
Under review as a conference paper at ICLR 2020

FREQUENCY-BASED SEARCH-CONTROL IN DYNA

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning has been empirically demonstrated as a suc-
cessful strategy to improve sample efficiency. Particularly, Dyna architecture, as
an elegant model-based architecture integrating learning and planning, provides
huge flexibility of using a model. One of the most important components in Dyna
is called search-control, which refers to the process of generating state or state-
action pairs from which we query the model to acquire simulated experiences.
Search-control is critical to improve learning efficiency. In this work, we propose
a simple and novel search-control strategy by searching high frequency region
on value function. Our main intuition is built on Shannon sampling theorem from
signal processing, which indicates that a high frequency signal requires more sam-
ples to reconstruct. We empirically show that a high frequency function is more
difficult to approximate. This suggests a search-control strategy: we should use
states in high frequency region of the value function to query the model to acquire
more samples. We develop a simple strategy to locally measure the frequency of a
function by gradient norm, and provide theoretical justification for this approach.
We then apply our strategy to search-control in Dyna, and conduct experiments to
show its property and effectiveness on benchmark domains.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) (Lin, 1992; Sutton, 1991b; Todd et al., 2012; Sutton
& Barto, 2018) methods have been successfully applied to many benchmark domains (Gu et al.,
2016; Ha & Schmidhuber, 2018; Kaiser et al., 2019). One of the most classical MBRL architecture
is Dyna (please see Algorithm 2 in Appendix A.3 for pseudo-code) proposed by Sutton (1991a),
which integrates model-free and model-based policy updates in an online RL setting. At each time
step, an agent uses the real experiences to learn a model and to perform model-free policy update;
during the planning stage, simulated experiences are acquired from the model to further improve the
policy. One closely related method in model-free learning setting is experience replay (ER) (Lin,
1992; Adam & Busoniu, 2012), which utilizes a buffer to store experiences and at each time step,
those experiences are randomly sampled to update policy. Though ER can be thought of as a sim-
plified form of MBRL (van Seijen & Sutton, 2015), a model provides great flexibility of acquiring
simulated experiences. Sutton & Barto (2018) uses the term search-control to describe the mecha-
nism of selecting state or state-action pairs to query the model to generate simulated experiences. We
call the corresponding data structure to store those state or state-action pairs search-control queue.
Search-control is of vital importance in Dyna, as it can largely affect sample efficiency. For exam-
ple, in deterministic environment, if we simply sample visited state-action pair for search-control,
the next state and reward should be exactly the same as those in ER buffer. Such naive search-
control is unlikely to outperform ER as a model can suffer to model error (Talvitie, 2014; 2017).
Prioritized sweeping (Moore & Atkeson, 1993) is designed to speed up value iteration process: the
simulated transitions are updated based on the absolute temporal difference error. Such methods
have been adapted to continuous domains with function approximation by Sutton et al. (2008); Pan
et al. (2018); Corneil et al. (2018). Alternative strategies are explored by Gu et al. (2016) and Pan
et al. (2019), the former utilizes local linear model to general optimal trajectories through iLQR (Li
& Todorov, 2004) and the latter acquire states by hill climbing on value function estimates.

All of those search-control methods are derived from a RL perspective, in the sense that they attempt
to acquire simulated experiences which have either high temporal difference error or high returns.
In this paper, we propose an alternative perspective to view search-control strategy. Consider the

1

Under review as a conference paper at ICLR 2020

following problem. Given a perfect model, which state-action pairs we should use to query the
model? A natural answer is that those states whose values are potentially difficult to estimate should
be queried more often. Shannon sampling theorem establishes the connection between a signal’s
bandwidth limit and number of samples required to reconstruct such signal. It is later applied to
learning theory by Smale et al. (2004); Smale & Zhou (2005); Jiang (2019). Based on this insight,
we establish connections between a function’s local frequency and gradient norm. Then, based on
the hill climbing approach developed by Pan et al. (2019), we are able to adapt our approach to
search-control in Dyna.

In this paper, we first review some basic background in MBRL. Afterwards, we review some con-
cepts in signal processing and conduct experiments in supervised learning to show that a high fre-
quency function is more difficult to approximate and providing more samples for that function can
improve learning efficiency. We then propose a method to locally measure the frequency of a point
in function’s domain and provide theoretical proof for our method. By hill climbing approach Pan
et al. (2019), we adapt our method to search-control in Dyna. We conduct experiments on both
benchmark and challenging domains to illustrate the properties and utilities of our method.

2 BACKGROUND

Reinforcement learning (RL) problems are typically formulated as Markov Decision Processes
(MDPs) (Sutton & Barto, 2018; Szepesvári, 2010). An MDP (S,A,P, R, γ) is determined by state
space S, action space A, transition function P, reward function R : S × A × S 7→ R, and discount
factor γ ∈ [0, 1]. At each step t, an agent observes a state st ∈ S , and takes an action at ∈ A.
The environment receives at, and transits to next state st+1 ∼ P(·|st, at). The agent receives a
reward scalar rt+1 ∈ R generated by reward function rt+1 = R(st, at, st+1). The agent maintains
a policy π : S × A → [0, 1] to choose actions. For a given state-action pair (s, a), the action-
value function of policy π is defined as Qπ(s, a) = E[Gt|St = s,At = a;At+1:∞ ∼ π] where
Gt

def
=
∑∞
t=0 γ

tR(st, at, st+1) is the return of s0, a0, s1, a1, ... following policy π and transition P.
Value-based RL methods learn action value function (Watkins & Dayan, 1992), and act greedily us-
ing action values to take actions. Policy-based RL methods perform gradient update of parameters
to learn policies with high expected rewards Sutton et al. (1999). Both value- and policy-based RL
methods can be easily adopted in Dyna framework.

Model-based RL. In general, a model is considered as some mapping taking a state-action as input
and outputs some projection into the future. A model can be local (Tassa et al., 2012; Gu et al., 2016)
or global (Ha & Schmidhuber, 2018; Pan et al., 2018), deterministic (Sutton et al., 2008) or stochas-
tic (Deisenroth & Rasmussen, 2011; Ha & Schmidhuber, 2018), feature-to-feature (Corneil et al.,
2018; Ha & Schmidhuber, 2018) or observation-to-observation (Gu et al., 2016; Pan et al., 2018;
Kaiser et al., 2019), one-step (Gu et al., 2016; Pan et al., 2018), or multi-step (Sorg & Singh, 2010;
Oh et al., 2017), or decision-aware (Joseph et al., 2013; Farahmand et al., 2017; Silver et al., 2017).
Modelling the environment dynamics through RKHS (reproducing kernel Hilbert space) embedding
has been also studied (Grunewalder et al., 2012), where the bellman operator is approximated in
RKHS and hence boostrap target for value updating can be directly acquired.

