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ABSTRACT

Anomaly detection and localization is a popular computer vision problem which
involves detecting anomalous images and localizing anomalies within them. How-
ever, this task is challenging due to small sample size and pixel coverage of
the anomaly in real-world scenarios. Previous works have a drawback of using
anomalous images to compute a threshold during training to detect and local-
ize anomalies. To tackle these issues, we propose AVAGA - the first end-to-end
trainable convolutional adversarial variational autoencoder (CAVAE) framework
using guided attention which localizes the anomaly with the help of attention
maps. AVAGA detects an image as anomalous from the large pixel-wise dif-
ference between the input and reconstructed image. In an unsupervised setting,
we propose a guided attention loss, where we encourage AVAGA to focus on all
non-anomalous regions in the image without using any anomalous images dur-
ing training. Furthermore, we also propose a selective gradient backpropagation
technique for guided attention, which enhances the performance of anomaly lo-
calization while using only 2% anomalous images in a weakly supervised setting.
AVAGA outperforms the state-of-the-art (SoTA) methods by 10% and 18% on lo-
calization (IoU) and 8% and 15% on classification accuracy in unsupervised and
weakly supervised settings respectively on Mvtec Anomaly Detection (MvAD)
dataset and by 11% and 22% on localization (IoU) and 10% and 19% on classi-
fication accuracy in unsupervised and weakly supervised settings respectively on
the modified ShanghaiTech Campus (STC) dataset.

1 INTRODUCTION

With several breakthroughs of Deep Neural Networks (DNNs) outperforming humans in the field of
image classification (He et al. (2016)), action recognition (Girdhar et al. (2019)), face recognition
(Liu et al. (2017)), etc., one area where it has made significant progress is recognizing whether an
image is homogeneous with its previously observed distribution or whether it belongs to a novel or
anomalous distribution (Akcay et al. (2018)). To develop machine learning algorithms for such a
setting can be challenging due to the lack of suitable data since images with anomalies are rarely
available in real world scenarios as discussed by Bergmann et al. (2019). Previous works on anomaly
detection (Benezeth et al. (2009), Böttger & Ulrich (2016), Steger (2001)) employ handcrafted fea-
tures to detect anomalies, while Hasan et al. (2016) and Dimokranitou (2017) propose autoencoder
based networks in such challenging settings. GAN based approaches (Ravanbakhsh et al. (2019),
Zenati et al. (2018)) have also been proposed for this task. Wang et al. (2018), Tran & Yuan (2011)
propose temporal anomaly localization while Cheng et al. (2013) propose patch based anomaly lo-
calization in videos. These approaches train their network with non-anomalous images / videos and
use a thresholded pixel-wise difference between the input and reconstructed image to detect anoma-
lous images and localize anomalies within them. However, their drawback is that the threshold needs
to be computed by using anomalous images during training.
To solve this drawback, we propose AVAGA - a convolutional adversarial variational autoencoder
network with guided attention to address anomaly detection and localization in two different train-
ing settings i.e. unsupervised and weakly supervised. In an unsupervised setting, given the limited
sample size and the pixel coverage of anomaly in the image, we encourage the network to focus
on all non-anomalous regions of the image such that the feature representation of the latent space
encodes all the non-anomalous regions. Following Bergmann et al. (2019), we train our network in
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an unsupervised setting comprising of only non-anomalous images. We denote non-anomalous as
normal for the rest of our discussion. In the weakly supervised setting we introduce a classifier in
our network and propose the idea of selective gradient backpropagation for guided attention, where
we compute an attention map for only the images correctly predicted by the classifier to localize the
anomaly better.
To the best of our knowledge, we are the first to propose an end-to-end trainable framework that
guides the network in learning an attention map to localize the anomaly in both unsupervised and
weakly supervised settings. As compared to the prior works, our proposed approach does not use
any anomalous images during training to compute a threshold to detect and localize the anomaly.
Our contributions are: (a) An end-to-end trainable convolutional adversarial variational autoencoder
which comprises of a convolutional latent space to preserve the spatial relation between the input
and reconstructed image. (b) A guided attention loss which is jointly optimized with adversarial
reconstruction training to detect and localize the anomaly in an unsupervised setting. (c) A selec-
tive gradient backpropagation technique for guided attention, to control any incorrect attention map
generated from the prediction of the classifier to localize the anomaly better. AVAGA outperforms
SoTA methods on MvAD dataset (Bergmann et al. (2019) by 10% and 18% on localization and
8% and 15% on classification accuracy in unsupervised and weakly supervised settings respectively.
The experiments on the modified STC dataset (Liu et al. (2018)) also outperform SoTA approaches
by 11% and 22% on localization and 10% and 19% on classification accuracy in unsupervised and
weakly supervised settings respectively.

2 PROPOSED APPROACH

Figure 1: (a) Framework of AVAGAu where the attention map (A) is computed from the latent
space z using Grad-CAM. (b) Illustration of AVAGAw with selective gradient backpropagation for
guided attention (SGB) to compute the attention maps (Acx) from the classifier’s prediction. The
architectural details are presented in Table 9 of Appendix.

