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ABSTRACT

The tremendous success of deep neural networks has motivated the need to better understand the
fundamental properties of these networks, but many of the theoretical results proposed have only
been for shallow networks. In this paper, we study an important primitive for understanding the
meaningful input space of a deep network: span recovery. For k < n, let A ∈ Rk×n be the
innermost weight matrix of an arbitrary feed forward neural network M : Rn → R, so M(x) can be
written as M(x) = σ(Ax), for some network σ : Rk → R. The goal is then to recover the row span
of A given only oracle access to the value of M(x). We show that if M is a multi-layered network
with ReLU activation functions, then partial recovery is possible: namely, we can provably recover
k/2 linearly independent vectors in the row span of A using poly(n) non-adaptive queries to M(x).
Furthermore, if M has differentiable activation functions, we demonstrate that full span recovery is
possible even when the output is first passed through a sign or 0/1 thresholding function; in this case
our algorithm is adaptive. Empirically, we confirm that full span recovery is not always possible,
but only for unrealistically thin layers. For reasonably wide networks, we obtain full span recovery
on both random networks and networks trained on MNIST data. Furthermore, we demonstrate the
utility of span recovery as an attack by inducing neural networks to misclassify data obfuscated by
controlled random noise as sensical inputs.

1 INTRODUCTION

Consider the general framework in which we are given an unknown function f : Rn → R, and we want to learn
properties about this function given only access to the value f(x) for different inputs x. There are many contexts where
this framework is applicable, such as blackbox optimization in which we are learning to optimize f(x) (Djolonga et al.,
2013), PAC learning in which we are learning to approximate f(x) (Denis, 1998), adversarial attacks in which we are
trying to find adversarial inputs to f(x) (Szegedy et al., 2013), or structure recovery in which we are learning the
structure of f(x). For example in the case when f(x) is a neural network, one might want to recover the underlying
weights or architecture (Arora et al., 2014; Zhang et al., 2017). In this work, we consider the setting when f(x) =
M(x) is a neural network that admits a latent low-dimensional structure, namely M(x) = σ(Ax) where A ∈ Rk×n
is a rank k matrix for some k < n, and σ : Rk → R is some neural network. In this setting, we focus primarily on the
goal of recovering the row-span of the weight matrix A.

Span recovery of general functions f(x) = g(Ax), where g is arbitrary, has been studied in some contexts, and is used
to gain important information about the underlying function f . By learning Span(A), we in essence are capturing
the relevant subspace of the input to f ; namely, f behaves identically on x as it does on the projection of x onto the
row-span of A. In statistics, this is known as effective dimension reduction or the multi-index model Li (1991); Xia
et al. (2002). Another important motivation for span recovery is for designing adversarial attacks. Given the span
of A, we compute the kernel of A, which can be used to fool the function into behaving incorrectly on inputs which
are perturbed by vectors in the kernel. Specifically, if x is a legitimate input correctly classified by f and y is a large
random vector in the kernel of A, then x+ y will be indistinguishable from noise but we will have f(x) = f(x+ y).

Several works have considered the problem from an approximation-theoretic standpoint, where the goal is to output a
hypothesis function f̃ which approximates f well on a bounded domain. For instance, in the case that A ∈ Rn is a rank
1 matrix and g(Ax) is a smooth function with bounded derivatives, Cohen et al. (2012) gives an adaptive algorithm to
approximate f . Their results also give an approximation Ã to A, under the assumption that A is a stochastic vector
(Ai ≥ 0 for each i and

∑
iAi = 1). Extending this result to more general rank k matrices A ∈ Rk×n, Tyagi &

Cevher (2014) and Fornasier et al. (2012) give algorithms with polynomial sample complexity to find approximations
f̃ to twice differentiable functions f . However, their results do not provide any guarantee that the original matrix A
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itself or a good approximation to its span will be recovered. Specifically, the matrix Ã used in the hypothesis function
f̃(x) = g̃(Ãx) of Tyagi & Cevher (2014) only has moderate correlation with the true row span of A, and always
admits some constant factor error (which can translate into very large error in any subspace approximation).

Furthermore, all aforementioned works require the strong assumption that the matrix of gradients is well-conditioned
(and full rank) in order to obtain good approximations f̃ . In contrast, when f(x) is a non-differentiable ReLU deep
network with only mild assumptions on the weight matrices, we prove that the gradient matrix has rank at least k/2,
which significantly strengthens span recovery guarantees since we do not make any assumptions on the gradient matrix.
Finally, Hardt & Woodruff (2013) gives an adaptive approximate span recovery algorithm with poly(n) samples under
the assumption that the function g satisfies a norm-preserving condition, which is restrictive and need not (and does
not) hold for the deep neural networks we consider here.

On the empirical side, the experimental results of Tyagi & Cevher (2014) for function approximation were only carried
out for simple one-layer functions, such as the logistic function in one dimension (where A has rank k = 1), and on
linear functions gT (Ax+ b), where g ∈ Rk has i.i.d. Gaussian entries. Moreover, their experiments only attempted to
recover approximations Ã to A when A was orthonormal. In addition, Fornasier et al. (2012) experimentally considers
the approximation problem for f when f(Ax) is a third degree polynomial of the input. This leaves an experimental
gap in understanding the performance of span recovery algorithms on non-smooth, multi-layer deep neural networks.

When f(x) is a neural network, there have been many results that allow for weight or architecture recovery under
additional assumptions; however nearly all such results are for shallow networks. Arora et al. (2014) shows that layer-
wise learning can recover the architecture of random sparse neural networks. Janzamin et al. (2015) applies tensor
methods to recover the weights of a two-layer neural network with certain types of smooth activations and vector-
valued output, whereas Ge et al. (2019); Bakshi et al. (2019) obtain weight recovery for ReLU activations. Zhang
et al. (2017) shows that SGD can learn the weights of two-layer neural networks with some specific activations. There
is also a line of work for improperly two-layer networks, where the algorithm outputs an arbitrary hypothesis function
which behaves similarly to the network under a fixed distribution (Goel et al., 2017; Goel & Klivans, 2019).