In this work, for simplicity, we consider one-step environment dynamics model, which takes a state-
action pair as input and returns the next state and reward. However, notice that our search-control
method can be naturally adapted to different types of models. The most relevant works to ours in-
clude the classical Dyna (Sutton, 1991a;b) and the variant of Dyna (Pan et al., 2019) (please see
Algorithm 3 in Appendix A.3 for pseudo-code). The latter designs a hill climbing method on value
estimates for search-control. We now review the key steps of this algorithm, which are helpful to un-
derstand our algorithm. At each time step, ER buffer is maintained, then a state is randomly sampled
from the buffer and is used as the initial state to perform hill climbing on the learned value function.
Specifically, a natural gradient ascent method1 is developed and states along the gradient ascent tra-
jectories are stored into search-control queue. During planning stage, states are sampled from the
queue and are paired with on-policy actions (i.e. actions taken according to current Q network),
then the model is queried to get next states and rewards. Those simulated transitions are mixed with

1According to the original paper, natural gradient is used to guarantee a certain level of coordinate invariant
property, so it can handle state variables with vastly different numerical scales.

2

Under review as a conference paper at ICLR 2020

samples from ER buffer to train neural networks. The intuition behind such search-control is that
a value-based agent tends to guide the agent to move towards high value region; by taking gradient
ascent on value function, it foresees possible future states. With a model, simulated experiences
along those states can be used to quickly correct value function during planning stage (Pan et al.,
2019). In this work, we suggest to consider search-control from a supervised learning perspective
and propose a novel question to ask: which part of state space needs more samples? It is natural to
think of that those states whose values are potentially difficult to learn should be queried more often.

3 UNDERSTANDING THE DIFFICULTY OF FUNCTION APPROXIMATION

Using experiments of regression tasks, we illustrate that high frequency region of a function is
difficult to approximate, and it is worthwhile for the learning algorithm to assign more training data
to those regions. To make this insight practically useful, we propose gradient norm as a criterion
to measure the local frequency information of a function around a point. We formally establish
theoretical connection between our proposed criterion and the local frequency of function, which
lays the foundation of our frequency-based search-control method in next section.

3.1 WHAT TYPE OF FUNCTION IS DIFFICULT TO APPROXIMATE

Consider the `2 regression problem. Given a training set D = {(xi, yi)}i=1:n, our goal is to learn
an unknown target function by empirical risk minimization. Formally, we aim to solve

f = arg min
f∈H

1

n

n∑
i=1

(f(xi)− yi)2,

where H is some hypothesis space. Our question is what kind of regions in the domain of the
underlying true mapping f∗(x) = E[Y |X = x] are difficult to approximate. Then we can assign
more training data to those regions to help learning.

In signal processing field, with sampling rate2 fsample, perfect reconstruction is guaranteed for any
signal with highest frequency < fsample

2 . This is well known as Nyquist-Shannon sampling theorem
(Zayed, 1993). Sampling theory has been applied in sample efficiency analysis of machine learn-
ing algorithms (Smale et al., 2004; Smale & Zhou, 2005; Jiang, 2019). In general, difficulty of
learning increases as the bandwidth limit (highest frequency) of target function increases. Although
problems are different in machine learning, the sampling theorem provides a high-level intuition for
us: regions with more high frequency signals require more learning data. To make this high-level
intuition concrete, we consider the following function:

fsin(x) =

{
sin(8πx) x ∈ [−2, 0),

sin(πx) x ∈ [0, 2].
(1)

It is easy to check that the regions [−2, 0) and [0, 2] contain signals with frequency ratio 8 : 1. By the
intuition, [−2, 0) would require more training data than [0, 2]. Given the same amount of training
data, and the same machine learning algorithm, we should expect assigning more proportion of
training data on [−2, 0) to perform better than uniformly or oppositely putting training data ways.

A demonstration experiment. To empirically verify the intuition, we conduct a simple linear re-
gression task, with fsin as the target function. Our expectation is that, since the high frequency region
[−2, 0) is more difficult to learn, it requires more training data. The training setD = {(xi, yi)}i=1:n

is generated by sampling x ∈ [−2, 2], and adding Gaussian noise N(0, σ2) on Eq. (1), where the
standard deviation is set to be σ = 0.1. We present `2 regression learning curves of training datasets
with different biased sampling ratios pb ∈ {60%, 70%, 80%}, as shown in Fig. 1 (a)-(c). We observe
that biased training data sampling ratios towards high frequency region (more samples in high fre-
quency region) clearly speed up learning. This is consistent with the intuitive insight and it provides
a heuristic that assigning more data to high frequency regions leads to better learning results.

2Sampling rate refers to number of samples per second used to reconstruct continuous signals.

3

Under review as a conference paper at ICLR 2020

0.0e+00 5.0e+04 1.0e+05 1.5e+05 2.0e+05
Number of iterations

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Root
Mean

Square
Error

(50runs)

Biased-low
Biased-high
Unbiased

(a) Bias level 60%

0.0e+00 5.0e+04 1.0e+05 1.5e+05 2.0e+05
Number of iterations

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Root
Mean

Square
Error

(50runs)

Biased-low
Biased-high
Unbiased

(b) Bias level 70%

0.0e+00 5.0e+04 1.0e+05 1.5e+05 2.0e+05
Number of iterations

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Root
Mean

Square
Error

(50runs)

Biased-low
Biased-high
Unbiased

(c) Bias level 80%

Figure 1: Learning curves are testing error as functions of mini-batch update number. Bias level
60% means 60% of the training data are from the high frequency region [−2, 0) and is labeled as
Biased-high. Similarly, Biased-low means 60% of the training data are from the low frequency
region [0, 2]. We include unbiased training dataset as a reference (Unbiased). The total numbers
of training data are the same across all experiments. The testing set is unbiased and the results are
averaged over 50 random seeds with the shade as standard error.

3.2 IDENTIFYING HIGH FREQUENCY REGIONS OF A FUNCTION

In the above experiment, since each region only contains signal with one constant frequency, it is
quite easy to identify high frequency region of fsin. However, in practice, targets will not be in
that nice and artificial form. We are facing two main difficulties to identify high frequency regions.
On one hand, in machine learning problems, we have no access to the underlying target functions.
Actually, only function approximation, such as trained neural network, is available. On the other
hand, frequency is more a global property rather than local information. Every single point within
the domain has impact on the frequency of a function. And it is unpractical, if not impossible, to
do that global calculation over the whole function domain. To make the high frequency heuristic
practically useful, we need some simple criteria that: (a) use function approximation; (b) can be
efficiently calculated; (c) characterize local frequency information. Inspired by the function fsin
in Eq. (1), a natural idea is to calculate the first order f ′(x)

def
= df(x)

dx or second order derivative

f ′′(x)
def
= d2f(x)

dx2 because they both satisfy (a) and (b). To do “sanity check” for property (c), consider
the following illustrative examples.
Example 1. For fsin defined in Eq. (1), calculate the integrals of squared first order derivative f ′sin
on high frequency region [−2, 0) and low frequency region [0, 2], respectively:∫ 0

−2
[f ′sin(x)]

2
dx = 64π2,

∫ 2

0

[f ′sin(x)]
2
dx = π2.