2.1 UNSUPERVISED APPROACH: AVAGAu

We discuss the idea of a CAVAE using guided attention (AVAGAu) as shown in Figure. 1(a) where
we encourage the network to learn a feature representation of the latent space z by training it using
a reconstruction loss with adversarial learning (Ladv) on only normal images. Since attention maps
obtained from feature maps illustrates the regions of the image responsible for specific activation of
neurons in it (Zagoruyko & Komodakis (2016)), we propose a guided attention loss and use it as an
additional supervision to guide the network to focus on all the normal regions of the image, such
that the anomalous attention map localizes the anomaly during inference.

2.1.1 CONVOLUTIONAL ADVERSARIAL VARIATIONAL AUTOENCODER (CAVAE)

Variational Autoencoder (VAE) (Kingma & Welling (2013)) is a generative model which is widely
used for anomaly detection (Pawlowski et al. (2018)). The formulation for training a vanilla VAE is
as follows:

L(x, x̂) = LR(x, x̂) +KL(qφ(z|x)||pθ(z|x))

where, LR(x, x̂) = −
1

N

N∑
i=1

xilog(x̂i) + (1− xi)log(1− x̂i) (1)
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Here, x is the input image, x̂ is the reconstructed image and N is the total number of images. The
latent space pθ(z|x) is modeled using a simple prior p(z) (standard Gaussian distribution) with the
help of Kullback-Liebler (KL) divergence through qφ(z|x). Since, the vanilla VAE results in blurry
reconstruction (Larsen et al. (2015)), we use a discriminator (D(.)) to improve the stability of the
training and generate a sharper reconstruction x̂ using adversarial learning (Makhzani et al. (2015))
formulated as follows:

Ladv = −
1

N

N∑
i=1

log(D(xi)) + log(1−D(x̂i)) (2)

Unlike traditional autoencoders (Gutoski et al. (2017), Bergmann et al. (2018)) where the latent
space is vectorized, inspired from (Myronenko (2018)) we propose an end-to-end CAVAE to pre-
serve the spatial relation between the input and the reconstructed image. We illustrate the effective-
ness of using a convolutional latent space over vectorizing it in Sec. 5.

2.1.2 GUIDED ATTENTION

Along with detecting an image as anomalous, we also focus on spatially localizing the anomaly
in the image. Most works (Schlegl et al. (2017), Vu et al. (2019), Akcay et al. (2018)) employ a
thresholded pixel-wise difference between the reconstructed image and the input image to localize
the anomaly in which the threshold is determined by using anomalous images during training. How-
ever, AVAGAu learns to localize the anomaly using an attention map reflected through an end-to-end
training process without the need for any anomalous images.
We use the feature representation of the latent space z to compute the attention map. Attention map
(A) is computed using Grad-CAM (Selvaraju et al. (2017)) and normalized using a Sigmoid opera-
tion such that Ai,j ∈ [0, 1] to make it differentiable during the end-to-end training process.
Intuitively, the attention map obtained from the feature map focuses on certain regions of the image
based on the activation of neurons and its respective importance (Zhou et al. (2016), Zagoruyko &
Komodakis (2016)). Since our training set consists only of normal images, we intend to learn the
feature representation of the entire image. We use this notion to propose a guided attention loss to
provide extra supervision to the network and encourage it to generate an attention map that covers
all the normal regions such that the feature representation of the latent space encodes all the normal
regions. This guided attention loss is formulated as follows:

Lattn =
1

Z

∑
i,j

(1−Ai,j) (3)

Here, Z is the number of pixels in A. Using eq. 1, eq. 2 and eq. 3, we formulate our final objective
function Lfinal as follows:

Lfinal = wr(LR(x, x̂)) + wkl(KL(qφ(z|x)||pθ(z|x))) + wadv(Ladv) + wattn(Lattn) (4)

The magnitude of each loss is balanced using scaling factors wr, wkl, wadv and wattn which is set
as 1, 1, 1 and 1e−2 respectively from validation.
During testing, we input image xtest into the AVAE, which reconstructs an image ˆxtest. The pixel-
wise difference between ˆxtest and xtest results in an anomalous score which detects xtest as an
anomaly. Intuitively, if distribution of xtest is similar to the distribution of the learnt latent space,
then the anomalous score is small. The attention map Atest is computed from the latent space using
Grad-CAM and is inverted (1 - Atest) to obtain an anomalous attention map which localizes the
anomaly. Here, 1 refers to a unit matrix with same dimension as Atest.

2.2 WEAKLY-SUPERVISED APPROACH: AVAGAw

AVAGAu can be further extended in a weakly supervised setting (AVAGAw) where we explore the
possibility of using few anomalous images during training to improve the performance of anomaly
detection and localization. Based on previous works (Selvaraju et al. (2017), Oquab et al. (2015)),
attention maps generated from a trained classifier have been used in weakly-supervised semantic
segmentation tasks. Given the labels of the anomalous and normal images without the pixel-wise
annotation of the anomaly during training, we modify AVAGAu by introducing a binary classifier at
the output of the latent space as shown in Figure. 1(b) and train it using binary cross entropy loss
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(Lbce) on normal and anomalous images along with training the CAVAE using adversarial recon-
struction loss (eq. 1 + eq. 2). Since the attention map depends on the performance of the classifier
(Li et al. (2018)), we propose a selective gradient backpropagation for guided attention (SGB) to
compute an attention map based on the classifier’s prediction to localize the anomaly better.

