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ABSTRACT

Self-attention has recently been adopted for a wide range of sequence modeling
problems. Despite its effectiveness, self-attention suffers quadratic compute and
memory requirements with respect to sequence length. Successful approaches to
reduce this complexity focused on attention to local sliding windows or a small
set of locations independent of content. Our work proposes to learn dynamic
sparse attention patterns that avoid allocating computation and memory to attend
to content unrelated to the query of interest. This work builds upon two lines of
research: it combines the modeling flexibility of prior work on content-based sparse
attention with the efficiency gains from approaches based on local, temporal sparse
attention. Our model, the Routing Transformer, endows self-attention with a sparse
routing module based on online k-means while reducing the overall complexity of
attention to O(n1.5d) from O(n2d) for sequence length n and hidden dimension
d. We show that our model outperforms comparable sparse attention models on
language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on
image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer
self-attention layers.

1 INTRODUCTION

Generative models of sequences have witnessed rapid progress driven by the application of attention
to neural networks. In particular, Bahdanau et al. (2014); Cho et al. (2014); Vaswani et al. (2017)
relied on attention to drastically improve the state-of-the art in machine translation. Subsequent
research (Radford et al., 2018; Devlin et al., 2018; Liu et al., 2019; Yang et al., 2019) demonstrated
the power of self-attention in learning powerful representations of language to address several natural
language processing tasks. Self-attention also brought impressive progress for generative modeling
outside of language, e.g. image (Parmar et al., 2018; Menick and Kalchbrenner, 2018; Child et al.,
2019) and music generation (Huang et al., 2018; Child et al., 2019).

Self-attention operates over sequences in a step-wise manner: at every time-step, attention assigns
an attention weight to each previous input element (representation of past time-steps) and uses
these weights to compute the representation of the current time-step as a weighted sum of the past
input elements (Vaswani et al., 2017). Self-attention (Shaw et al., 2018) is a particular case of
attention (Bahdanau et al., 2014; Chorowski et al., 2015; Luong et al., 2015).

Self-attention is commonly used in auto-regressive generative models. These models generate
observations step-by-step, modeling the probability of the next symbol given the previously generated
ones. At every time step, self-attentive generative models can directly focus on any part of the
previous context. In contrast, recurrent neural networks (RNNs) and convolutional neural networks
(CNNs) have direct interactions with only a local neighborhood of context around the current time
step.

This advantage however comes at a price: unlike recurrent networks or convolution networks, the
time and space complexity of self-attention is quadratic in n, the length of the sequence. Specifically,
for every position i ≤ n, self-attention computes weights for its whole context of length i, which
induces a complexity of

∑
i≤n i = n(n−1)/2. This makes it difficult to scale attention based models

to modeling long sequences. However, long sequences are the norm in many domains, including
music, image, speech or video generation.
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Therefore, an important research direction is to investigate sparse and memory efficient forms of
attention in order to scale to tasks with long sequence lengths. Previous work has proposed data
independent or fixed sparsity patterns bounding temporal dependencies, such as local or strided
attention. At each time step, the model attends only to a fix number of time steps in the past (Child
et al., 2019). Extensions to local attention have suggested learning the length of the temporal sparsity
for each attention module in the network (Sukhbaatar et al., 2019). These strategies draw their
inspiration from RNNs and CNNs and bound their complexity by attending only to representations
summarizing a local neighborhood of the current time step. Their attention matrices (matrices
containing the attention weights for every pair of previous, current time-step) are natively sparse
and requires instantiating only non-zero entries. While these approaches have achieved good results,
fixing the sparsity pattern of a content based mechanism such as self-attention can limit its ability to
pool in information from large contexts.

As an alternative to local attention, Correia et al. (2019) considers content-based sparsity, an approach
allowing for arbitrary sparsity patterns. This formulation however does require instantiating a
full dense attention matrix prior to sparsification through variants of L0-sparsity or sparsemax
approximations (Blondel et al., 2019).

The present work builds upon these two lines of research and proposes to retain the modeling
flexibility of content-based sparse attention while leveraging the efficiency of natively sparse attention
matrices. Our formulation avoids sparsemax variants and relies on clustering of attention instead.
Each attention module considers a clustering of the space: the current time-step only attends to
context belonging to the same cluster. In other word, the current time-step query is routed to a limited
number of context through its cluster assignment. This strategy draws inspiration from the application
of k-means clustering to Non-negative Matrix Factorization (NMF) (Lee and Seung, 2001; Ding
et al., 2005; Kim and Park, 2008), which is relevant to the sparsification of non-negative matrices like
attention matrices.