Example 2. Let f : [−π, π]→ R be a real valued function. We have∫ π

−π
[f ′(x)]

2
dx = π ·

∞∑
n=1

n2
(
a2n + b2n

)
,

∫ π

−π
[f ′′(x)]

2
dx = π ·

∞∑
n=1

n4
(
a2n + b2n

)
.

an, bn ∈ R, n = 1, 2, . . . are Fourier coefficients of frequency n
2π , defined as

an
def
=

1

π

∫ π

−π
f(x) cos (nx)dx, bn

def
=

1

π

∫ π

−π
f(x) sin (nx)dx.

Example 1 shows that the integral of squared first order derivative ratio is 64 : 1 (the frequency ratio
is 8 : 1). And the region with large gradient norm is high frequency region. Example 2 generalizes
the calculation of Example 1, indicating that for one dimensional real valued functions, integrals of
squared gradient norm and Hessian norm are closely related to frequency information. In particular,
Hessian norm emphasize more on high frequency information (comparing n4 factor with n2).

Empirical demonstration. Our calculation in the above examples implies that regions with large
gradient and Hessian norm correspond to high frequency regions. Based on the same spirit of the

4

Under review as a conference paper at ICLR 2020

l2 regression task in Section 3.2, we empirically verify this insight. Our expectation is that biased
training dataset towards high gradient norm and Hessian norm would achieve better learning results.
In Fig. 2(a), Biased-GradientNorm is uniformly sampling x ∈ [−2, 2] for 60% of training data,
and sampling proportional to gradient norm (i.e., p(x) ∝ |f ′sin(x)|) for the remaining 40%; while
Biased-HessianNorm is sampling proportional to Hessian norm (i.e., p(x) ∝ |f ′′sin(x)|) for the
remaining 40% of training data. As shown in Fig. 2(b)(c), sampling according to gradient norm
or Hessian norm indeed leads to denser point distribution in high frequency region [−2, 0). And
in Fig. 2(a), we observe that such biased training datasets provide fast learning, similar to high
frequency biased training datasets in Fig. 1. In particular, Biased-HessianNorm learns faster than
Biased-GradientNorm, which is consistent with our calculation in Example 2.

As a result of passing “sanity check” of calculations and experiments, given a function f : X 7→ Y
and a point x ∈ X , we propose to measure frequency of f around a small neighborhood of x (we call
this local frequency) using the following function: g(x)

def
= ‖∇xf(x)‖+‖Hf (x)‖, where ‖∇xf(x)‖

is gradient norm at x, and ‖Hf (x)‖ is norm of Hessian matrix at x. We claim that local frequency of
f around x is proportional to g(x).3 We theoretically justify this claim. For real-valued functions in
Euclidean spaces, our theory establishes a connection between local gradient norm, local function
energy 4, and local frequency distribution. The proof can be found in Appendix A.2.
Theorem 1. Given any function f : Rn 7→ R, for any frequency vector k ∈ Rn, define its local
Fourier coefficient of x ∈ Rn,

f̂(k)
def
=

∫
‖y−x‖≤1

f(y) exp
{
−2πi · y>k

}
dy,

for local function around x, i.e., {y : ‖y − x‖ ≤ 1}. Assume the local function “energy” is finite,∫
‖y−x‖≤1

[f(y)]
2
dy =

∫
Rn

‖f̂(k)‖2dk <∞, ∀x ∈ Rn. (2)

We have ∀x ∈ Rn,∫
‖y−x‖≤1

‖∇f(y)‖2 dy = 4π2 ·

[∫
‖y−x‖≤1

[f(y)]
2
dy

]
·
[∫

Rn

πf̂ (k) · ‖k‖2 dk
]
, (3)

where

πf̂ (k)
def
=

‖f̂(k)‖2∫
Rn ‖f̂(k)‖2dk

, ∀k ∈ Rn. (4)

πf̂ is called “local frequency distribution” of f(x). πf̂ is a probability distribution over Rn, i.e.,∫
k∈Rn

πf̂ (k)dk = 1, and πf̂ (k) ≥ 0, ∀k ∈ Rn.

Remark 1. We use a distribution πf̂ in Eq. (4) to characterize local frequency behaviour for rea-
sons. First, comparing frequencies of regions is more naturally captured by a distribution than
one single scalar, since signals usually are within a range of frequencies. Second, to eliminate the
impact of the function energy Eq. (2), we normalize the Fourier coefficient f̂ to get πf̂ .

Remark 2. For a frequency vector k ∈ Rn, the larger its norm ‖k‖, the higher its frequency. Given
any x and its local function (i.e., f(·) around x), πf̂ (k) is the proportion/percentage that frequency

k occupies. Therefore, the integral of πf̂ (k) · ‖k‖2 can perfectly reflect local frequency behaviour.

Remark 3. Consider f as a value function in reinforcement learning setting. Theorem 1 indicates
that regions with large gradient norm can either have large absolute value function, or high local
frequency, or both. To prevent finding regions only have large negative value function, our theory
implies that it is reasonable to take both gradient norm and value function into account, as our
proposed method does in next section.

3Our formal derivation justifies the first order connection, while it can be naturally extended to the second
order.

4We consider the notion of energy in signal processing terminology: the energy of a continuous time signal
x(t) is defined as

∫
x(t)2dt. In our theory, function f is the signal.

5

Under review as a conference paper at ICLR 2020

Discussion with Uncertainty Principle. The Uncertainty Principle says that a function cannot be
too concentrated in both spatial and frequency space, i.e.,[∫

‖y−x‖≤1
(y − x)2 · [f(y)]

2
dy

]
·
[∫

Rn

‖f̂(k)‖2 · ‖k‖2 dk
]
≥ 1

16π2
. (5)

Combing Eq. (5) with our Eq. (3),[∫
‖y−x‖≤1

(y − x)2 · [f(y)]
2
dy

]
·

[∫
‖y−x‖≤1

‖∇f(y)‖2 dy

]
≥ 1

4
,

which means the more concentrated f is locally around x, the larger local gradient norm must be.
On the other hand, if local gradient norm is small, then f cannot be too concentrated around x.

0.0e+00 5.0e+04 1.0e+05 1.5e+05 2.0e+05
Number of iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Root
Mean

Square
Error

(50runs)

Biased-GradientNorm
Biased-HessianNorm
Unbiased

(a) RMSE vs. number of iterations

2 1 0 1 20

20

40

60

80

100

120

(b) count vs. x

2 1 0 1 20

20

40

60

80

100

120

(c) count vs. x

Figure 2: We show the learning curve of l2 regression on three training data sets in Figure (a) and
show the distribution of the two biased training data points in (b)(c) respectively. The total number
of training data points are the same across all experiments. The testing set is unbiased and the results
are averaged over 50 random seeds with the shadow indicating standard error.