2.2.1 SELECTIVE GRADIENT BACKPROPAGATION FOR GUIDED ATTENTION

Given an image x and its corresponding label y, we define c ∈ {ca, cn} as the prediction of the
classifier, where ca is anomalous and cn is normal prediction respectively. From figure 1(b), we
introduce a binary classifier in AVAGAw which is obtained by cloning the latent space z into a new
tensor and flattening it to form a fully connected layer. The weights between z and its clone are
shared. For the purpose of classification, we choose to separately vectorize the latent space which
also enables the higher magnitude of gradient flow from the classifier’s prediction to compute the
attention map. (Selvaraju et al. (2017)).
In the pipeline of AVAGAw we train our latent space using normal images and propose an anomalous
attention loss in which we focus on localizing the anomaly only in the anomalous images and prevent
any anomalous attention map on the normal image. Using Grad-CAM we compute the anomalous
attention map (Acx) from the anomalous prediction c = ca on image x when y = cn. In addition
to anomalous attention loss, we propose a normal attention loss where we focus on generating an
attention map that covers all the normal regions of the image. The normal attention map is computed
from the normal prediction c = cn on the image x when y = cn. Thus, with the anomalous and
normal attention loss, we encourage the network to focus on all the normal regions while preventing
any anomalous attention on the normal image. The guided attention loss La in the weakly supervised
setting is formulated as follows:

La =



1
Z

∑
i,j(A

c
x)i,j if c = ca and y = cn

1
Z

∑
i,j 1− (Acx)i,j if c = cn and y = cn

0, otherwise

(5)

Since the attention map is computed by backpropagating the gradients from the classifier’s predic-
tion, any incorrect prediction would generate an undesired attention map. This would lead to the
network learning to focus on erroneous regions of the image during training which we avoid using a
technique termed as “selective gradient backpropagation for guided attention”. Using label informa-
tion and classifier’s output, we compute La for only the images correctly classified by the classifier
i.e. if y = c. From eq. 1, eq. 2 and eq. 5 based on SGB, we train our network using the following
objective function:

Lfinal = wr(LR(x, x̂)+wkl(KL(qφ(z|x)||pθ(z|x)))+wadv(Ladv)+wc(Lbce)+wa(La) (6)

The magnitude of each of the losses is balanced using scaling factors wr, wkl, wadv, wc and wa
which is set as 1, 1, 1, 1e−3, and 1e−2 respectively from validation.
During testing, we input image xtest to AVAGAw which the classifier identifies as anomalous or
normal. The anomalous attention map Atest is computed on xtest if y = ca using Grad-CAM which
localizes the anomaly.

3 EXPERIMENTAL EVALUATION

Experiments are performed on MvAD and modified STC datasets to evaluate the performance of
AVAGAu and AVAGAw. We summarizes the datasets used for evaluation in Table 1 and discuss
the implementation details in Sec. A.1 of Appendix. Based on the framework in Figure. 1(a), we
use the convolution layers of ResNet-18 (He et al. (2016)) as our encoder pretrained from ImageNet
(Russakovsky et al. (2015)) and fine-tune on the each category / scenes individually. Inspired from
(Brock et al. (2018)), we propose to use the residual generator as our residual decoder by modify-
ing it with a convolution layer interleaved between two upsampling (transpose convolution) layers
to preserve local spatial information during reconstruction. The skip connection is added from the
output of the upsampling layer to the output of the convolution layer to preserve high level feature
information across upsampling layers. We use the discriminator of DC-GAN (Radford et al. (2015))
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pretrained on Celeb-A dataset (Liu et al. (2015)) and finetune on our data as our discriminator. This
network is termed as AVAGA-R and it’s architectural details is presented in Table 9 of Appendix.
We illustrate the effectiveness of AVAGAu and AVAGAw over 1) AE L2 (Bergmann et al. (2018))
2) AE SSIM (Bergmann et al. (2018)) 3) AnoGAN (Schlegl et al. (2017)) 4) CNN feature dictionary
(Napoletano et al. (2018)) 5) Texture inspection (Böttger & Ulrich (2016)) 6) Variation model (Ste-
ger (2001)) based approaches. For fair comparisons with the baseline autoencoder and GAN based
approaches, we employ the discriminator and generator of DCGAN pretrained on Celeb-A dataset
as our encoder and decoder respectively, and use the same discriminator as discussed previously and
train this network (AVAGA-D) using eq. 4 & eq. 6 and evaluate its performance for localization
and classification accuracy. During our discussion we refer AVAGA-Du & AVAGA-Ru jointly as
AVAGAu in unsupervised and AVAGA-Dw & AVAGA-Rw as AVAGAw in weakly supervised set-
ting respectively.
From Table 1, we observe that in the unsupervised setting, the network is trained only on the nor-
mal images. However in the weakly supervised setting, since none of the baseline methods provide
information on the number of anomalous images they use to compute the threshold during train-
ing, we randomly choose 2% of anomalous images along with the complete set of normal image
for training. Following Bergmann et al. (2019), we use the mean of accuracy of correctly classi-
fied anomalous images and normal images to evaluate the performance of anomaly detection and
Intersection-over-Union (IoU) between the generated attention map and the ground truth segmenta-
tion mask to evaluate localization performance.