Our proposed model, Routing Transformer, combines our efficient clustered-based sparse attention
with classical local attention to reach excellent performance both for language and image genera-
tion. These results are obtained without the need to maintain attention matrices larger than batch
length which is the case with the segment level recurrence mechanism used in Dai et al. (2019);
Sukhbaatar et al. (2019). We present experimental results on language modeling (Wikitext-103
and enwik-8) and unconditional image generation (ImageNet-64). Routing Transformer sets
new state-of-the-art while having comparable or fewer number of self-attention layers and heads,
both on Wikitext-103 (15.8 vs 18.3 perplexity) and on ImageNet-64 (3.43 vs 3.44 bits/dim).
We also report competitive results on enwik-8 (0.99 vs 0.98 perplexity).

2 RELATED WORK

Attention with Temporal Sparsity: Research on efficient attention neural models parallels the
advent of attention-based architectures. In the context of speech recognition, Jaitly et al. (2015)
proposed the Neural Transducer which segments sequences in non-overlapping chunks and attention
is performed in each chunk independently. Limiting attention to a fixed temporal context around the
current prediction has also been explored in Chorowski et al. (2015), while Chiu and Raffel (2017)
dynamically segment the sequence into variable sized-chunks.

Hierarchical attention strategies have also been explored: the model first considers which part of the
inputs should be attended to before computing full attention in a contiguous neighborhood of the
selected area (Gregor et al., 2015; Xu et al., 2015; Luong et al., 2015). Later, hierarchical attention has
been simplified by Liu et al. (2018) that alternates coarse layers (attending to the whole sequence at a
lower temporal resolution) with local layers (attending to a neighborhood of the current prediction).

This alternating strategy is also employed by Child et al. (2019), which introduces bounded and
strided attention, i.e. attending to a fixed context in the past at a subsampled temporal resolution.
This work formalizes such a strategy using a sparse attention formalism, showing how it relates to
full attention with a specific sparsity pattern in the attention matrix. It shows that sparse attention is
sufficient to get state-of-the-art results in modeling long sequences over language modeling, image
generation and music generation. Sukhbaatar et al. (2019) builds upon this work and shows that is
it is possible to obtain further sparsity by letting the model learn the length of the temporal context
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for each attention module. This work also makes use of the attention cache introduced in Dai et al.
(2019), a memory mechanism to train models over temporal contexts which extend beyond the length
of the training batches.

Attention with Content-Based Sparsity: The above work mainly relies on two efficient ideas:
attending to less elements by only considering a fixed bounded local context in the past, and attending
to less elements by decreasing the temporal resolution of context. These ideas do not allow arbitrary
sparsity patterns in attention matrices. Content-based sparse attention has been introduced to allow
for richer patterns and more expressive models. Martins and Kreutzer (2017); Malaviya et al. (2018)
propose to compute attention weights with variants of sparsemax. Correia et al. (2019) generalizes this
approach to every layer in a Transformer using entmax which allows for more efficient inference. This
line of work allows for learning arbitrary sparsity attention patterns from data, based on the content
of the current query and past context. However, sparsity here cannot be leveraged to improve space
and time complexity since sparsemax/entmax formulations require instantiating the full attention
matrix prior to sparsification. This is a drawback compared to temporal sparsity approaches. Our
work is motivated by bridging this gap and allows for arbitrary sparsity patterns while avoiding to
instantiate non-zero entries of attention matrices.

Sparse Computation beyond Attention: Learning models with sparse representations/activations
for saving time and computation has addressed in the past in various context. Previous work often
refers to this goal as gating for conditional computation. Gating techniques relying on sampling and
straight-through gradient estimators are common (Bengio et al., 2013; Eigen et al., 2013; Cho and
Bengio, 2014). Conditional computation can also be addressed with reinforcement learning (Denoyer
and Gallinari, 2014; Indurthi et al., 2019). In the domain of language modeling, a related work is the
sparsely gated Mixture-of-experts (MOE) (Shazeer et al., 2017) where sparsity is induced by experts
and a trainable gating network controls the routing strategy to each sub-network.