Learning properties of the network can also lead to so-called model extraction attacks or enhance classical adversarial
attacks on neural networks (Jagielski et al., 2019). Adversarial attacks are often differentiated into two settings, the
whitebox setting where the trained network weights are known or the blackbox setting where the network weights are
unknown but attacks can still be achieved on external information, such as knowledge of the dataset, training algorithm,
network architecture, or network predictions. Whitebox attacks are well-studied and usually use explicit gradients or
optimization procedures to compute adversarial inputs for various tasks such as classification and reinforcement learn-
ing (Szegedy et al., 2013; Huang et al., 2017; Goodfellow et al., 2014). However, blackbox attacks are more realistic
and it is clear that model recovery can enhance these attacks. The work of Papernot et al. (2017) attacks practical
neural networks upon observations of predictions of adaptively chosen inputs, trains a substitute neural network on the
observed data, and applies a whitebox attack on the substitute. This setting, nicknamed the practical blackbox setting
(Chen et al., 2017), is what we work in, as we only observe adaptively chosen predictions without knowledge of the
network architecture, dataset, or algorithms. We note that perhaps surprisingly, some of our algorithms are in fact
entirely non-adaptive.

1.1 OUR CONTRIBUTIONS

In this paper, we provably show that span recovery for deep neural networks with high precision can be efficiently
accomplished with poly(n) function evaluations, even when the networks have poly(n) layers and the output of the
network is a scalar in some finite set. Specifically, for deep networks M(x) : Rn → R with ReLU activation
functions, we prove that we can recover a subspace V ⊂ Span(A) of dimension at least k/2 with polynomially many
non-adaptive queries.1 First, we use a volume bounding technique to show that a ReLU network has sufficiently large
piece-wise linear sections and that gradient information can be derived from function evaluations. Next, by using a
novel combinatorial analysis of the sign patterns of the ReLU network along with facts in polynomial algebra, we
show that the gradient matrix has sufficient rank to allow for partial span recovery.

Theorem 3.4 (informal) Suppose we have the network M(x) = wTσ(W1σ(W2σ(. . .Wdσ(Ax)) . . . ), where σ
is the ReLU and Wi ∈ Rki×ki+1 are weight matrices, with ki possibly much smaller than k. Then, under mild
assumptions, there is a non-adaptive algorithm that makes O(kn log k) queries to M(x) and returns in poly(n, k)-
time a subspace V ⊆ span(A) of dimension at least k2 with probability 1− δ.

1We switch to the notation M(x) instead of f(x) to illustrate that M(x) is a neural network, whereas f(x) was used to represent
a general function with low-rank structure.
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We remark that span recovery of the first weight layer is provably feasible even in the surprising case when the neural
network has many “bottleneck" layers with small O(log(n)) width. Because this does not hold in the linear case,
this implies that the non-linearities introduced by activations in deep learning allow for much more information to
be captured by the model. Moreover, our algorithm is non-adaptive, which means that the points xi at which M(xi)
needs to be evaluated can be chosen in advance and span recovery will succeed with high probability. This has the
benefit of being parallelizable, and possibly more difficult to detect when being used for an adversarial attack.

In contrast with previous papers, we do not assume that the gradient matrix has large rank; rather our main focus and
novelty is to prove this statement under minimal assumptions. We require only two mild assumptions on the weight
matrices. The first assumption is on the orthant probabilities of the matrix A, namely that the distribution of sign
patterns of a vector Ag, where g ∼ N (0, In), is not too far from uniform. Two examples of matrices which satisfy this
property are random matrices and matrices with nearly orthogonal rows. The second assumption is a non-degeneracy
condition on the matrices Wi, which enforces that products of rows of the matrices Wi result in vectors with non-zero
coordinates.

Our next result is to show that full span recovery is possible for networks M(x) with twice differentiable activation
functions in the inner layers, even when the network has a 0/1 threshold function in the last layer and becomes
therefore non-differentiable, i.e., M(x) ∈ {0, 1}. Since the activation functions can be arbitrarily non-linear, our
algorithm only provides an approximation of the true subspace Span(A), although the distance between the subspace
we output and Span(A) can be made exponentially small. We need only assume bounds on the first and second
derivatives of the activation functions, as well as the fact that we can find inputs x ∈ Rn such that M(x) 6= 0 with
good probability, and that the gradients of the network near certain points where the threshold evaluates to one are not
arbitrarily small. We refer the reader to Section 4 for further details on these assumptions. Under these assumptions,
we can apply a novel gradient-estimation scheme to approximately recover the gradient of M(x) and the span of A.

Theorem 4.3 (informal) Suppose we have the network M(x) = τ(σ(Ax)), where τ : R → {0, 1} is a threshold
function and σ : Rk → R is a neural network with twice differentiable activation functions, and such that M satisfies
the conditions sketched above (formally defined in Section 4). Then there is an algorithm that runs in poly(N) time,
making at most poly(N) queries to M(x), where N = poly(n, k, log( 1

ε ), log( 1
δ )), and returns with probability 1 − δ

a subspace V ⊂ Rn of dimension k such that for any x ∈ V , we have

‖PSpan(A)x‖2 ≥ (1− ε)‖x‖2

where PSpan(A) is the orthogonal projection onto the span of A.

Empirically, we verify our theoretical findings by running our span recovery algorithms on randomly generated net-
works and trained networks. First, we confirm that full recovery is not possible for all architectures when the network
layer sizes are small. This implies that the standard assumption that the gradient matrix is full rank does not always
hold. However, we see that realistic network architectures lend themselves easily to full span recovery on both ran-
dom and trained instances. We emphasize that this holds even when the network has many small layers, for example
a ReLU network that has 6 hidden layers with [784, 80, 40, 30, 20, 10] nodes, in that order, can still admit full span
recovery of the rank 80 weight matrix.

Furthermore, we observe that we can effortlessly apply input obfuscation attacks after a successful span recovery
and cause misclassifications by tricking the network into classifying noise as normal inputs with high confidence.
Specifically, we can inject large amounts of noise in the null space of A to arbitrarily obfuscate the input without
changing the output of the network. We demonstrate the utility of this attack on MNIST data, where we use span
recovery to generate noisy images that are classified by the network as normal digits with high confidence. We
note that this veers away from traditional adversarial attacks, which aim to drastically change the network output
with humanly-undetectable changes in the input. In our case, we attempt the arguably more challenging problem of
drastically changing the input without affecting the output of the network.