Table 1: Summary of the different datasets used to evaluate AVAGAu and AVAGAw.

Dataset MvAD MvAD modified STC modified STC

Setting unsupervised weakly supervised unsupervised weakly supervised

# Categories / Scenes 15 categories 15 categories 13 scenes 13 scenes

# Train images 3629 normal 3664 normal & anomalous 244875 normal 246638 normal & anomalous

# Test mages 1725 anomalous 1690 anomalous 88167 anomalous 86404 anomalous

Loss function eq. 4 eq. 6 eq. 4 eq. 6

Table 2: Comparison of IoU of AVAGAu and AVAGAw with state-of-the-art approaches on the
MvAD dataset. The color of the highlighted number denotes the ranking performance, darker color
indicates better performance.

CNN Texture Variation
Category AE AE AnoGAN feature inspection model AVAGA-Du AVAGA-Ru AVAGA-Dw AVAGA-Rw

SSIM L2 dictionary
Bottle 0.15 0.22 0.05 0.07 - 0.03 0.28 0.33 0.36 0.39

Hazelnut 0.00 0.41 0.02 0.00 - - 0.42 0.47 0.58 0.79
Capsule 0.09 0.11 0.04 0.00 - 0.01 0.24 0.27 0.38 0.41

Metal Nut 0.01 0.26 0.00 0.13 - 0.19 0.38 0.45 0.46 0.46
Leather 0.71 0.67 0.34 0.74 0.98 - 0.75 0.79 0.80 0.84

Pill 0.07 0.25 0.17 0.00 - 0.13 0.31 0.38 0.44 0.53
Wood 0.36 0.29 0.14 0.47 0.51 - 0.55 0.59 0.61 0.66
Carpet 0.69 0.38 0.34 0.20 0.29 - 0.71 0.73 0.70 0.81

Tile 0.04 0.23 0.08 0.14 0.11 - 0.29 0.32 0.68 0.81
Grid 0.88 0.83 0.04 0.02 0.01 - 0.30 0.32 0.42 0.55

Cable 0.01 0.05 0.01 0.13 - - 0.34 0.43 0.49 0.51
Transistor 0.01 0.22 0.08 0.03 - - 0.28 0.34 0.38 0.45

Toothbrush 0.08 0.51 0.07 0.00 - 0.24 0.54 0.55 0.60 0.63
Screw 0.03 0.34 0.01 0.00 - 0.12 0.39 0.48 0.51 0.66
Zipper 0.10 0.13 0.01 0.00 - - 0.18 0.25 0.29 0.31

4 COMPARISION WITH STATE-OF-THE-ART

We compare AVAGAu and AVAGAw with baseline approaches on MvAD and modified STC
datasets. We see from Table 2 that AVAGAu localizes the anomaly better compared to other baseline
methods in the unsupervised setting on the MvAD dataset. Specifically, in 13 out of 15 categories,
AVAGA-Du outperforms the baseline with the best performance in these categories with an improve-
ment ranging from 1% to 21%. Although the major focus of our work is in localizing the anomaly
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Figure 2: Qualitative results on the MvAD dataset. The anomalous attention map (in red) depicts
the localization of the anomaly in the image. Please refer to the Sec. A.2 of Appendix for more
illustrations of per class anomaly localization.

better, we observe from Table 3 that the mean of accuracy of correctly classified anomalous images
and normal images of AVAGAu is better than the baseline methods. We achieve better classifica-
tion performance in 10 out of 15 categories with an improvement ranging from 1% to 26% using
AVAGA-Du. In all baseline methods, the anomaly is localized from the thresholded pixel-wise dif-
ference between the input and reconstructed image where threshold is computed using anomalous
images during training. It is important to note that in our unsupervised approach we do not use
any anomalous images and generate an attention map to localize the anomaly which outperform the
methods that have access to anomalous images. From Table 2, we observe that AVAGA-Dw local-
izes the anomaly better than AVAGA-Du in all categories with an improvement ranging from 1% to
57%. We also observe that AVAGA-Dw outperforms the baseline method with the best performance
in 13 out of 15 categories with an improvement in localization between 1% and 45%. From Table 2
and Table 3, we observe that AE L2 and AE SSIM are the best performing methods for localization
and classification accuracy as compared to other baseline approaches and hence choose to compare
AVAGAu and AVAGAw with them on the modified STC dataset. We observe from Table 4 and Table
5 that AVAGAu and AVAGAw also outperforms these autoencoder based methods on modified STC
dataset. Since we do not use any anomalous images in the unsupervised setting, we empirically set
0.5 as the threshold on attention map to evaluate the localization performance. Also, the anomalous
score is normalized between [0, 1], and 0.5 is empirically chosen as the threshold to detect an image
as anomalous. From Table 7 in Appendix, we illustrate that AVAGAu is insensitive to the threshold
and still outperforms the baselines methods for different threshold values.