3 SELF-ATTENTIVE AUTO-REGRESSIVE SEQUENCE MODELING

Auto-regressive sequence models decompose the probability of a sequence x = (x1, . . . , xn) as

p(x) =

n∏
i=1

pθ(xi+1|x≤i). (1)

In neural models, the conditional distribution pθ(xi+1|x≤i) is modeled by a neural network with
learned parameters θ and these parameters are typically learned to maximize the likelihood of the
training data. In particular, Transformer architectures have shown to reach state-of-the-art accuracy
in several domains, including language modeling (Vaswani et al., 2017; Radford et al., 2018), image
generation (Parmar et al., 2018) and music generation (Huang et al., 2018). Transformer models
compose a series of attention modules. Each module refines the input representation by taking a
weighted average of the representations from the previous modules.

For every module, the input representation is a sequence of n vectors x = (x1, . . . , xn) from a
continuous space of dimension d. Thus one may actually treat the input sequence as a n× d matrix
X . A self-attention layer operates on this representation. It first applies three linear projections,

Q = XWQ, K = XWK , V = XWV ,

where Q,K and V are referred to as keys, queries and values, while WQ,WK ,WV are learned
projection matrices.

The key and the query matrices determine the n× n attention matrix A = softmax
(
QK>

)
, where

the softmax operator over matrices denotes that the softmax function has been applied to each row. A
may be interpreted as a matrix of weights in [0, 1] where Aij denotes how much query position i at
the next layer must pay attention to key position j at the previous layer. In the case of self-attention
for auto-regressive models, queries attend only over keys from previous time-steps, i.e.

A = softmax
(
ltr(QK>

)
)

where ltr denotes the lower triangular operator. Given the attention matrix A, the next layer represen-
tation X ′ is computed simply as AV . In summary,

X ′i =

n∑
j<i

AijVj ,
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In practice, Transformer (Vaswani et al., 2017) adds several extensions to this basic self-attention
mechanism. In particular, each layer relies on multiple attention heads, i.e. each layer performs
multiple projections onto triplet (queries, keys, values) and attention is performed for each head. The
attention results from all heads are then concatenated. This strategy allows each head to specialize
on different aspects of the input sequence. In addition, Transformer further processes the result of
attention through a learnable non-linear transformation (multi-layer perceptron, mlp) followed by a
residual connection and a normalization step, i.e.

X ′′ = layernorm(mlp(X ′) +X), (2)

where layernorm denotes the parameterized normalization step from Ba et al. (2016). A full
Transformer model is therefore a chain of attention modules (Eq. 2) preceded by an embedding module
(learnable representation for symbols and their positions) and followed by a logistic classification
module (learnable linear classifier to predict the next symbol).

Our work is interested in the application of the Transformer to long sequences, a challenging problem
since space and time complexity of attention is quadratic in sequence length n. We describe various
approaches to sparse attention including ours in the next section.

4 EFFICIENT CONTENT-DEPENDENT SPARSE ATTENTION

Attention-based models can be problematic for long sequences. For a sequence of length n, the
full attention matrix A, as introduced in Section 3, is n× n-dimensional and can be prohibitive to
instantiate. This motivates sparse attention models, i.e. models relying on attention matrices which
have a majority of zero entries.

For each query, a sparse attention model defines a set of keys which can be attended to. In the
following, we introduce the set Si as the set of key positions that the query at position i can attend to,
i.e.

X ′i =
∑
j∈Si

AijVj .

For example, classical causal self attention can attend to every key prior to the current query, which
translates to Si = {j | j < i}. Most previous work on attention sparsity defined such sets purely
based on positions, independently of actual query and key vectors. For example, local attention
(Luong et al., 2015) considers attending only to a k-long time window prior to the current query,
Si = {j | i− k ≤ j < i}. Child et al. (2019) propose block sparse attention where half the heads
perform local attention, and half the heads perform strided attention given by Si = {j | i − j
(mod k) = 0, j < i}. Sukhbaatar et al. (2019) is also a variant of local attention where the cardinality
of |Si| is learned from data with an L1 penalty to trade-off sparsity with modeling accuracy.