4 FREQUENCY-BASED SEARCH-CONTROL IN DYNA

In this section, we present the Dyna architecture with our frequency-based search-control in algo-
rithm 1. Notice that we omit the technical details such as preconditioning and noisy gradient as
introduced by Pan et al. (2019) for the hill climbing process. We refer readers to the Appendix A.5
for implementation details.

We want to query a model with states in high frequency region. To search states in high frequency
region, we can do hill climbing on g(s) = ||∇sV (s)||+||Hv(s)||. However, Theorem 1 suggests that
states with large gradient norm can either have large absolute value, or high local frequency, or both.
The trap we want to avoid is finding negative value states with large magnitude, as those states may
be rarely visited under optimal policy. A natural strategy to get around this problem is to combine
our hill climbing method with the previous hill climbing on value function (Pan et al., 2019), as the
latter tends to generate high value states. We propose the following method for combination. At
each time step, with certain probability, we perform hill climbing on either

s← s+ α∇sV (s) (6)

or
s← s+ α∇sg(s) (7)

and store states along the gradient trajectory in search-control queue. When hill climbing on the
value function, we sample initial state from the ER buffer as suggested by the previous work (Pan
et al., 2019). When hill climbing on g(s), we use the initial state sampled from the search-control
queue. This way ensures that the initial state for searching high frequency region has relatively high
value; then hill climbing on ∇g(s) should encourage to move forward to high frequency region, by
Theorem 1. We discuss other intuitive choices which we tested in the Appendix A.4.

Similar to the previous work Pan et al. (2019), we obtain the state-value function in both 7 and 6
by taking the maximum action-value, i.e. V (s) = maxaQ(s, a) ≈ maxaQθ(s, a) where θ is the

6

Under review as a conference paper at ICLR 2020

Algorithm 1 Dyna architecture with Frequency-based search-control
B: the ER buffer, Bs: search-control queue
M : S ×A → S × R, the model outputs next state and reward
m: number of states we want to fetch by hill climbing, d: number of planning steps
εa: the threshold for accepting a state
Q,Q′: current and target Q networks, respectively
b: the mini-batch size, β ∈ (0, 1): the proportion of simulated samples in a mini-batch
τ : update target network Q′ every τ updates to Q
t← 0 is the time step, nτ is the number of parameter updates
while true do

Observe st, take action at (i.e. ε-greedy w.r.t. Q)
Observe st+1, rt+1, add (st, at, st+1, rt+1) to B
// Gradient ascent hill climbing
With probability p, 1− p, choose hill climbing rule 7 or 6 respectively;
sample s from Bs if choose rule 7, or from B otherwise; set c← 0, s̃← s
while c < m do

update s by executing the chosen hill climbing rule
if s is out of boundary then: // resample the initial state and hill climbing rule

With probability p, 1− p, choose hill climbing rule 7 or 6 respectively;
sample s from Bs if choose 7, or from B otherwise; set c← 0, s̃← s
continue

if ||s− s̃||2/
√
n > εa then: // n is the state dimension, i.e. S ⊂ Rn

add s to Bs, s̃← s, c← c+ 1

for d times do // d planning updates: sample d mini-batches
sample βb states from Bs and pair them with on-policy actions, and queryM to get next

states and rewards
sample b(1− β) transitions from B an stack these with the simulated transitions
use the mixed mini-batch for parameter (i.e. DQN) update
nτ ← nτ + 1
if mod(nτ , τ) == 0 then:

Q′ ← Q

t← t+ 1

parameter in Q network. As an analogy to Dyna architecture as shown in 2, during planning stage,
we sampled multiple mixed mini-batches to update the parameters (i.e. we call multiple planning
steps/updates). The mixed mini-batch was also used in the work by Gu et al. (2016) and has the
effect of alleviating off-policy sampling issue as studied by Pan et al. (2019).

5 EXPERIMENTS

In the experiments, we first carefully study the properties of our algorithm on the benchmark Moun-
tainCar domain. Then we illustrate the utility of our algorithm on a challenging self-designed Maze-
GridWorld domain, by which we illustrate the practical implication of high frequency region.

We are able to fix on using the same set of parameters across all experiments: learning rate 0.001,
target network moving rate 1000, gradient ascent step size (in search-control) 0.01, mixing rate
β = 0.5 and m = 20, i.e. at each environment time step we fetch 20 states by hill climbing.
We fix p = 0.5 across all experiments, hence the hill climbing rule 7 and 6 are chosen with equal
chance. We used natural projected gradient ascent for hill climbing as introduced by Pan et al.
(2019). Though we mainly focuses on search-control instead of how to learn a model, we indeed
include the result of using an online learned model for our algorithm. We refer readers to the
Appendix A.5 for reproducible research.

5.1 UTILITY OF FREQUENCY-BASED SEARCH-CONTROL

MountainCar (Brockman et al., 2016) domain is well-studied, and it is known that the value function
under the optimal value function has sharp changing regions (Sutton & Barto, 2018), which should

7

Under review as a conference paper at ICLR 2020

Dyna-Value
PrioritizedER

ER

Dyna-Frequency

(a) plan steps 10, σ = 0

0.5 2.0 4.0
time steps 1e4

2000
1750

500
250

0

Sum
of

rewards
per

Episode
(30runs)

(b) plan steps 10, σ = 0.1

0.5 2.0 4.0
time steps 1e4

2000
1750

500
250

0

Sum
of

rewards
per

Episode
(30runs)

(c) plan steps 30, σ = 0

0.5 2.0 4.0
time steps 1e4

2000
1750

500
250

0

Sum
of

rewards
per

Episode
(30runs)

(d) plan steps 30, σ = 0.1

Figure 3: Evaluation curves (sum of episodic reward v.s. environment time steps) of Dyna-Value,
PrioritizedER, Dyna-Frequency, ER on MountainCar with different number of planning updates
with different reward noise variance. Notice that the dashed line denotes the evaluation curve of
our algorithm with an online learned model. At each time step, the reward is sampled from the
Gaussian distribution N(−1, σ2), σ ∈ {0.0, 0.1}. σ = 0 indicates the original deterministic reward.
All results are averaged over 30 random seeds.

be beneficial for our algorithm. The agent needs to learn to reach the goal state within as few
steps as possible. At each step, the agent receives reward −1. The purposes of experiments on this
domain are: 1) verify that our search-control strategy can outperform several natural competitors
under different number of planning updates; 2) show that our search-control strategy is robust to
environment noise.