Table 3: Comparison of mean of accuracy of correctly classified anomalous images and normal
images of AVAGAu and AVAGAw with state-of-the-art approaches on the MvAD dataset. The
representation of the highlighted number is the same as described in Table 2.

CNN Texture Variation
Category AE AE AnoGAN feature inspection model AVAGA-Du AVAGA-Ru AVAGA-Dw AVAGA-Rw

SSIM L2 dictionary
Bottle 0.88 0.80 0.69 0.53 - 0.57 0.89 0.91 0.93 0.96

Hazelnut 0.54 0.88 0.50 0.49 - - 0.82 0.84 0.90 0.92
Capsule 0.61 0.62 0.58 0.41 - 0.50 0.81 0.87 0.89 0.93

Metal Nut 0.54 0.73 0.50 0.65 - 0.58 0.66 0.67 0.81 0.88
Leather 0.46 0.44 0.52 0.67 0.50 - 0.71 0.75 0.80 0.84

Pill 0.60 0.62 0.62 0.46 - 0.57 0.88 0.91 0.93 0.97
Wood 0.83 0.74 0.68 0.84 0.71 - 0.85 0.88 0.89 0.89
Carpet 0.67 0.50 0.49 0.63 0.59 - 0.71 0.78 0.80 0.82

Tile 0.52 0.77 0.51 0.71 0.72 - 0.70 0.72 0.81 0.86
Grid 0.69 0.78 0.51 0.67 0.50 - 0.75 0.78 0.79 0.81

Cable 0.61 0.56 0.53 0.61 - - 0.62 0.64 0.86 0.97
Transistor 0.52 0.71 0.67 0.58 - - 0.72 0.73 0.80 0.89

Toothbrush 0.74 0.98 0.57 0.57 - 0.80 0.90 0.97 0.96 0.99
Screw 0.51 0.69 0.35 0.43 - 0.55 0.77 0.78 0.79 0.79
Zipper 0.80 0.80 0.59 0.54 - - 0.85 0.94 0.95 0.96
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Figure 3: Qualitative results on the modified STC dataset. The anomalous attention map (in red)
depicts the localization of the anomaly in the image. Please refer to the Sec. A.3 of Appendix for
more illustrations of per scene anomaly localization.

Table 4: Comparison of IoU of AVAGAu and AVAGAw with state-of-the-art approaches on the
modified STC dataset. The representation of the highlighted number is the same as described in
Table 2.

Scene ID AE SSIM AE L2 AVAGA-Du AVAGA-Ru AVAGA-Dw AVAGA-Rw

01 0.20 0.16 0.20 0.25 0.38 0.44
02 0.08 0.17 0.19 0.23 0.25 0.34
03 0.21 0.24 0.26 0.28 0.31 0.46
04 0.11 0.12 0.28 0.34 0.36 0.38
05 0.16 0.12 0.28 0.31 0.40 0.47
06 0.21 0.19 0.31 0.40 0.45 0.58
07 0.19 0.16 0.18 0.22 0.28 0.36
08 0.06 0.05 0.20 0.22 0.29 0.37
09 0.03 0.02 0.20 0.16 0.31 0.36
10 0.11 0.14 0.13 0.14 0.24 0.29
11 0.10 0.07 0.29 0.37 0.44 0.58
12 0.20 0.16 0.07 0.11 0.20 0.26

5 ABLATION STUDY

All ablation studies are performed on 5 randomly chosen categories of MvAD dataset. The quanti-
tative and qualitative results are shown in Table 6 and Figure 4 respectively. The ablation results for
all categories are presented in Table 8 of Appendix.
Effect of guided attention loss: To test the effectiveness of using the guided attention loss
(Lattn) in the unsupervised setting, we train AVAGA-Ru without it i.e. we use LR(x, x̂) +
KL(qφ(z|x)||pθ(z|x)) + Ladv as our objective function. During inference, the anomalous atten-
tion map is computed to evaluate the localization performance. From Column ID 1 & 3 in Table 6 ,
we observe that using guided attention loss localizes the anomaly better.
Effect of convolutional latent space: As discussed in Sec. 2.1.1, AVAGAu comprises of a con-
volutional latent space and to illustrate its effectiveness, we flatten the output of the encoder of
AVAGA-Ru and connect it to a fully connected layer as latent space with dimension 100. The di-
mension of the latent space is chosen from validation. From Column 2 & 3 in Table 6, we observe
that preserving the spatial relation of the input and reconstructed image through the convolutional
latent space results in a better localization performance.
Effect of adversarial reconstruction loss: We know that the attention map from the prediction
of a trained classifier can be used to localize the object of interest corresponding to the classifier’s
prediction (Li et al. (2018)). We emphasize the effectiveness of training AVAGA-Rw using eq. 6
as compared to training it only using a classification loss i.e. we train AVAGA-Rw only using Lbce
and then during inference, the anomalous attention map from the classifier’s prediction localizes
the anomaly on anomalous images. From Column ID 4 & 6 in Table 6 and the qualitative results
illustrated in Figure 4, we observe that using the adversarial reconstruction loss jointly with guided
attention loss results in a better localization performance.
Effect of SGB: From Sec. 2.2.1, we use SGB in AVAGAw to compute an attention map that local-
izes the anomaly better. We illustrate it’s effectiveness by computing the attention loss for the image
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Table 5: Comparison of mean of accuracy of correctly classified anomalous images and normal
images of AVAGAu and AVAGAw with state-of-the-art approaches on the modified STC dataset.
The representation of the highlighted number is the same as described in Table 2.