These local attention sparsity variants are effective in practice since correlation between observations
naturally decrease with time for many problems. In our experiments, we actually find that local
attention is a surprisingly strong baseline in both image generation and language modeling: for e.g., a
scaled up ImageTransformer (Parmar et al., 2018) gets 3.48 bits/dim compared to the 3.44 bits/dim
reported in (Child et al., 2019). Similarly, scaled up versions of Transformer with local attention
and the relative positional encoding scheme of Shaw et al. (2018) are able to get 19.8 perplexity
on Wikitext-103 and 1.10 bits per byte on enwik-8, while the state-of-the-art results using
Transformer-XL (Dai et al., 2019) are 18.3 and 0.99 respectively. From an efficiency perspective,
local attention is also interesting since sparsity patterns are regular, contiguous in memory and known
in advance.

In this work, however, we are interested in a more generic formulation of attention sparsity and
would like the sparsity pattern to be informed by the data, i.e., S = f(x). This approach has several
modeling advantages: it can accommodate data without a clear ordering over observations. For
temporal data, it can also discover patterns with greater sparsity if some types of queries have a longer
lasting effect on future observations than others. Content-based sparse attention should however be
carefully implemented if we need to avoid instantiating full attention matrices at any point in time.
For instance, Correia et al. (2019) infer sparsity from data but their formulation instantiates a full
attention matrix before finding its sparse counterpart. Next section explains how a natively sparse
approach can actually be devised inspired by non-negative matrix factorization (NMF).
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4.1 CLUSTER ATTENTION WITH NON-NEGATIVE LOW RANK APPROXIMATIONS

For any given n× n matrix A, a low-rank non-negative approximation to it is of the form H = FG>

where F,G ∈ Rn×k and F,G ≥ 0. This factorization can be interpreted as follows: n total items are
routed to k representatives determined by the attention matrix F , while each of the representative k
items perform full attention on the n items determined by matrix G. Therefore, the whole attention
matrix passes through a bottleneck of size k.

NMF studies algorithms to find such approximations (Tandon and Sra, 2010), for instance minimizing
the Frobenius norm,

H = arg min
G>G=I,F,G≥0

∥∥A− FG>∥∥2 .
Different algorithms have been proposed for that problem, with different trade-offs in terms of theo-
retical guarantees, actual accuracy and efficiency (Lee and Seung, 2001; Hoyer, 2004; Gemulla et al.,
2011). In particular, k-means clustering (Lloyd, 1982) has been studied as a tractable approximation
to non-negative low-rank matrix factorization problem (Ding et al., 2005; Kim and Park, 2008).

This relation between k-means and NMF motivates our work but cannot however be applied directly
in our case. In particular, we want to avoid instantiating A before approximating it. Furthermore,
although we are interested in low rank sparsity patterns, our application context does not require H
itself to be low rank. We therefore propose a simpler strategy where k-means is applied to find the
routing pattern, while the attention matrix itself remains full rank. Moreover, our approach maintains
a single set of cluster centroids shared across examples, which allows for fast training and inference.
We describe this strategy in the next section.

4.2 ROUTING ATTENTION WITH CLUSTERING

Our strategy follows the motivation we delineated in the previous section: we model sparse attention
matrices with a low rank sparsity patterns relying on k-means clustering. Our strategy first assigns
queries and keys to clusters. Then only queries and keys from the same cluster are considered for
attention.

Precisely, our model projects keys K and queries Q into a routing matrix R ∈ Rn×d as follows

R = [Q,K]

[
WR

WR

]
where WR is a fixed random orthonormal d× d routing projection matrix. The vectors of R undergo
k-means clustering in order to factorize the full attention matrix. The clustering parameters are
the centroid vectors (µ1, · · · , µk) ∈ Rk×d. These parameters are model parameters shared across
sequences. There are learned online along with the rest of the parameters, as delineated in Bottou
and Bengio (1995). Once cluster membership for each position i in the sequence is determined, we
denote with Ci the cluster corresponding to the routing vector Ri. This allows us to define our sparse
attention strategy as

X ′i =
∑

j∈Ci,j<i

AijVj (3)

where Ci denotes the cluster of the vector Ri. In summary, queries are routed to keys belonging to
the same cluster. Therefore, our attention sparsity pattern is of rank k, i.e. FG> where F and G are
binary matrices denoting cluster memberships of queries and keys respectively. It is important to note
that this low rank property only concerns the sparsity pattern, while the resulting attention matrix
ltr(FG> ∗A) can however be of higher rank (∗ denotes element-wise product).