We use the following intuitive competitors. Dyna-Frequency is Dyna with our search-control in-
troduced in algorithm 1; Dyna-Value is using algorithm 3 from the previous work by Pan et al.
(2019); PrioritizedER is DQN with prioritized experience replay Schaul et al. (2016); ER is sim-
ply DQN with experience replay (ER) (Mnih et al., 2015). Figure 3 shows the learning curves of
all those algorithms using 10 planning updates (a)(b) and 30 planning updates (c)(d) under differ-
ent stochasticity. In Figure 3(b)(d), we add zero mean Gaussion noise to the original reward (i.e.
−1 +X,X ∼ N(0, σ2)).

Important observations are as following. 1) With increased number of planning updates, algorithms
do not necessarily perform better, as shown in Figure 3(c). However, our algorithm appears to gain
more through more number of updates since the difference between Dyna-Frequency and Dyna-
Value seems to be clearer in Figure 3(c) than in Figure 3(a). 2) Since both Dyna-Value and our
algorithm fetch exactly the same number of states (i.e. m = 20) by search-control, the superior
performance of our algorithm indicates the advantage of using high frequency samples. 3) Priori-
tizedER does clearly worse than our algorithm and Dyna-Value, which probably implies the utility
of the generalization power of the value function to acquire additional samples. 4) our algorithm
maintains superior performance in the presence of noise. One reason is that, noisy perturbation ba-
sically leads to more “energy” in all frequencies. When we take derivative, those high frequency
terms are amplified. Hence, even with perturbation, high frequency region remains.

5.2 A CASE STUDY: MAZEGRIDWORLD

We now illustrate the utility of our method on a challenging MazeGridWorld domain as shown
in Figure 4(a). The domain has continuous state space S = [0, 1]2 and four discrete actions
{up, down, left, right}. There are three walls in the middle, each of which has hole for the agent to
go through. Each episode starts from the left bottom and ends at right top and the agent gets reward
−1 at each time step, hence the agent should learn to use as few steps as possible to reach the goal
area. Model-free methods completely fail on this domain, and we mainly study our algorithm and
the Dyna-Value algorithm.

Figure 4(b) shows the evaluation curves of the two algorithms. An important difference between our
algorithm and the previous work is in the variance of the evaluation curve, which implies a robust
policy learned by our method. In Figure 5, we further investigate the state distribution in search-
control queues of the two algorithms by uniformly sampling 1000 states from the two queues. Notice
that a very important difference between the two distributions is that our search-control queue has a
clearly high density around the bottleneck area (i.e. the hole areas where the agent can go across the
walls). Learning a stable policy around such area is extremely important: the agent simply fails to
reach the goal state if they cannot pass any one of the holes. This distinguishes our algorithm with
the previous work, which appears to acquire states near the goal area.

8

Under review as a conference paper at ICLR 2020

S

G

(a) MazeGridWorld

0.0 0.2 0.4 0.6 0.8 1.0
time steps 1e5

2000
1750

500
250

0

Sum
of

rewards
per

Episode
(30runs) DQN-Value

Dyna-Frequency

(b) Episodic reward vs. time steps

Figure 4: (a) is a visualization of the MazeGridWorld domain. (b) shows evaluation curves of
Dyna-Value and Dyna-Frequency. Dashed line indicates using an online learned model of our
algorithm. All results are averaged over 30 random seeds.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(a) frequency-based search-control states

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(b) value-based search-control states

Figure 5: The state distribution in the search-control queue of our algorithm Dyna-Frequency (a)
and Dyna-Value (b) at 50, 000 environment time step. The blue shadow indicates the hole area
where the agent can go through the wall. The black box on the right top is the goal area.

6 DISCUSSION

In this work, we motivate and study a new category of methods for search-control by considering
the approximation difficulty of a function. We provide a method for identifying the high frequency
region of a function’s domain with theoretical justification. Experiments are conducted to illumi-
nate our theory. We incorporate our method into Dyna, and empirically investigate its utility. We
achieve competitive learning performances on difficult domain. There are several promising future
directions. First, it is worth exploring the combination between different search-control strategies.
Second, we may borrow methods from active learning (Settles, 2010; Hanneke, 2014), which con-
cerns about using as few samples as possible to learn. The main obstacle of applying active learning
to search-control may be the computation efficiency. For example, the methods based on model
uncertainty reduction (Lewis & Gale, 1994; Seung et al., 1992; Settles et al., 2008) which typically
requires to iterate over the whole dataset. It is interesting to explore how to use those active learning
methods for search-control in MBRL algorithms.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, and et al. Tensor-
Flow: Large-scale machine learning on heterogeneous systems. 2015. Software available from
tensorflow.org.

S Adam and L Busoniu. Experience Replay for Real-Time Reinforcement Learning Control. Sys-
tems, 2012.

9

Under review as a conference paper at ICLR 2020

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.

Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for global optimization in
Rn. SIAM Journal on Control and Optimization, pp. 737–753, 1987.

Dane S. Corneil, Wulfram Gerstner, and Johanni Brea. Efficient model-based deep reinforcement
learning with variational state tabulation. ICML, pp. 1049–1058, 2018.

M Deisenroth and C E Rasmussen. PILCO: A model-based and data-efficient approach to policy
search. In International Conference on Machine Learning, 2011.

Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-Aware Loss Function for
Model-based Reinforcement Learning. 54:1486–1494, 20–22 Apr 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, 2010.

Steffen Grunewalder, Guy Lever, Luca Baldassarre, Massi Pontil, and Arthur Gretton. Modelling
transition dynamics in MDPs with RKHS embeddings. In International Conference on Machine
Learning, 2012.

Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous Deep Q-Learning
with Model-based Acceleration. In ICML, pp. 2829–2838, 2016.

David Ha and Jürgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018.

Steve Hanneke. Theory of disagreement-based active learning. Foundations and Trends in Machine
Learning, 7(2-3):131–309, 2014.

Hui Jiang. A new perspective on machine learning: How to do perfect supervised learning. volume
abs/1901.02046, 2019.

Joshua Joseph, Alborz Geramifard, John W Roberts, Jonathan P How, and Nicholas Roy. Reinforce-
ment learning with misspecified model classes. In ICRA, pp. 939–946. IEEE, 2013.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Ryan Sepassi,
George Tucker, and Henryk Michalewski. Model-based reinforcement learning for atari. CoRR,
abs/1903.00374, 2019.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. CoRR,
1994.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. 2004.

Long-Ji Lin. Self-Improving Reactive Agents Based On Reinforcement Learning, Planning and
Teaching. Machine Learning, 1992.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, and et al. Human-level
control through deep reinforcement learning. Nature, 2015.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less time. Machine learning, pp. 103–130, 1993.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In NeurIPS, pp. 6118–
6128. Curran Associates, Inc., 2017.

Yangchen Pan, Muhammad Zaheer, Adam White, Andrew Patterson, and Martha White. Organizing
experience: a deeper look at replay mechanisms for sample-based planning in continuous state
domains. In IJCAI, pp. 4794–4800, 2018.