2 PRELIMINARIES

Notation For a vector x ∈ Rk, the sign pattern of x, denoted sign(x) ∈ {0, 1}k, is the indicator vector for the non-
zero coordinates of x. Namely, sign(x)i = 1 if xi 6= 0 and sign(x)i = 0 otherwise. Given a matrix A ∈ Rn×m, we
denote its singular values as σmin(A) = σmin{n,m}, . . . , σ1(A) = σmax(A). The condition number of A is denoted
κ(A) = σmax(A)/σmin(A). We let In ∈ Rn×n denote the n× n identity matrix. For a subspace V ⊂ Rn, we write
PV ∈ Rn×n to denote the orthogonal projection matrix onto V . If µ ∈ Rn and Σ ∈ Rn×n is a PSD matrix, we write
N (µ,Σ) to denote the multi-variate Gaussian distribution with mean µ and covariance Σ.
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Gradient Information For any function f(x) = g(Ax), note that ∇f(x) = A>g(Ax) must be a vector in the
row span of A. Therefore, span recovery boils down to understanding the span of the gradient matrix as x varies.
Specifically, note that if we can find points x1, .., xk such that {∇f(xi)} are linearly independent, then the full span of
A can be recovered using the span of the gradients. To our knowledge, previous span recovery algorithms heavily rely
on the assumption that the gradient matrix is full rank and in fact well-conditioned. Specifically, for some distribution
D, it is assumed that Hf =

∫
x∼D∇f(x)∇f(x)> dx is a rank k matrix with a minimum non-zero singular value

bounded below by α and the number of gradient or function evaluations needed depends inverse polynomially in α. In
contrast, in this paper, when f(x) is a neural network, we provably show that Hf is a matrix of sufficiently high rank
or large minimum non-zero singular value under mild assumptions, using tools in polynomial algebra.

3 DEEP NETWORKS WITH RELU ACTIVATIONS

In this section, we demonstrate that partial span recovery is possible for deep ReLU networks. Specifically, we consider
neural networks M(x) : Rn → R of the form

M(x) = wTσ(W1σ(W2σ(. . .Wdσ(Ax)) . . . )

where σ(x)i = max{xi, 0} is the RELU (applied coordinate-wise to each of its inputs), and Wi ∈ Rki×ki+1 , and
w ∈ Rkd , and A has rank k. We note that ki can be much smaller than k. In order to obtain partial span recovery, we
make the following assumptions parameterized by a value γ > 0 (our algorithms will by polynomial in 1/γ):

• Assumption 1: For every sign pattern S ∈ {0, 1}k, we have Prg∼N (0,In) [sign(σ(Ag)) = S] ≥ γ/2k.

• Assumption 2: For any S1, . . . , Sd 6= ∅ where Si ⊆ [ki], we have wT
(∏d

i=1(Wi)Si

)
∈ Rk is entry-wise

non-zero. Here (Wi)Si
is the matrix with the rows j /∈ Si set equal to 0. Moreover, we assume

Prg∼N (0,Ik) [M(g) = 0] ≤ γ

8
.

Our first assumption is an assumption on the orthant probabilities of the distribution Ag. Specifically, observe that
Ag ∈ Rk follows a multi-variate Gaussian distribution with covariance matrix AAT . Assumption 1 then states that
the probability that a random vector x ∼ N (0,AAT ) lies in a certain orthant of Rk is not too far from uniform. We
remark that orthant probabilities of multivariate Gaussian distributions are well-studied (see e.g., Miwa et al. (2003);
Bacon (1963); Abrahamson et al. (1964)), and thus may allow for the application of this assumption to a larger class
of matrices. In particular, we show it is satisfied by both random matrices and orthogonal matrices. Our second
assumption is a non-degeneracy condition on the weight matrices Wi – namely, that products of wT with non-empty
sets of rows of the Wi result in entry-wise non-zero vectors. In addition, Assumption 2 requires that the network is
non-zero with probability that is not arbitrarily small, otherwise we cannot hope to find even a single xwithM(x) 6= 0.

In the following lemma, we demonstrate that these conditions are satisfied by randomly initialized networks, even
when the entries of the Wi are not identically distributed.
Lemma 3.1. If A ∈ Rk×n is an arbitrary matrix with orthogonal rows, or if n > Ω(k3) and A has entries that
are drawn i.i.d. from some sub-Gaussian distribution D with expectation 0, unit variance, and constant sub-Gaussian
norm ‖D‖ψ2 = supp≥1 p

−1/2 (EX∼D|X|p)1/p then with probability at least 1− e−k2 , A satisfies Assumption 1 with
γ ≥ 1/2. Moreover, if the weight matrices w,W1,W2, ...,Wd with Wi ∈ Rki×ki+1 have entries that are drawn
independently (and possibly non-identically) from continuous symmetric distributions, and if ki ≥ log( 16d

δγ ) for each
i ∈ [d], then Assumption 2 holds with probability 1− δ.