As a last technical point, we work with keys and values which are unitary vectors, projecting them
onto the unit ball immediately before computing them. This differentiable normalization (Ba et al.,
2016) is useful to link cluster memberships with proximity of queries and keys, as outlined below.
Since WR is a distance preserving transform, we can write

‖Ri −Rj‖2 = ‖WR(Qi +Ki)−WR(Qj +Kj)‖2

≥ ‖WR‖2
(
‖Qi −Kj‖2 + ‖Qj −Ki‖2

)
= 4− 2

(
Q>i Kj +Q>j Ki

)
.
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Thus, it follows that ‖Ri −Rj‖ ≤ ε⇒ Q>i Kj+Q
>
j Ki ≥ 2−ε2/2. This means that, ‖Ri −Rj‖ ≤

ε⇒ Q>i Kj ≥ 1− ε2/4. Therefore, when two time steps i > j are assigned the same cluster due to
a small ‖Ri −Rj‖ distance, it also means that their attention weight Q>i Kj is high. This analysis
shows that our clustering routing strategy preserves large attention weights as non-zero entries.

Since, we route attention via the matrixR we dub our model Routing Transformer. The computational
complexity of this variant of sparse attention is O(nkd+ n2d/k). Cluster assignments correspond to
the first term, i.e. it compares n routing vectors to all k centroids in a space of size d. Query/key dot
products corresponds to the second term, i.e. assuming balanced clusters, each of the n queries is
compared to n/k in its cluster through a dot product of dimension d. Therefore the optimal choice
of k is

√
n as in Child et al. (2019), thereby reducing overall memory and computational cost to

O
(
n1.5d

)
instead of O(n2d) (Vaswani et al., 2017).

In practice, we apply regular online k-means to train the cluster centroids. However, in order to infer
balanced routing patterns, we define the sets Ci to be of equal size roughly n/k ∼

√
n, i.e. for every

centroid µi we sort tokens by distance to µi and cluster membership is determined by this threshold
(top-k). This strategy is simple and efficient. In particular, it guarantees that all clusters have the
same size, which is extremely interesting in terms of computational efficiency on parallel hardware
like graphic cards. As a downside, this assignment does not guarantee that each point belongs to a
single cluster. In the future, we want to investigate using balanced variants of k-means (Malinen and
Fränti, 2014) which is not common in an online setting.

5 EXPERIMENTS

We evaluate our sparse attention model on various generative modeling tasks including text and image
generation. The following sections report our results on Wikitext-103 (Merity et al., 2016),
enwik-8 (Mahoney, 2011), as well as ImageNet-64. We find that local attention is a surprisingly
strong baseline and that our Routing Transformer outperforms Transformer-XL (Dai et al., 2019)
and the Sparse Transformer model of (Child et al., 2019) on all tasks. In all our models, we allocate
half the heads to do local attention and the other half to route attention as in Equation 3. We use the
Adam optimizer (Kingma and Ba, 2014) with learning rate 2× 10−4 with β1 = 0.9 and β2 = 0.98
following the learning rate schedule described in Vaswani et al. (2017).

5.1 WIKITEXT-103

Wikitext-103 (Merity et al., 2016) is a large public benchmark data-set for testing long term
dependencies in word-level language models. It contains over 100 million tokens from 28K articles
extracted from Wikipedia with an average of 3.6K tokens per article, which makes it a reference
data-set to model long-term textual dependencies. We train a 10 layer Routing Transformer with 16
heads using the relative position encoding of Shaw et al. (2018) and with attention and ReLU dropout
rate of 0.3 each. For routing attention as in Section 4.2 we choose k = 16 and attention window to be
256 during both training and evaluation. We describe our results in Table 2 and compare it to other
recent work on sparse or recurrent attention such as Adaptive Inputs (Baevski and Auli, 2018) and
TransformerXL (Dai et al., 2019) as well as a local attention with relative position encoding baseline
(Huang et al., 2018). We find that local attention is a great inductive bias for sparse attention and
is better than the adaptive methods proposed in Baevski and Auli (2018); Sukhbaatar et al. (2019).
Moreover, our Routing Transformer model is able to get a test perplexity of 15.8 improving on the
18.3 obtained by TransformerXL (Dai et al., 2019) while having fewer self-attention layers and
attention heads, and without the need for segment level recurrence.