Yangchen Pan, Hengshuai Yao, Amir-massoud Farahmand, and Martha White. Hill climbing on
value estimates for search-control in dyna. CoRR, abs/1906.07791, 2019.

10

Under review as a conference paper at ICLR 2020

Richard L. Roberts, Gareth O.and Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. Bernoulli, pp. 341–363, 1996.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay. In
ICLR, 2016.

Burr Settles. Active learning literature survey. 2010.

Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis (eds.), Advances in Neural Information Processing Systems
20, pp. 1289–1296. Curran Associates, Inc., 2008.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the Fifth
Annual Workshop on Computational Learning Theory, COLT, pp. 287–294, New York, NY, USA,
1992. ACM.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David Reichert, Neil Rabinowitz, André M.S. Barreto, and Thomas Degris. The
predictron: End-to-end learning and planning. In ICML, pp. 3191–3199, 2017.

Steve Smale and Ding-Xuan Zhou. Shannon sampling II: Connections to learning theory. Applied
and Computational Harmonic Analysis, 19(3):285 – 302, 2005.

Steve Smale, René Thom, and Ding-Xuan Zhou. Shannon sampling and function reconstruction
from point values. 2004.

Jonathan Sorg and Satinder Singh. Linear options. pp. 31–38, 2010.

R. S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Proceedings of the 12th International
Conference on Neural Information Processing Systems. MIT Press, 1999.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bulletin, 2(4):160–163, 1991a.

Richard S. Sutton. Integrated modeling and control based on reinforcement learning and dynamic
programming. In Advances in Neural Information Processing Systems, 1991b.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael Bowling. Dyna-style plan-
ning with linear function approximation and prioritized sweeping. In UAI, pp. 528–536, 2008.

Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan Claypool Publishers, 2010.

Erik Talvitie. Model regularization for stable sample roll-outs. In Uncertainty in Artificial Intelli-
gence, 2014.

Erik Talvitie. Self-Correcting Models for Model-Based Reinforcement Learning. In AAAI Confer-
ence on Artificial Intelligence, 2017.

Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex behaviors through online
trajectory optimization. International Conference on Intelligent Robots and Systems, 2012.

Peter M. Todd, Thomas T. Hills, and Trevor W. Robbins. Model-based reinforcement learning as
cognitive search: Neurocomputational theories. 2012.

Harm van Seijen and Richard S. Sutton. A deeper look at planning as learning from replay. In
ICML, pp. 2314–2322, 2015.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292, May
1992.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
ICML, pp. 681–688, 2011.

A.I. Zayed. Advances in Shannon’s Sampling Theory. Taylor & Francis, 1993.

11

Under review as a conference paper at ICLR 2020

A APPENDIX

We provide calculations for Example 1 and Example 2 in Section A.1; theoretical proof of Theo-
rem 1 in Section A.2. Background of Dyna is reviewed in Section A.3 and additional discussions
regarding search-control are provided in Section A.4. Experimental details for reproducing our em-
pirical results are in Section A.5.

A.1 CALCULATIONS FOR EXAMPLE 1 AND EXAMPLE 2

Example 1. For fsin defined in Eq. (1), calculate the integrals of squared first order derivative f ′sin
on high frequency region [−2, 0) and low frequency region [0, 2], respectively:∫ 0

−2
[f ′sin(x)]

2
dx = 64π2,

∫ 2

0

[f ′sin(x)]
2
dx = π2.

Proof. Taking derivative and integral,∫ 0

−2
[f ′(x)]

2
dx = 64π2

∫ 0

−2
[cos (8πx)]

2
dx = 64π2,∫ 2

0

[f ′(x)]
2
dx = π2

∫ 2

0

[cos (πx)]
2
dx = π2.

Example 2. Let f : [−π, π]→ R be a real valued function. We have∫ π

−π
[f ′(x)]

2
dx = π ·

∞∑
n=1

n2
(
a2n + b2n

)
,

∫ π

−π
[f ′′(x)]

2
dx = π ·

∞∑
n=1

n4
(
a2n + b2n

)
.

an, bn ∈ R, n = 1, 2, . . . are Fourier coefficients of frequency n
2π , defined as

an
def
=

1

π

∫ π

−π
f(x) cos (nx)dx, bn

def
=

1

π

∫ π

−π
f(x) sin (nx)dx.

Proof. The Fourier series of f(x) is

f(x) =
a0
2

+

∞∑
n=1

an cos (nx) +

∞∑
n=1

bn sin (nx),

where a0
def
= 1

π

∫ π
−π f(x)dx. Taking derivative of f ,

f ′(x) =

∞∑
n=1

[−nan sin (nx)] +

∞∑
n=1

[nbn cos (nx)].

Taking square of f ′,

[f ′(x)]
2

=
∞∑
n=1

∞∑
m=1

[nmanam sin (nx) sin (mx)]−
∞∑
n=1

∞∑
m=1

[nmanbm sin (nx) cos (mx)]

−
∞∑
n=1

∞∑
m=1

[mnambn sin (mx) cos (nx)] +

∞∑
n=1

∞∑
m=1

[nmbnbm cos (nx) cos (mx)].

Taking integral,∫ π

−π
[f ′(x)]

2
dx =

∫ π

−π

∞∑
n=1

∞∑
m=1

[nmanam sin (nx) sin (mx)]dx−
∫ π

−π

∞∑
n=1

∞∑
m=1

[nmanbm sin (nx) cos (mx)]dx

−
∫ π

−π

∞∑
n=1

∞∑
m=1

[mnambn sin (mx) cos (nx)]dx+

∫ π

−π

∞∑
n=1

∞∑
m=1

[nmbnbm cos (nx) cos (mx)]dx

=

∞∑
n=1

∞∑
m=1

[nmanamπδn,m − 0− 0 + nmbnbmπδn,m]

= π ·
∞∑
n=1

n2
(
a2n + b2n

)
,

12

Under review as a conference paper at ICLR 2020

where

δn,m
def
=

{
1, if n = m,

0, otherwise.

Using similar arguments, taking derivative of f ′(x),

f ′′(x) =

∞∑
n=1

[
−n2an cos (nx)

]
+

∞∑
n=1

[
−n2bn sin (nx)

]
.

Taking integral, ∫ π

−π
[f ′′(x)]

2
dx = π ·

∞∑
n=1

n4
(
a2n + b2n

)
.

A.2 PROOF FOR THEOREM 1

Theorem 1. Given any function f : Rn 7→ R, for any frequency vector k ∈ Rn, define its local
Fourier coefficient of x ∈ Rn,

f̂(k)
def
=

∫
‖y−x‖≤1

f(y) exp
{
−2πi · y>k

}
dy,

for local function around x, i.e., {y : ‖y − x‖ ≤ 1}. Assume the local function “energy” is finite,∫
‖y−x‖≤1

[f(y)]
2
dy =

∫
Rn

‖f̂(k)‖2dk <∞, ∀x ∈ Rn.