3.1 ALGORITHM FOR SPAN RECOVERY

The algorithm for recovery is given in Algorithm 1. Our algorithm computes the gradient ∇M(gi) for different
Gaussian vectors gi ∼ N (0, Ik), and returns the subspace spanned by these gradients. To implement this procedure,
we must show that it is possible to compute gradients via the perturbational method, given only oracle queries to the
network M . Namely, we firstly must show that if g ∼ N (0, In) then∇M(g) exists, and moreover, that∇M(x) exists
for all x ∈ Bε(g), where Bε(g) is a ball of radius ε centered at g, and ε is some value with polynomial bit complexity
which we can bound. To demonstrate this, we show that for any fixing of the sign patterns of the network, we can write
the region of Rn which satisfies this sign pattern and is ε-close to one of the O(dk) ReLU thresholds of the network
as a linear program. We then show that the feasible polytope of this linear program is contained inside a Euclidean
box in Rn, which has one side of length ε. Using this containment, we upper bound the volume of the polytope in Rn
which is ε close to each ReLU, and union bound over all sign patterns and ReLUs to show that the probability that a
Gaussian lands in one of these polytopes is exponentially small.
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Algorithm 1: Span Recovery with Non-Adaptive Gradients
Input: function M(x) : Rn → R, k: latent dimension , γ: probability parameter

1 Set r = O(k log(k)/γ)
2 for i = 0, . . . , r do
3 Generate random Gaussian vector gi ∼ N (0, In).
4 Compute Gradient: zi = ∇M(gi) . Lemma 3.2
5 end
6 return Span

(
z1, z2, . . . , zr

)

Lemma 3.2. There is an algorithm which, given g ∼ N (0, Ik), with probability 1− exp(−nc) for any constant c > 1
(over the randomness in g), computes∇M(g) ∈ Rn with O(n) queries to the network, and in poly(n) runtime.

Now observe that the gradients of the network lie in the row-span of A. To see this, for a given input x ∈ Rn, let
S0(x) ∈ Rk be the sign pattern of σ(Ax) ∈ Rk, and more generally define Si(x) ∈ Rki via

Si(x) = sign
(
σ(Wiσ(Wi+1σ(. . .Wdσ(Ax)) . . . )

)
Then ∇M(x) = (wT · (

∏d
i=1(Wi)Si)))AS0 , which demonstrates the claim. Now define zi = ∇M(gi) where

gi ∼ N (0, In), and let Z be the matrix where the i-th row is equal to zi. We will prove that Z has rank at least k/2.
To see this, first note that we can write Z = VA, where V is some matrix such that the non-zero entries in the i-th
row are precisely the coordinates in the set Si0, where Sij = Sj(g

i) for any j = 0, 1, 2, . . . , d and i = 1, 2, . . . , r. We
first show that V has rank at least ck for a constant c > 0. To see this, suppose we have computed r gradients so far,
and the rank of V is less than ck for some 0 < c < 1/2. Now V ∈ Rr×k is a fixed rank-ck matrix, so the span of
the matrix can be expressed as a linear combination of some fixed subset of ck of its rows. We use this fact to show in
the following lemma that the set of all possible sign patterns obtainable in the row span of V is much smaller than 2k.
Thus a gradient zr+1 with a uniform (or nearly uniform) sign pattern will land outside this set with good probability,
and thus will increase the rank of Z when appended.
Lemma 3.3. Let V ∈ Rr×k be a fixed at most rank ck matrix for c ≤ 1/2. Then the number of sign patterns S ⊂ [k]

with at most k/2 non-zeros spanned by the rows of V is at most 2k√
k

. In other words, the set S(V) = {sign(w) | w ∈
span(V), nnz(w) ≤ k

2} has size at most 2k√
k

.

Theorem 3.4. Suppose the network M(x) = wTσ(W1σ(W2σ(. . .Wdσ(Ax)) . . . ), where σ is the ReLU, satisfies
Assumptions 1 and 2. Then the algorithm given in Figure 1 makes O(kn log(k/δ)/γ) queries to M(x) and returns in
poly(n, k, 1/γ, log(1/δ)) time a subspace V ⊆ span(A) of dimension at least k2 with probability 1− δ.

4 NETWORKS WITH DIFFERENTIABLE ACTIVATIONS AND THRESHOLDING

In this section, we consider networks with more general differentiable activation functions, and even allow for the
possibility of a threshold function at the end. Specifically, let τ : R → {0, 1} be the threshold function: τ(x) = 1
if x ≥ 1, and τ(x) = 0 otherwise. Again, we let A ∈ Rk×n where k < n, be the innermost weight matrix. The
networks M : Rn → R we consider are then of the form:

M(x) = τ(W1σ1(W2σ2(. . . σdAx)) . . . )

where Wi ∈ Rki×ki+1 and each σi is a continuous, differentiable activation function applied entrywise to its input. We
will demonstrate that even for such functions with a binary threshold placed at the end, giving us minimal information
about the network, we can still achieve full span recovery of the weight matrix A, albeit with the cost of an ε-
approximation to the subspace. Note that the latter fact is inherent, since the gradient of any function that is not linear
in some ball around each point cannot be obtained exactly without infinitely small perturbations of the input, which
we do not allow in our model.

We can simplify the above notation, and write σ(x) = W1σ1(W2σ2(. . . σdAx)) . . . ), and thus M(x) = τ(σ(x)).
Our algorithm will involve building a subspace V ⊂ Rn which is a good approximation to the span of A. At each
step, we attempt to recover a new vector which is very close to a vector in Span(A), but which is nearly orthogonal
to the vectors in V . Specifically, after building V , on an input x ∈ Rn, we will query M for inputs M((In −PV )x).
Recall that PV is the projection matrix onto V , and PV ⊥ is the projection matrix onto the subspace orthogonal to V .
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Thus, it will help here to think of the functions M,σ as being functions of x and not (In − PV )x, and so we define
σV (x) = σ(A(In−PV )x), and similarly MV (x) = τ(σV (x)). For the results of this section, we make the following
assumptions on the activation functions.

Assumptions:

1. The function σi : R→ R is continuous and twice differentiable, and σi(0) = 0.
2. σi and σ′i are Li-Lipschitz, meaning:

sup
x∈R

∣∣∣∣ ddxσi(x)

∣∣∣∣ ≤ Li, sup
x∈R

∣∣∣∣ d2d2xσi(x)

∣∣∣∣ ≤ Li
3. The network is non-zero with bounded probability: for every subspace V ⊂ Rn of dimension dim(V ) < k,

we have that Prg∼N (0,In) [σV (g) ≥ 1] ≥ γ for some value γ > 0.
4. Gradients are not arbitrarily small near the boundary: for every subspace V ⊂ Rn of dimension dim(V ) < k

Prg∼N (0,In) [ |∇gσV (cg)| ≥ η,∀c > 0 such that σV (cg) = 1, and σV (g) ≥ 1] ≥ γ
for some values η, γ > 0, where ∇gσV (cg) is the directional derivative of σV in the direction g.