Scene ID AE SSIM AE L2 AVAGA-Du AVAGA-Ru AVAGA-Dw AVAGA-Rw

01 0.65 0.72 0.76 0.85 0.84 0.87
02 0.70 0.61 0.75 0.82 0.89 0.90
03 0.79 0.71 0.82 0.84 0.86 0.88
04 0.81 0.66 0.80 0.80 0.81 0.83
05 0.71 0.67 0.79 0.84 0.90 0.94
06 0.47 0.55 0.64 0.67 0.65 0.70
07 0.36 0.59 0.60 0.64 0.75 0.77
08 0.69 0.70 0.74 0.74 0.76 0.80
09 0.84 0.73 0.87 0.88 0.90 0.91
10 0.83 0.88 0.88 0.92 0.94 0.94
11 0.71 0.75 0.79 0.81 0.83 0.83
12 0.65 0.52 0.75 0.78 0.81 0.83

irrespective of the classifier’s prediction. From Figure 4 and Column ID 5 & 6 in Table 6, we observe
that using SGB to compute the guided attention loss results in better localization performance.

Table 6: IoU of 5 categories of ablation study illustrating the performance of the anomaly localiza-
tion on MvAD dataset. Representation of highlighted number is same as described in Table 2.

AVAGA-Ru AVAGA-Ru AVAGA-Rw AVAGA-Rw

Category w/o w/ flat AVAGA-Ru w/o adv. w/o SGB AVAGA-Rw

attention latent space recons
Column ID 1 2 3 4 5 6

carpet 0.53 0.42 0.73 0.69 0.77 0.81
capsule 0.14 0.08 0.27 0.18 0.37 0.41
leather 0.18 0.31 0.79 0.72 0.81 0.84

Pill 0.16 0.25 0.38 0.24 0.44 0.53
Wood 0.43 0.36 0.59 0.51 0.61 0.66

Figure 4: Qualitative results of the ablation study to illustrate the performance of the anomaly lo-
calization on MvAD dataset. The anomalous attention map (in red) depicts the localization of the
anomaly for different cases as described in Sec. 5.

6 CONCLUSION

In this work, we propose the first end-to-end trainable convolutional adversarial variational autoen-
coder using guided attention to address anomaly detection and localization with attention maps. We
illustrate that the guided attention loss during training enables the network to learn a feature rep-
resentation of all the normal regions of the image such the anomalous attention map localize the
anomaly. We also demonstrate that in the weakly supervised setting, using selective gradient back-
propagation for guided attention along with 2% anomalous images during training improves the
performance of anomaly localization. With qualitative and quantitative analysis the effectiveness
of AVAGAu and AVAGAw is demonstrated over state-of-the-art methods for both unsupervised and
weakly supervised settings on MvAD and modified STC datasets. Our proposed objective functions
can be supported on different networks to improve the performance of detection and attention maps
can be used for localization in both unsupervised and weakly supervised settings.
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Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattlegger, and Carsten Steger. Improving un-
supervised defect segmentation by applying structural similarity to autoencoders. arXiv preprint
arXiv:1807.02011, 2018.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad–a comprehensive
real-world dataset for unsupervised anomaly detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 9592–9600, 2019.

Tobias Böttger and Markus Ulrich. Real-time texture error detection on textured surfaces with
compressed sensing. Pattern Recognition and Image Analysis, 26(1):88–94, 2016.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Kai-Wen Cheng, Yie-Tarng Chen, and Wen-Hsien Fang. Abnormal crowd behavior detection and
localization using maximum sub-sequence search. In Proceedings of the 4th ACM/IEEE interna-
tional workshop on Analysis and retrieval of tracked events and motion in imagery stream, pp.
49–58. ACM, 2013.

Asimenia Dimokranitou. Adversarial autoencoders for anomalous event detection in images. PhD
thesis, 2017.

Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman. Video action transformer net-
work. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
244–253, 2019.

Matheus Gutoski, Nelson Marcelo Romero Aquino, Manassés Ribeiro, EA Lazzaretti, and
SH Lopes. Detection of video anomalies using convolutional autoencoders and one-class sup-
port vector machines. In XIII Brazilian Congress on Computational Intelligence, 2017, 2017.

Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K Roy-Chowdhury, and Larry S Davis.
Learning temporal regularity in video sequences. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 733–742, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300, 2015.

Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. Tell me where to look: Guided
attention inference network. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 9215–9223, 2018.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 212–220, 2017.

Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao. Future frame prediction for anomaly
detection–a new baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6536–6545, 2018.