We have ∀x ∈ Rn,∫
‖y−x‖≤1

‖∇f(y)‖2 dy = 4π2 ·

[∫
‖y−x‖≤1

[f(y)]
2
dy

]
·
[∫

Rn

πf̂ (k) · ‖k‖2 dk
]
,

where

πf̂ (k)
def
=

‖f̂(k)‖2∫
Rn ‖f̂(k)‖2dk

, ∀k ∈ Rn.

πf̂ is called “local frequency distribution” of f(x). πf̂ is a probability distribution over Rn, i.e.,∫
k∈Rn

πf̂ (k)dk = 1, and πf̂ (k) ≥ 0, ∀k ∈ Rn.

Proof. Consider the following function defined locally around x,

fx(y)
def
=

{
f(y), if ‖y − x‖ ≤ 1,

undefined, otherwise.

The coefficient of frequency vector k in the Fourier series of fx is

f̂(k)
def
=

∫
‖y−x‖≤1

f(y) exp
{
−2πi · y>k

}
dy

=

∫
‖y−x‖≤1

fx(y) exp
{
−2πi · y>k

}
dy.

And the Fourier series of fx(y), ∀y, such that ‖y − x‖ ≤ 1, is,

fx(y) =

∫
Rn

f̂(k) exp
{

2πi · y>k
}
dk.

The gradient is

∇f(y) = ∇fx(y) =

∫
Rn

f̂(k) exp
{

2πi · y>k
}

(2πi · k) dk.

13

Under review as a conference paper at ICLR 2020

To calculate gradient norm, we use complex conjugate,

∇f∗(y) =

∫
Rn

f̂∗(k′) exp
{
−2πi · y>k′

}
(−2πi · k′) dk′,

where

f̂∗(k′) =

∫
‖y′−x‖≤1

fx(y′) exp
{

2πi · y′>k′
}
dy′

is the complex conjugate of f̂(k′). Therefore,

‖∇f(y)‖2 = 〈∇f(y),∇f∗(y)〉

=

∫
Rn

∫
Rn

f̂(k)f̂∗(k′) exp
{

2πi · y> (k − k′)
} (

4π2k>k′
)
dkdk′.

Taking integral of ‖∇f(y)‖2,∫
‖y−x‖≤1

‖∇f(y)‖2 dy

=

∫
Rn

∫
Rn

f̂(k)f̂∗(k′)

[∫
‖y−x‖≤1

exp
{

2πi · y> (k − k′)
}
dy

] (
4π2k>k′

)
dkdk′

=

∫
Rn

∫
Rn

f̂(k)f̂∗(k′)δk−k′,0
(
4π2k>k′

)
dkdk′

= 4π2

∫
Rn

‖f̂(k)‖2 · ‖k‖2 dk.

Recall the definition of local function “energy” around x,∫
Rn

‖f̂(k)‖2dk =

∫
Rn

〈
f̂(k), f̂∗(k)

〉
dk

=

∫
‖y−x‖≤1

∫
‖y′−x‖≤1

fx(y)fx(y′)

[∫
Rn

exp
{

2πi · k> (y′ − y)
}
dk

]
dydy′

=

∫
‖y−x‖≤1

∫
‖y′−x‖≤1

fx(y)fx(y′)δy′−y,0dydy
′

=

∫
‖y−x‖≤1

f2x(y)dy

=

∫
‖y−x‖≤1

f2(y)dy

<∞. (by assumption)

The local gradient information is related to local energy and frequency distribution,∫
‖y−x‖≤1

‖∇f(y)‖2 dy = 4π2 ·

[∫
‖y−x‖≤1

f2(y)dy

]
·
[∫

Rn

πf̂ (k) · ‖k‖2 dk
]
,

where

πf̂ (k)
def
=

‖f̂(k)‖2∫
Rn ‖f̂(k)‖2dk

, ∀k ∈ Rn,

is the local frequency distribution.

A.3 BACKGROUND IN DYNA

In this section, we provide the vanilla Dyna (Sutton, 1991a) in Algorithm 2, and the hill climbing
Dyna by Pan et al. (2019) in Algorithm 3.

14

Under review as a conference paper at ICLR 2020

Algorithm 2 Generic Dyna Architecture: Tabular Setting
Initialize Q(s, a) and modelM(s, a), ∀(s, a) ∈ S ×A
while true do

observe s, take action a by ε-greedy w.r.t Q(s, ·)
execute a, observe reward R and next state s′
Q-learning update for Q(s, a)
update modelM(s, a) (i.e. by counting)
store (s, a) into search-control queue
for i=1:d do

sample (s̃, ã) from search-control queue
(s̃′, R̃)←M(s̃, ã) // simulated transition
Q-learning update for Q(s̃, ã) // planning update

Algorithm 3 HC-Dyna architecture
Bs: search-control queue, B: the experience replay buffer
m: number of states to fetch by search-control
b: the mini-batch size
while true do

Observe st, take action at (i.e. ε-greedy w.r.t. action value function)
Observe st+1, rt+1, add (st, at, st+1, rt+1) to B
sample s from visited states, i.e. ER buffer B
// Hill climbing by gradient ascent
while get less than m states do

s← s+∇sV (s), V (s) = maxsQθ(s, a)
store s into search control queue Bs

// Planning stage
for d times do

// sample states from Bs and pair them with on-policy actions, query the model to get next
states and rewards

// mix simulated and real experiences into a mini-batch and use it to update parameters
(i.e. DQN update)

t← t+ 1

A.4 A DISCUSSION ON SEARCH-CONTROL DESIGN BASED ON HILL CLIMBING

There are possible ways to combine different hill climbing strategies. Here are some unsuccessful
trials. For example, climbing on direct combinations of V (s) and g(s), such as V (s) + g(s), or
V (s)g(s), does not work well. These are possible reasons. First, such combination can lead to
unstable gradient behaviour, for example, on some domain ∇g(s) can be huge or it can be zero.
Second, such combination can alter the trajectory solely based on either g(s) or V (s), and the effect
is unclear. It may lead to state with neither high value or high frequency. Last, and probably the most
important, hill climbing on V (s) and on g(s) have fundamentally different insights. The former is
based on the intuition that the value information should be propagated from the high value region
to low value region, as a result, it requires to store states along the whole trajectory, including those
in low value region. This is empirically verified by Pan et al. (2019). However, the latter is based
on the insight that the function value in high frequency region is more difficult to approximate and
needs more samples, while propagating those information back to low frequency region is not that
important. To see why, consider the ideal case where we have a true value target available, which
turns the problem into regression; then we simply need more samples in the high frequency region.
As a result, this approach does not emphasize on recording states throughout the whole hill climbing
strategy (i.e. recording states in the low frequency region could be unnecessary). Consequently, our
design choice of getting initial state from search-control queue for frequency-based hill climbing is
well principled.