5.2 ENWIK-8

The enwik-8 (Mahoney, 2011) is a data-set to benchmark text compression algorithms in the
context of the Hutter prize. This data-set consists of the first 100M bytes of unprocessed Wikipedia.
It is typically used to evaluate character-level language models. Similar to the prior work of Dai et al.
(2019); Child et al. (2019) we use a sequence length n = 8192 and benchmark our results against
various baselines including local attention. We train a 24 layer model with 8 attention heads with an
attention and ReLU dropout rate of 0.4 each and using the relative position encoding of Shaw et al.
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(2018). For routing attention as in Section 4.2 we set k = 32 and attention window 256. We report
perplexity of 0.99 like TransformerXL and Sparse Transformer, slightly under 0.98 from Adaptive
Transformer. We show how samples of our model differs from Transformer with local attention in
Appendix B.

5.3 IMAGENET 64× 64

In order to evaluate the ability of our model to capture long term dependencies on a modality other
than text, we report results on the ImageNet 64 × 64 data-set as used in Child et al. (2019). For
auto-regressive image generation, this data-set consists of images of 64× 64× 3 bytes represented
as long sequences of length 12, 288 presented in raster scan, red-green-blue order. We train a 24
layer model with 16 attention heads, with half the heads performing local attention, and the other
half routing attention as in Section 3. For routing attention we set k = 8, attention window 2048,
batch size 1 and train our model for roughly 70 epochs as in (Child et al., 2019). We compare our
model to a scaled-up ImageTransformer model with local attention (Parmar et al., 2018) and the
SparseTransformer model of Child et al. (2019).

We find that local attention (Parmar et al., 2018) is a strong baseline for image generation, obtaining
3.48 bits/dim when scaled up to 24 layers and 16 heads, compared to later work like Sub-scale
Pixel Networks (SPN) (Menick and Kalchbrenner, 2018). Our Routing Transformer model achieves
a performance of 3.425 bits/dim (see Table 1) compared to the previous state-of-the-art of 3.437
bits/dim (Child et al., 2019), thereby showing the advantage of the content based sparsity formulation
of Section 4.2.

Model Layers Heads Bits/dim

Glow (Kingma and Dhariwal, 2018) - - 3.81
PixelCNN (Van den Oord et al., 2016) - - 3.57
PixelSNAIL (Chen et al., 2017) - - 3.52
SPN (Menick and Kalchbrenner, 2018) - - 3.52
ImageTransformer (Parmar et al., 2018) 24 16 3.48
Sparse Transformer (Child et al., 2019) 48 16 3.44

Routing Transformer 24 16 3.43

Table 1: Results on image generation on ImageNet 64× 64 in bits/dim.

Model Layers Heads Perplexity

LSTMs (Grave et al., 2016) - - 40.8
QRNNs (Merity et al., 2018) - - 33.0
Adaptive Transformer (Sukhbaatar et al., 2019) 36 8 20.6
Adaptive Input (Baevski and Auli, 2018) 16 16 20.5
Local Transformer 16 16 19.8
TransformerXL (Dai et al., 2019) 18 16 18.3

Routing Transformer 10 16 15.8

Table 2: Results on language modeling on Wikitext-103 data-set. Local Transformer refers to
Transformer (Vaswani et al., 2017) with relative position encoding (Shaw et al., 2018) together with
local attention. Perplexity is reported on the test set.

6 ANALYSIS

We evaluate the difference in attention patterns between local and routed attention and compute
the Jensen-Shannon divergence between local attention and routed attention for a random subset
of heads in our network on the Wikitext-103 data-set. The divergence is computed over the
entire sequence length of 4096. We average over 10 runs and all the self-attention layers, and report
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Model Layers Heads Bits per byte

T64 (Al-Rfou et al., 2019) 64 2 1.13
Local Transformer 24 8 1.10
TransformerXL (Dai et al., 2019) 24 8 0.99
Sparse Transformer (Child et al., 2019) 30 8 0.99
Adaptive Transformer (Sukhbaatar et al., 2019) 24 8 0.98

Routing Transformer 24 8 0.99

Table 3: Results on language modeling on enwik-8 data-set. Local Transformer refers to Trans-
former (Vaswani et al., 2017) with relative position encoding (Shaw et al., 2018) together with local
attention. Bits per byte (bpc) is reported on the test set.

means and standard deviations of the JSD in Table 4. For mean JSD per layer, see Appendix A.
Note that the JSD is always non-negative and is upper-bounded by 0.6931 when computed using
the natural logarithm. We observe that the divergence between the different local heads is always
very low compared to the divergence between local and routing attention heads, which is almost
always very close to the upper-bound of 0.6931. Divergence between different routing attention
heads falls somewhere in between, being closer to the upper-bound. This shows that the attention
distribution inferred by the routing attention of Section 4.2 is highly non-local in nature and different
heads specialize in attending to very different parts of the input.

