speeding up distributed SGD for non-convex optimization. In
International Conference on Machine Learning, pp. 2545–2554, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang Xie,
Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep learning training system with
mixed-precision: Training ImageNet in four minutes. arXiv preprint arXiv:1807.11205, 2018.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning with sparse
and quantized communication. In Advances in Neural Information Processing Systems, pp. 2530–
2541, 2018.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261, 2019.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/kriz/cifar. html, 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann.lecun.com/exdb/lenet,
20:5, 2015.

9

Under review as a conference paper at ICLR 2020

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. In International Conference on
Learning Representations, 2018.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational linguistics, 19(2):313–330, 1993.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. International Conference on Learning Representations, 2018.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of
the International Speech Communication Association, 2014.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in Ten-
sorFlow. arXiv preprint arXiv:1802.05799, 2018.

Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient top-k query processing on massively
parallel hardware. In Proceedings of the 2018 International Conference on Management of Data,
pp. 1557–1570. ACM, 2018.

Shaohuai Shi, Qiang Wang, Kaiyong Zhao, Zhenheng Tang, Yuxin Wang, Xiang Huang, and Xi-
aowen Chu. A distributed synchronous SGD algorithm with global Top-k sparsification for low
bandwidth networks. In The 39th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS 2019), pp. 2238–2247, 2019a.

Shaohuai Shi, Kaiyong Zhao, Qiang Wang, Zhenheng Tang, and Xiaowen Chu. A convergence
analysis of distributed SGD with communication-efficient gradient sparsification. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp.
3411–3417, 2019b.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In
Advances in Neural Information Processing Systems, pp. 4452–4463, 2018.

Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In Six-
teenth Annual Conference of the International Speech Communication Association, 2015.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Confer-
ence on Artificial Intelligence, 2017.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In International Conference
on Machine Learning, pp. 6155–6165, 2019.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. In Advances in Neural Information Processing Systems, pp.
1306–1316, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in neural
information processing systems, pp. 1509–1519, 2017.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized SGD
and its applications to large-scale distributed optimization. International Conference on Machine
Learning, 2018.

Shuai Zheng, Ziyue Huang, and James T Kwok. Communication-efficient distributed blockwise
momentum sgd with error-feedback. In Advances in neural information processing systems, 2019.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 GRADIENT DISTRIBUTION ON DENSE-SGD

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
gradient value 1e 2

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

1e4

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(a) FFN-3

4 3 2 1 0 1 2 3 4
gradient value 1e 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fre
qu

en
cy

1e3

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(b) LeNet-5

2 1 0 1 2
gradient value 1e 2

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

1e4

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(c) ResNet-20

2 1 0 1 2
gradient value 1e 3

0

1

2

3

4

fre
qu

en
cy

1e6

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(d) VGG-16

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
gradient value 1e 4

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

fre
qu

en
cy

1e7

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(e) LSTM-PTB

3 2 1 0 1 2 3
gradient value 1e 1

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

1e7

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(f) LSTM-AN4

Figure 7: The histograms of u1
t during Dense-SGD training process.

A.2 GRADIENT DISTRIBUTION ON GAUSSIAN-SGD

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
gradient value 1e 1

0.0

0.2

0.4

0.6

0.8

fre
qu

en
cy

1e3

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(a) FFN-3

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
gradient value 1e 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fre
qu

en
cy

1e3

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(b) LeNet-5

0.75 0.50 0.25 0.00 0.25 0.50 0.75
gradient value

0.0

0.2

0.4

0.6

0.8

fre
qu

en
cy

1e3

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(c) ResNet-20

1.5 1.0 0.5 0.0 0.5 1.0 1.5
gradient value 1e 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

fre
qu

en
cy

1e5

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(d) VGG-16

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
gradient value 1e 3

0
1
2
3
4
5
6
7
8

fre
qu

en
cy

1e6

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(e) LSTM-PTB

3 2 1 0 1 2 3
gradient value

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

fre
qu

en
cy

1e6

iter-800
iter-1000
iter-1200
iter-1400
iter-1600

(f) LSTM-AN4

Figure 8: The histograms of u1
t during GaussianK-SGD training process.

11

	Introduction
	Related Work
	Study on Stochastic Gradients
	Gradient Distribution
	Theoretical Analysis and Results
	Gaussiank: An Approximate Topk Operator

	Experiments
	Numerical Results of the Topk Operator
	GPU Computation Efficiency of Sparsification
	Convergence Performance of GaussianK-SGD.
	End-to-end Training Scaling Efficiency of GaussianK-SGD.

	Conclusion
	Appendix
	Gradient Distribution on Dense-SGD
	Gradient Distribution on Gaussian-SGD