The first two conditions are standard and straightforward, namely σi is differentiable, and has bounded first and
second derivatives (note that for our purposes, they need only be bounded in a ball of radius poly(n)). SinceM(x) is a
threshold applied to σ(x), the third condition states that it is possible to find inputs x with non-zero network evaluation
M(x). Our condition is slightly stronger, in that we would like this to be possible even when x is projected away from
any k′ < k dimensional subspace (note that this ensures that Ax is non-zero, since A has rank k).

The last condition simply states that if we pick a random direction g where the network is non-zero, then the gradients
of the network are not arbitrarily small along that direction at the threshold points where σ(c · g) = 1. Observe that
if the gradients at such points are vanishingly small, then we cannot hope to recover them. Moreover, since M only
changes value at these points, these points are the only points where information about σ can be learned. Thus, the
gradients at these points are the only gradients which could possibly be learned. We note that the running time of our
algorithms will be polynomial in log(1/η), and thus we can even allow the gradient size η to be exponentially small.

4.1 THE APPROXIMATE SPAN RECOVERY ALGORITHM

We now formally describe and analyze our span recovery algorithm for networks with differentiable activation func-
tions and 0/1 thresholding. Let κi be the condition number of the i-th weight matrix Wi, and let δ > 0 be a failure
probability, and let ε > 0 be a precision parameter which will affect the how well the subspace we output will ap-
proximate Span(A). Now fix N = poly(n, k, 1γ ,

∑d
i=1 log(Li),

∑d
i=1 log(κi), log( 1

η ), log( 1
ε ), log( 1

δ )). The running
time and query complexity of our algorithm will be polynomial in N . Our algorithm for approximate span recovery is
given formally in Figure 2.
Proposition 4.1. Let V ⊂ Rn be a subspace of dimension k′ < k, and fix any ε0 > 0. Then we can find a vector x
with 0 ≤ σV (x) − 1 ≤ 2ε0 in expected O(1/γ + N log(1/ε0)) time. Moreover, with probability γ/2 we have that
∇xσV (x) > η/4 and the tighter bound of ε0η2−N ≤ σV (x)− 1 ≤ 2ε0.

We will apply the above proposition as input to the following Lemma 4.2, which is the main technical result of this
section. Our approach involves first taking the point x from Proposition 4.1 such that σV (x) is close but bounded away
from the boundary, and generating n perturbations at this point MV (x+ ui) for carefully chosen ui. While we do not
know the value of σV (x+ui), we can tell for a given scaling c > 0 if σV (x+ cui) has crossed the boundary, since we
will then have MV (x+ cui) = 0. Thus we can estimate the directional derivative∇uiσ(x) by finding a value ci via a
binary search such that σV (x+ ciui) is exponentially closer to the boundary than σV (x). In order for our estimate to
be accurate, we must carefully upper and lower bound the gradients and Hessian of σv near x, and demonstrate that the
linear approximation of σv at x is still accurate at the point x+ ciui where the boundary is crossed. One can then set
up a linear system to approximately solve for the gradient∇σ(x) which yields the observed n directional derivatives.
Lemma 4.2. Fix any ε, δ > 0, and let N be defined as above. Then given any subspace V ⊂ Rn with dimension
dim(V ) < k, and given x ∈ Rn, such that ε0η2−N ≤ σV (x) − 1 ≤ 2ε0 where ε0 = Θ(2−N

C

/ε) for a sufficiently
large constant C = O(1), and such that ∇xσV (x) > η/2, then with probability 1 − 2−N/n

2

, we can find a vector
v ∈ Rn in expected poly(N) time, such that ‖PSpan(A)v‖2 ≥ (1− ε)‖v‖2, and such that ‖PV v‖2 ≤ ε‖v‖2.

Theorem 4.3. Suppose the network M(x) = τ(σ(Ax)) satisfies the conditions described at the beginning of
this section. Then Algorithm 2 runs in poly(N) time, making at most poly(N) queries to M(x), where N =

6
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Algorithm 2: Span Recovery With Adaptive Gradients

1 V ← ∅, N = poly
(
n, k, 1γ ,

∑d
i=1 log(Li),

∑d
i=1 log(κi), log( 1

η ), log( 1
ε ), log( 1

δ )
)
, ε0 ← 2−poly(N)

2 for i = 0, . . . , k do
3 Generate g ∼ N (0, In) until M((In −PV )g) = 1

4 Find a scaling α > 0 such that x = αg satisfies ε0η2−N ≤ σV (x)− 1 ≤ 2ε0. . Proposition 4.1
5 Generate g1, . . . , gn ∼ N (0, In), and set ui =

(
gi2
−N − x/‖x‖2

)
.

6 For each i ∈ [n], binary search over values c to find ci such that

1− β ≤ σV (x+ ciui) ≤ 1

where β = 2−N
2

ε20.
7 If any ci satisfies |ci| ≥ (10 · 2−N ε0/η), restart from line 5 (regenerate the Gaussian g).
8 Otherwise, define B ∈ Rn×n via B∗,i = ui, where B∗,i is the i-th column of B. Define b ∈ Rn by bi = 1/ci.
9 Let y∗ be the solution to:

min
y∈Rn

‖yTB− bT ‖22

Set vi = y∗ and V ← Span(V, vi).
10 end
11 return V

poly(n, k, 1γ ,
∑d
i=1 log(Li),

∑d
i=1 log(κi), log( 1

η ), log( 1
ε ), log( 1

δ )), and returns with probability 1 − δ a subspace
V ⊂ Rn of dimension k such that for any x ∈ V , we have ‖PSpan(A)x‖2 ≥ (1− ε)‖x‖2.

5 EXPERIMENTS

Figure 1: Partial span recovery of small networks with layer sizes specified in the legend. Note that 784->80->[6,3]
indicates a 4 layer neural network with hidden layer sizes 784, 80, 6, and 3, in that order. Full span recovery is not
always possible and recovery deteriorates as width decreases and depth increases.