A theoretical interpretation of the search-control queue distribution. Given our search-control
queue, it is natural to ask that what would be the state distribution in the queue, as this may be helpful

15

Under review as a conference paper at ICLR 2020

to develop other search-control strategies. Pan et al. (2019) establishes the connection between the
state distribution in the search-control queue filled by value-based hill climbing through Langevin
dynamics. The basic idea is to show that the hill climbing process is tracking a discretized version of
a stochastic differential equation, whose limiting distribution is Gibbs (Roberts, 1996; Chiang et al.,
1987; Welling & Teh, 2011). As a result, the state distribution in search-control queue is approx-
imately p(s) ∝ exp (V (s)). Following a similar reasoning line, our search-control queue should
approximately be a state distribution: p(s) ∝ exp (V (s)) + exp (g(s)). Notice that, removing the
first term leads to a sampling distribution resembles to the one in our supervised learning experiment,
where the training data distribution is biased towards gradient norm Fig. 2. It is worth investigating
whether there is some solid theoretical connection between sampling distribution p(x) ∝ exp (g(x))
and sample complexity.

A.5 REPRODUCIBLE RESEARCH

All of our implementations are based on tensorflow with version 1.13.0 (Abadi et al., 2015). For
DQN update, we use Adam optimizer. We use mini-batch size b = 32 except on the supervised
learning experiment where we use 128. For reinforcement learning experiment, we use buffer size
100k. All activation functions are tanh except the output layer of the Q-value is linear. Except the
output layer parameters which were initialized from a uniform distribution [−0.003, 0.003], all other
parameters are initialized using Xavier initialization (Glorot & Bengio, 2010). For model learning,
we use a 64× 64 relu units neural network to predict s′− s given a state-action pair with mini-batch
size 128 and learning rate 0.0001.

For the supervised learning experiment shown in Section 3, we use 16 × 16 tanh units neural net-
work, with learning rate 0.001 for all algorithms. The learning curve is plotted by computing the
testing error every 20 iterations. When generating Fig. 2, in order to sample points according to
p(x) ∝ |f ′(x)| or p(x) ∝ |f ′′(x)|, we use 10, 000 even spaced points on the domain [−2, 2] and the
probabilities are computed by normalization across the 10k points.

The experiment on MountainCar is based on the implementation from OpenAI (Brockman et al.,
2016), we use 32 × 32 tanh layer, with target network moving rate 1000 and learning rate 0.001.
Exploration noise is 0.1 without decaying. For all algorithms, we use warm up steps = 5000 (i.e.
random action is taken in the first 5k time steps).

For the experiment on MazeGridWorld, each wall’s width is 0.1 and each hole has height 0.1. The
left-top point of the hole in the first wall (counting from left to right) has coordinate (0.2, 0.5); the
hole in the second wall has coordinate (0.4, 1.0) and the third one is 0.7, 0.2. Each action leads to
0.05 unit move perturbed by a Gaussian noise from N(0, 0.01). On this domain, we use 64 × 64
tanh units for Q networks, and number of search-control samples is set as 50 for both algorithms. As
a supplement to the Section 5.2, we also provide the state distribution from ER buffer in Figure 6.
One can see that ER buffer has very different state distribution with search-control queue.

A.6 ALGORITHMIC DETAILS

We provide the pseudo-code in Algorithm 4 with sufficient details to recreate our experimental
results. The hill climbing rules we used is the same as introduced by Pan et al. (2019). Define
vs

def
= ∇s maxaQ(s, a), gs

def
= ∇sg(s) = ∇s(||vs||22 + ||∇svs||22). Note that we use a square norm to

ensure numerical stability. Then for value-based search-control, we use

s← s+
α

||Σ̂svs||
Σ̂svs +Xi, Xi∼ N(0, ηΣ̂s) (8)

and for frequency-based search-control, we use

s← s+
α

||Σ̂sgs||
Σ̂sgs +Xi, Xi∼ N(0, ηΣ̂s) (9)

where Σ̂s is empirical covariance matrix estimated from visited states, and we set η = 0.01, α =
0.01 across all experiments. Notice that comparing with the previous work, we omitted the projec-
tion step as we found it is unnecessary in our experiments.

16

Under review as a conference paper at ICLR 2020

Algorithm 4 Dyna architecture with Frequency-based search-control with additional details
Bs: search-control queue, B: the experience replay buffer
M : S ×A → S × R, the environment model
m: number of search-control samples to fetch at each step
p: probability of choosing value-based hill climbing rule (we set p = 0.5 for all experiments)
β ∈ [0, 1]: mixing factor in a mini-batch, i.e. βb samples in a mini-batch are simulated from
model
n: number of state variables, i.e. S ⊂ Rn
εa: empirically learned threshold as sample average of ||st+1 − st||2/

√
n

d: number of planning steps
Q,Q′: current and target Q networks, respectively
b: the mini-batch size
τ : update target network Q′ every τ updates to Q
t← 0 is the time step
nτ ← 0 is the number of parameter updates
// Gradient ascent hill climbing
With probability p, 1− p, choose hill climbing Eq. (8) o Eq. (9) respectively;
sample s from Bs if choose rule Eq. (8), or from B otherwise; set c← 0, s̃← s
while c < m do

update s by executing the chosen hill climbing rule
if s is out of boundary then: // resample the initial state and hill climbing rule

With probability p, 1− p, choose hill climbing rule Eq. (8) or Eq. (9) respectively;
sample s from Bs if choose Eq. (7), or from B otherwise; set c← 0, s̃← s
continue

if ||s− s̃||2/
√
n > εa then:

add s to Bs, s̃← s, c← c+ 1

// d planning updates: sample d mini-batches
for d times do // d planning updates

sample βb states from Bs and pair them with on-policy actions, and query M to get next
states and rewards

sample b(1− β) transitions from B an stack these with the simulated transitions
use the mixed mini-batch for parameter (i.e. DQN) update
nτ ← nτ + 1
if mod(nτ , τ) == 0 then:

Q′ ← Q

t← t+ 1

17

Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(a) frequency-based search-control states

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(b) value-based search-control states

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(c) frequency-based ER states

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(d) value-based ER states

Figure 6: The state distribution in the search-control queue and ER buffer at 50, 000 environment
time step. The blue shadow indicates the hole area where the agent can go through the wall. The
black box on the right top is the goal area.

18

	Introduction
	Background
	Understanding the difficulty of function approximation
	What type of function is difficult to approximate
	Identifying high frequency regions of a function

	Frequency-based search-control in Dyna
	Experiments
	Utility of frequency-based search-control
	A Case study: MazeGridWorld

	Discussion
	Appendix
	Calculations for eg:example1 and eg:example2
	Proof for theorem-freq-gradient
	Background in Dyna
	A discussion on search-control design based on hill climbing
	Reproducible research
	Algorithmic details