9



Under review as a conference paper at ICLR 2020

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Andriy Myronenko. 3d mri brain tumor segmentation using autoencoder regularization. In Interna-
tional MICCAI Brainlesion Workshop, pp. 311–320. Springer, 2018.

Paolo Napoletano, Flavio Piccoli, and Raimondo Schettini. Anomaly detection in nanofibrous ma-
terials by cnn-based self-similarity. Sensors, 18(1):209, 2018.
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A APPENDIX

A.1 DISCUSSIONS

Implementation details: All high resolution images of the MvAD and modified STC datasets
are randomly center cropped to 256 × 256 and randomly rotated between [−15◦,+15◦] to create
variations in data during training. We train AVAGAu and AVAGAw with a learning rate of 1e−4

with a batch size of 24 for 150 epochs. In order to stabilize the training, the learning rate is decayed
by 1e−1 for every 30 epochs. In the modified STC dataset, we train AVAGAu and AVAGAw with
every 5th frame of a video from each scene without using any temporal information.
Effect of varying threshold: The baseline methods shown in Table 2 use anomalous images to
compute a threshold for detecting and localizing anomalies. However as discussed in Sec. 4, we
empirically set 0.5 as our threshold for both detection and localization tasks. To illustrate that
AVAGA-Ru is insensitive to the variations in threshold values we choose 0.2 through 0.6 as our
threshold on attention map. We compare the localization performance of AVAGA-Ru for different
threshold values to the best baseline method (SoTA best) in each category of MvAD dataset.
From Table 7, we observe that AVAGA-Ru is insensitive to the variations in threshold and still
outperforms the best baseline method in each category.

Table 7: Comparision of IoU of AVAGA-Ru for different threshold values with the best baseline
method of each category (SoTA best) on MvAD dataset. The representation of the highlighted
number is the same as described in Table 2.

Network SoTA AVAGA-Ru AVAGA-Ru AVAGA-Ru AVAGA-Ru AVAGA-Ru
Threshold best 0.2 0.3 0.4 0.5 0.6

Carpet 0.69 0.70 0.69 0.71 0.73 0.71
Capsule 0.11 0.23 0.24 0.22 0.27 0.18

Pill 0.25 0.34 0.31 0.35 0.38 0.33
Bottle 0.22 0.29 0.28 0.29 0.33 0.31
Wood 0.51 0.52 0.54 0.57 0.59 0.56
Tile 0.23 0.28 0.26 0.31 0.32 0.32

Hazelnut 0.41 0.41 0.45 0.46 0.47 0.46
Metal Nut 0.26 0.38 0.39 0.44 0.46 0.36

Cable 0.13 0.28 0.31 0.41 0.43 0.38
Toothbrush 0.51 0.52 0.52 0.53 0.55 0.53

Screw 0.34 0.38 0.44 0.45 0.48 0.46
Transistor 0.22 0.27 0.25 0.31 0.34 0.29

Zipper 0.13 0.19 0.20 0.24 0.25 0.22

Table 8: IoU of all categories of the ablation study illustrating the performance of the anomaly lo-
calization on MvAD dataset. The representation of the highlighted number is the same as described
in Table 2.

AVAGA-Ru AVAGA-Ru AVAGA-Rw AVAGA-Rw
Category w/o w/ flat AVAGA-Ru w/o adv. w/o SGB AVAGA-Rw

attention latent space recons
Bottle 0.26 0.24 0.33 0.16 0.34 0.39

Hazelnut 0.16 0.26 0.47 0.51 0.76 0.79
Capsule 0.14 0.08 0.27 0.18 0.35 0.41

Metal Nut 0.28 0.31 0.45 0.25 0.38 0.46
Pill 0.16 0.25 0.38 0.24 0.44 0.53

Wood 0.43 0.36 0.59 0.51 0.61 0.66
Carpet 0.53 0.42 0.73 0.69 0.77 0.81

Tile 0.07 0.18 0.32 0.66 0.73 0.81
Leather 0.38 0.31 0.79 0.70 0.81 0.84

Grid 0.27 0.15 0.32 0.31 0.51 0.55
Cable 0.36 0.38 0.43 0.47 0.58 0.63

Toothbrush 0.41 0.46 0.55 0.54 0.60 0.66
Screw 0.11 0.18 0.48 0.16 0.22 0.31
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Table 9: Architectural details of AVAGAu and AVAGAw as shown in Fig. 1. The notation in each
row is as follows: operation, filter h × filter w, number of filters, stride, pad. W.S. denotes the
additional layers for the weakly supervised setting. ConvTr 2D denotes transpose convolution layer,
Conv 2D denotes convolution layer.