To test span recovery for a given network, we calculate the gradients analytically at points distributed according to a
standard Gaussian and observe the rank of the resulting gradient matrix, where the rank is defined to be the number
of singular values that are above 1e-5 of the maximum singular value. In our experiments, we attempt to recover
the span of a 784-by-80 matrix with decreasing layer sizes specified in the figures. Our networks are feedforward,
fully-connected with ReLU units. For the MNIST dataset, we use a size 10 vector output and train according to the
softmax cross entropy loss, but we only calculate the gradient with respect to the first output node.

Our recovery algorithms are GradientsRandom (Algorithm 1), GradientsRandomAda (Algorithm 2), and GradientsM-
NIST. GradientsRandom is a direct application of our first span recovery algorithm and calculates gradients via pertur-
bations at random points for a random network. GradientsRandomAda uses our adaptive span recovery algorithm for
a random network. Finally, GradientsMNIST is an application of GradientsRandom on a network with weights trained
on MNIST data. In general, we note that the experimental outcomes are very similar among all three scenarios.

7
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Figure 2: Full span recovery of realistic networks with moderate widths and reasonable architectures. Full recovery
occurs with only 100 samples for a rank 80 weight matrix in all settings.

For networks with very small widths and multiple layers, we see that span recovery deteriorates as depth increases,
supporting our theory. This holds both in the case when the networks are randomly initialized with Gaussian weights
or trained on a real dataset (MNIST) and whether we use adaptive or non-adaptive recovery algorithms. However,
we note that these small networks have unrealistically small widths (less than 10) and when trained on MNIST, these
networks fail to achieve high accuracy, all falling below 80 percent. The small width case is therefore only used to
support, with empirical evidence, why our theory cannot possibly guarantee full span recovery under every network
architecture.

For more realistic networks with moderate or high widths, however, full span recovery seems easy and implies a real
possibility for attack. Although we tried a variety of widths and depths, the results are robust to reasonable settings
of layer sizes and depths. Therefore, we only present experimental results with sub-networks of a network with layer
sizes [784, 80, 40, 30, 20, 10]. Note that full span recovery of the first-layer weight matrix with rank 80 is achieved
almost immediately in all cases, with less than 100 samples.

On the real dataset MNIST, we demonstrate the utility of span recovery algorithms as an attack to fool neural net-
works to misclassify noisy inputs. We train a ReLU network (to around 95 percent accuracy) and recover its span
by computing the span of the resulting gradient matrix. Then, we recover the null space of the matrix and generate
random Gaussian noise projected onto the null space. We see that our attack successfully converts images into noisy
versions without changing the output of the network, implying that allowing a full (or even partial) span recovery on
a classification network can lead to various adversarial attacks despite not knowing the exact weights of the network.

Figure 3: Fooling ReLU networks into misclassifying noise as digits by introducing Gaussian noise into the null space
after span recovery. The prediction of the network is presented above the images, along with its softmax probability.

8
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A MISSING PROOFS FROM SECTION 3

We first restate the results which have had their proofs omitted, and include their proofs subsequently.

Lemma 3.1 If A ∈ Rk×n has orthogonal rows, or if n > Ω(k3) and A has entries that are drawn i.i.d. from
some sub-Gaussian distribution D with expectation 0, unit variance, and constant sub-gaussian norm ‖D‖ψ2

=

supp≥1 p
−1/2 (EX∼D|X|p)1/p then with probability at least 1− e−k2 , A satisfies Assumption 1 with γ ≥ 1/2.

Moreover, if the weight matrices w,W1,W2, ...,Wd with Wi ∈ Rki×ki+1 have entries that are drawn independently
(and possibly non-identically) from continuous symmetric distributions, and if ki ≥ log( 16d

δγ ) for each i ∈ [d], then
Assumption 2 holds with probability 1− δ.

Proof. By Theorem 5.58 of Vershynin (2010), if the entries A are drawn i.i.d. from some sub-Gaussian isotropic
distribution D over Rn such that ‖Aj‖2 =

√
n almost surely, then

√
n − C

√
k − t ≤ σmin(A) ≤ σmax(A) ≤√

n + C
√
k + t with probability at least 1 − 2e−ct

2

, for some constants c, C > 0 depending only on ‖D‖ψ2
. Since

the entries are i.i.d. with variance 1, it follows that the rows of A are isotropic. Moreover, we can always condition
on the rows having norm exactly

√
n, and pulling out a positive diagonal scaling through the first Relu of M(x),

and absorbing this scaling into Wd. It follows that the conditions of the theorem hold, and we have
√
n − C

√
k ≤

σmin(A) ≤ σmax(A) ≤
√
n + C

√
k with probability at least 1 − e−k2 for a suitably large re scaling of the constant

C. Setting n > Ω(k3), it follows that κ(A) < (1 + 1/(100k)), which holds immediately if A has orthogonal rows.

Now observe that Ag is distributed as a multi-variate Gaussian with co-variance ATA, and is therefore given by the
probability density function (pdf)

p′(x) =
1

(2π)k/2det(ATA)1/2
exp

(
−1

2
xTATAx

)
Let p(x) = 1

(2π)k/2 exp
(
− 1

2x
Tx
)

be the pdf of an identity covariance GaussianN (0, Ik). We lower bound p′(x)/p(x)

for x with ‖x‖22 ≤ 16k. In this case, we have

p′(x)

p(x)
=

1

det(ATA)1/2
exp

(
−1

2

(
xTATAx− ‖x‖22

))
≥κ(A)−k exp

(
−1

2

(
‖x‖22(1 + 1/(100k))− ‖x‖22

))
≥κ(A)−k exp

(
−1

2
|x‖22/(100k)

)
≥(1 + 1/(100k))−k exp

(
−1

2
(16/100)

)
≥(1 + 1/(100k))−k exp

(
−1

2
(16/100)

)
≥1/2

(1)

Thus for any sign pattern S, Pr[sign(Ag) = S : ‖Ag‖22 ≤ k] ≥ 1
2Pr[sign(g) = S : ‖g‖22 ≤ k]. Now

Pr[sign(g) = S] = 2−k, and spherical symmetry of Gaussians, Pr[sign(g) = S : ‖g‖22 ≤ k] = 2−k, and thus
Pr[sign(Ag) = S : ‖Ag‖22 ≤ k] ≥ 2−k−1. Now ‖Ag‖22 ≤ 2‖g‖22 which is distributed as a χ2 random variable
with k-degrees of freedom. By standard concentration results for χ2 distributions (Lemma 1 Laurent & Massart
(2000)), we have Pr[‖g‖22 ≥ 8k] ≤ e−2k, so Pr[‖Ag‖22 ≥ 16k] ≤ Pr[‖g‖22 ≥ 8k] ≤ e−2k. By a union bound,
Pr[sign(Ag) = S : ‖Ag‖22 ≤ k] ≥ 2−k−1 − e−2k ≥ 1

42−k, which completes the proof of the first claim with
γ = 1/4.