JSD(local‖local) JSD(local‖routing) JSD(routing‖routing)
0.1776± 0.0649 0.6044± 0.0181 0.4181± 0.0415

Table 4: Jensen-Shannon divergence between the attention distributions of a random local attention
head and a random head that routes attention as in Section 3 averaged across all layers on the
Wikitext-103 data-set. We report means and standard deviations computed over 10 runs and use
the natural logarithm so that divergences are upper-bounded by 0.6931.

7 CONCLUSION

Transformer models constitutes the state-of-the-art in auto-regressive generative models for sequential
data. Their space-time complexity is however quadratic in sequence length, due to their attention
modules. Our work proposes a sparse attention model, the Routing Transformer. It relies on content-
based sparse attention motivated by non-negative matrix factorization. Compared with local attention
models, it does not require fixed attention patterns but enjoys similar space-time complexity. In
contrast with prior work on content-based sparse attention, it does not require computing a full
attention matrix but still selects sparsity patterns based on content similarity.

Our experiments over text and image generation draw two main conclusions. First, we show that
a carefully tuned local attention model establishes a strong baseline on modern benchmark, even
compared to recent state-of-the-art models. Second, we show that the Routing Transformer redefines
the state-of-the-art in large long sequence benchmarks of Wikitext-103 and ImageNet-64,
while being very close to do so on enwik-8 as well. Our analysis also shows that routed attention
modules offer complementary attention patterns when compared to local attention.

Overall, our work contributes an efficient attention mechanism that applies to the modeling of long
sequences and redefines the state of the art for auto-regressive generative modeling. Our approach
could prove useful in domains where the inputs are already sparse, such as 3D point clouds, social
networks or protein interactions.
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A JENSEN-SHANNON DIVERGENCE OF ATTENTION DISTRIBUTIONS

In Table 4 we presented the Jensen-Shannon divergence between random local heads and ran-
dom routing attention heads averaged across the 10 layers of the Routing Transformer model on
Wikitext-103. Table 5 presents the mean and standard deviations of the JSD per layer instead of
averaging them.

JSD(local‖local) JSD(local‖routing) JSD(routing‖routing)
layer 0 0.0038± 0.0018 0.4706± 0.0319 0.1579± 0.0576
layer 1 0.3071± 0.1217 0.6674± 0.0153 0.5820± 0.0104
layer 2 0.2164± 0.0803 0.5896± 0.0249 0.4015± 0.0121
layer 3 0.1163± 0.0336 0.6047± 0.0181 0.4144± 0.0264
layer 4 0.1840± 0.0562 0.6266± 0.0062 0.4191± 0.0879
layer 5 0.2284± 0.0225 0.6463± 0.0155 0.4687± 0.0449
layer 6 0.1901± 0.0525 0.6471± 0.0040 0.5175± 0.0469
layer 7 0.1566± 0.0685 0.5798± 0.0235 0.4350± 0.0139
layer 8 0.1638± 0.0739 0.5993± 0.0148 0.4268± 0.0291
layer 9 0.2095± 0.0560 0.6127± 0.0053 0.3581± 0.0019

Table 5: Jensen-Shannon divergence between the attention distributions of a random local attention
head and a random head that routes attention as in Section 3 per layer on the Wikitext-103 data-
set. We report means and standard deviations computed over 10 runs and use the natural logarithm so
that divergences are upper-bounded by 0.6931.

B SAMPLES

We generate samples from the Routing Transformer model for the task of character level language
modeling on the enwik-8 data-set. We compare the generation to that from a Local Transformer
model with the same number of self-attention layers and attention heads. For both the models we
generate unconditional samples using random sampling with a temperature of 1.0. The generation
from the Routing Transformer is in Table 6 while the generation from Local Transformer is in
Table 7, with spelling mistakes highlighted in red. Comparing the two samples we see that the Local
Transformer makes significantly more spelling mistakes, especially for long words and phrases.
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Modern Least Rule to bon air and dogmatic television articles several systems: expanding
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Table 6: Example unconditional character level text generation from the Routing Transformer model
trained on enwik-8 with random sampling.
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Table 7: Example unconditional character level text generation from the Local Transformer model
trained on enwik-8 with random sampling.
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