Network Layer Layer Output
name dimensions dimensions

Layer 1 - 18 pretrained Resnet-18 (convolution only) 8 × 8 × 512
Layer 19 ReLU 8 × 8 × 512
Layer 20 Conv 2D, 1 × 1, 512, 1,0 8 × 8 × 512

Encoder Layer 21 Conv 2D, 1 × 1, 512, 1,0 8 × 8 × 512
W.S: Layer 22 Flatten 32768
W.S: Layer 23 Linear 2
W.S: Layer 24 Softmax 2

Layer 1 ConvTr 2D, 4 × 4, 512, 2, 1 16 × 16 × 512
Layer 2 BatchNorm 16 × 16 × 512
Layer 3 ReLU 16 × 16 × 512
Layer 4 Conv 2D 3 × 3, 512, 1, 1 16 × 16 × 512
Layer 5 BatchNorm 16 × 16 × 512
Layer 6 ReLU 16 × 16 × 512

- output layer 1 + output layer 6 16 × 16 × 512
Layer 7 ConvTr 2D, 4 × 4, 256, 2, 1 32 × 32 × 256
Layer 8 BatchNorm 32 × 32 × 256
Layer 9 ReLU 32 × 32 × 256
Layer 10 Conv 2D 3 × 3, 256, 1, 1 32 × 32 × 256
Layer 11 BatchNorm 32 × 32 × 256
Layer 12 ReLU 32 × 32 × 256

- output layer 7 + output layer 12 32 × 32 × 256
Layer 13 ConvTr 2D, 4 × 4, 128, 2, 1 64 × 64 × 128

Decoder Layer 14 BatchNorm 64 × 64 × 128
Layer 15 ReLU 64 × 64 × 128
Layer 16 Conv 2D 3 × 3, 128, 1, 1 64 × 64 × 128
Layer 17 BatchNorm 64 × 64 × 128
Layer 18 ReLU 64 × 64 × 128

- output layer 13 + output layer 18 64 × 64 × 128
Layer 19 ConvTr 2D, 4 × 4, 64, 2, 1 128 × 128 × 64
Layer 20 BatchNorm 128 × 128 × 64
Layer 21 ReLU 128 × 128 × 64
Layer 22 Conv 2D 3 × 3, 64, 1, 1 128 × 128 × 64
Layer 23 BatchNorm 128 × 128 × 64
Layer 24 ReLU 128 × 128 × 64

- output layer 19 + output layer 24 128 × 128 × 64
Layer 25 ConvTr 2D, 4 × 4, 3, 2, 1 256 × 256 × 3
Layer 26 Sigmoid 256 × 256 × 3
Layer 1 Conv2D, 4 × 4, 64, 2, 1 128 × 128 × 64
Layer 2 Leaky ReLU (0.2) 128 × 128 × 64
Layer 3 Conv2D, 4 × 4, 128, 2, 1 64 × 64 × 128
Layer 4 BatchNorm 64 × 64 × 128

Discriminator Layer 5 Leaky ReLU (0.2) 64 × 64 × 128
Layer 6 Conv2D, 4 × 4, 256, 2, 1 32 × 32 × 256
Layer 7 BatchNorm 32 × 32 × 256
Layer 8 Leaky ReLU (0.2) 32 × 32 × 256
Layer 9 Conv2D, 4 × 4, 512, 2, 1 16 × 16 × 512
Layer 10 BatchNorm 16 × 16 × 512
Layer 11 Leaky ReLU (0.2) 16 × 16 × 512
Layer 12 Conv2D, 4 × 4, 512, 2, 1 8 × 8 × 512
Layer 13 Sigmoid 8 × 8 × 512
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A.2 ADDITIONAL QUALITATIVE RESULTS - MVTEC ANOMALY DETECTION DATASET

Figure 5: Qualitative comparison of anomaly localization of AVAGA-Ru and AVAGA-Rw with
baseline methods on MvAD dataset. The anomalous attention map (in red) depicts the localization
of the anomaly in the image.
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Figure 6: Qualitative comparison of anomaly localization of AVAGA-Ru and AVAGA-Rw with
baseline methods on MvAD dataset. The anomalous attention map (in red) depicts the localization
of the anomaly in the image.
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Figure 7: Qualitative comparison of anomaly localization of AVAGA-Ru and AVAGA-Rw with
baseline methods on MvAD dataset. The anomalous attention map (in red) depicts the localization
of the anomaly in the image.
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Figure 8: Qualitative comparison of anomaly localization of AVAGA-Ru and AVAGA-Rw with
baseline methods on MvAD dataset. The anomalous attention map (in red) depicts the localization
of the anomaly in the image.
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A.3 ADDITIONAL QUALITATIVE RESULTS - SHANGHAITECH CAMPUS DATASET

Figure 9: Qualitative comparison of anomaly localization of AVAGA-Ru and AVAGA-Rw with base-
line methods on modified STC dataset. The anomalous attention map (in red) depicts the localization
of the anomaly in the image.
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Figure 10: Qualitative comparison of anomaly localization of AVAGA-Ru and AVAGA-Rw with
baseline methods on modified STC dataset. The anomalous attention map (in red) depicts the local-
ization of the anomaly in the image. 18


	Introduction
	Proposed Approach
	Unsupervised Approach: AVAGAu
	Convolutional Adversarial Variational Autoencoder (CAVAE)
	Guided Attention

	Weakly-Supervised Approach: AVAGAw
	selective gradient backpropagation for guided attention


	Experimental Evaluation
	Comparision with State-of-the-art
	Ablation Study
	Conclusion
	Appendix
	Discussions
	 Additional Qualitative Results - MvTec Anomaly Detection Dataset
	 Additional Qualitative Results - ShanghaiTech Campus Dataset