For the second claim, by an inductive argument, the entries in the rows i ∈ Sj of the product WSj

(∏d
i=j+1(Wi)Si

)
are drawn from a continuous distribution. Thus each column of WSj

(∏d
i=j+1(Wi)Si

)
is non-zero with probability

1. It follows that 〈w,
(∏d

i=1(Wi)Si

)
∗,j
〉 is the inner product of a non-zero vector with a vector w with continuous,
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independent entries, and is thus non-zero with probability 1. By a union bound over all possible non-empty sets Sj ,
the desired result follows.

We now show that the second part of Assumption 2 holds. To do so, first let g ∼ N (0, In). We demonstrate that
PrW1,W2,...,Wd,g [M(x) = 0] ≤ 1−γδ/100. Here the entries of the Wi’s are drawn independently but not necessar-
ily identically from a continuous symmetric distribution. To see this, note that we can condition on the value of g, and
condition at each step on the non-zero value of yi = σ(Wi+1σ(Wi+2σ(. . . σ(Ag) . . . ). Then, over the randomness
of Wi, note that the inner product of a row of Wi and yi is strictly positive with probability at least 1/2, and so each
coordinate of Wiyi is strictly positive independently with probability ≥ 1/2. It follows that σ(Wiyi) is non-zero with
probability at least 1− 2−ki . Thus

PrW1,W2,...,Wd,g [M(g) 6= 0] ≥
d∏
i=1

(1− 2−ki)

≥
(

1− δγ

16d

)d
≥ 1− δγ/8

(2)

where the second inequality is by assumption. It follows by our first part that

PrW1,W2,...,Wd,g [M(g) = 0] ≤ δγ/8

So by Markov’s inequality,
PrW1,W2,...,Wd

[Prg [M(g) = 0] ≥ γ/8] ≤ δ
Thus with probability 1− δ over the choice of W1, . . . ,Wd, we have Prg [M(g) = 0] ≤ γ/8 as desired.

Lemma 3.2 There is an algorithm which, given g ∼ N (0, Ik), with probability 1−exp(−nc) for any constant c > 1
(over the randomness in g), computes∇M(g) ∈ Rn with O(n) queries to the network, and in poly(n) running time.

Proof. Let Mi(x) = σ(Wiσ(Wi+1σ(. . . σ(Ax)) . . . ). If ∇M(g) exists, there is an ε > 0 such that M is differen-
tiable on Bε(g). We show that with good probability, if g ∼ N (0, In) (or in fact, almost any continuous distribution),
then M(g) is continuous in the ball Bε(g) = {x ∈ Rn | ‖x− g‖2 < ε} for some ε which we will now compute.

First, we can condition on the event that ‖g‖22 ≤ (nd)10c, which occurs with probability at least 1− exp(−(nd)5c) by
concentration results for χ2 distributions Laurent & Massart (2000). Now, fix any sign pattern Si ⊆ [ki] for the i-th
layerMi(x) = σ(Wi(σ(. . . (σ(Ax) . . . ), and let S = (S1, S2, . . . , Sd+1). We note that we can enforce the constraint
that for an input x ∈ Rn, the sign pattern of Mi(x) is precisely Si. To see this, note that after conditioning on a
sign pattern for each layer, the entire network becomes linear. Thus each constraint that 〈(Wi)j,∗ ,Mi+1(x)〉 ≥ 0 or
〈(Wi)j,∗ ,Mi+1(x)〉 ≤ 0 can be enforced as a linear combination of the coordinates of x.

Now fix any layer i ∈ [d + 1] and neuron j ∈ [ki], WLOG j ∈ Si. We now add the additional constraint that
〈(Wi)j,∗ ,Mi+1(x)〉 ≤ η, where η = exp(−poly(nd)) is a value we will later choose. Thus, we obtain a linear
program with k +

∑d
i=1 ki constraints and n variables. The feasible polytope P represents the set of input points

which satisfy the activation patterns S and are η-close to the discontinuity given by the j-th neuron in the i-th layer.

We can now introduce the following non-linear constraint on the input that ‖x‖2 ≤ (nd)10c. Let B = B(nd)10c(~0) be
the feasible region of this last constraint, and let P∗ = P ∩B. We now bound the Lesbegue measure (volume) V (P∗)
of the region P . First note that V (P∗) ≤ V (P ′), where V (P ′) is the region defined by the set of points which satisfy:

〈y, x〉 ≥ 0

〈y, x〉 ≤ η
‖x‖22 ≤ (nd)10c

(3)

where each coordinate of the vector y ∈ Rn is a linear combination of products of the weight matrices W`, ` ≥ i.
One can see that the first two constraints for P ′ are also constraints for P∗, and the last constraint is precisely B, thus
P∗ ⊂ P ′ which completes the claim of the measure of the latter being larger. Now we can rotate P ′ by the rotation
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which sends y → ‖y‖2 ·e1 ∈ Rn without changing the volume of the feasible region. The resulting region is contained
in the region P ′′ given by

0 ≤ x1 ≤ η‖x‖2∞ ≤ (nd)10c (4)

Finally, note that P ′′ ⊂ Rn is a Eucledian box with n− 1 side lengths equal to (nd)10c and one side length of ‖y‖2η,
and thus V (P ′′) ≤ ‖y‖2η(nd)10nc. Now note we can assume that the entries of the weight matrices A,W1, . . . ,Wd

are specified in polynomially many (in n) bits, as if this were not the case the output M(x) of the network would not
have polynomial bit complexity, and could not even be read in poly(n) time. Equivalently, we can assume that our
running time is allowed to be polynomial in the number of bits in any value of M(x), since this is the size of the input
to the problem. Given this, since the coordinates of y were linear combinations of products of the coordinates of the
weight matrices, and note that each of which is at most 2n

C

for some constant C (since the matrices have polynomial
bit-complexity), we have that P∗ ≤ η2n

C

(nd)10nc as needed.

Now the pdf of a multi-variate Gaussian is upper bounded by 1, so Prg∼N (0,In) [g ∈ P∗] ≤ V (P∗) ≤ η2n
C

(nd)10nc.
It follows that the probability that a multivariate Gaussian g ∼ N (0, In) satisfies the sign pattern S and is η close
to the boundary for the j-th neuron in the i-th layer. Now since there are at most 2k ·

∏d
i=1 2ki ≤ 2nd possible

combinations of sign patterns S, it follows that the the probability that a multivariate Gaussian g ∈ N (0, In) is η close
to the boundary for the j-th neuron in the i-th layer is at most η2n

C

(nd)10nc2nd. Union bounding over each of the
ki neurons in layer i, and then each of the d layers, it follows that g ∈ N (0, In) is η close to the boundary for any
discontinuity in M(x) is at most η2n

C

(nd)10nc+12nd. Setting η ≤ 2(nd)
20c+1)2−n

C

, it follows that with probability
at least 1− exp(−(nd)c), the network evaluated at g ∈ N (0, In) is at least η close from all boundaries (note that C is
known to us by assumption).

Now we must show that perturbing the point g by any vector with norm at most ε results in a new point g′ which still
has not hit one of the boundaries. Note that M(g) is linear in an open ball around g, so the change that can occur in
any intermediate neuron after perturbing g by some v ∈ Rn is at most ‖A‖2

∏d
i=1 ‖Wi‖2, where ‖ · ‖2 is the spectral

norm. Now since each entry in the weight matrix can be specified in polynomially many bits, the Frobenius norm of
each matrix (and therefore the spectral norm), is bounded by n22n

C

for some constant C. Thus

‖A‖2
d∏
i=1

‖Wi‖2 ≤ (n22n
C

)d+1 = β

and setting ε = η/β, it follows that M(x) is differentiable in the ball Bε(x) as needed.

We now generate u1, u2, . . . , un ∼ N (0, In), which are linearly independent almost surely. We set vi = εui

2‖ui‖2 .
SinceM(g) is a ReLU network which is differentiable on Bε(g), it follows thatM(g) is a linear function on Bε(g), and
moreover vi ∈ Bε(g) for each i ∈ [n]. Thus for any c < 1 we have M(g)−M(g+cvi)

c = ∇viM(x), thus we can compute
∇viM(x) for each i ∈ [n]. Finally, since the directional derivative is given by ∇viM(x) = 〈∇M(x), vi/‖vi‖2〉, and
since v1, . . . , vn are linearly independent, we can set up a linear system to solve for ∇M(x) exactly in polynomial
time, which completes the proof.

Lemma 3.3 Let V ∈ Rr×k be a fixed at most rank ck matrix for c ≤ 1/2. Then the number of sign patterns S ⊂ [k]

with at most k/2 non-zeros spanned by the rows of V is at most 2k√
k

. In other words, the set S(V) = {sign(w) | w ∈
span(V), nnz(w) ≤ k

2} has size at most 2k√
k

.

Proof. Any vector w in the span of the rows of V can be expressed as a linear combination of at most ck rows of V.
So create a variable xi for each coefficient i ∈ [ck] in this linear combination, and let fj(x) be the linear function of the
x′is which gives the value of the j-th coordinate of w. Then f(x) = (f1(x), . . . , fk(x)) is a k-tuple of polynomials,
each in ck-variables, where each polynomial has degree 1. By Theorem 4.1 of Hall et al. (2010), it follows that the
number of sign patterns which contain at most k/2 non-zero entries is at most

(
ck+k/2
ck

)
. Setting c ≤ 1/2, this is at

most
(
k
k/2

)
≤ 2k√

k
.

Theorem 3.4 Suppose the network M(x) = wTσ(W1σ(W2σ(. . .Wdσ(Ax)) . . . ), where σ is the ReLU, satisfies
Assumption 1 and 2. Then the algorithm given in Figure 1 makes O(kn log(k/δ)/γ) queries to M(x) and returns in
poly(n, k, 1/γ, log(1/δ))-time a subspace V ⊆ span(A) of dimension at least k2 with probability 1− δ.
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Proof. First note that by Lemma 3.2, we can efficiently compute each gradient ∇M(gi) using O(n) queries to the
network. After querying for the gradient zi = ∇M(gi) for r′ ≤ r independent Gaussian vectors gi ∈ Rn, we obtain
the vector of gradients Z = V · A ∈ Rr′×k. Now suppose that V had rank ck for some c ≤ 1/2. Now consider
the gradient ∇(gr

′+1), which can be written as zr
′+1 = wT

(∏d
i=1(Wi)Sr′+1

i

)
Diag(sign(Agr

′+1))A. Thus we

can write zr
′+1 = Vr′+1A, where Vr′+1 ∈ Rk is a row vector which will be appended to the matrix V to form

a new Z = VA ∈ Rr′+1×k after the (r′ + 1)-th gradient is computed. Specifically, for any j ∈ [r], we have:
Vj = wT

(∏d
i=1(Wi)Sj

i

)
Diag(sign(Agj)).

Let Er′+1 be the event that M(gr
′+1) 6= 0. It follows necessarily that, conditioned on Er′+1, we have that

sign(Vr′+1) = Sr
′+1

0 . The reason is as follows: if M(gr
′+1) 6= 0, then we could not have Sr

′+1
j = ∅ for any

j ∈ {0, 1, 2, . . . , d}, since this would result in M(gr
′+1) = 0. It follows that the conditions for Assumption 2 to apply

hold, and we have that wT
(∏d

i=1(Wi)Sr′+1
i

)
∈ Rk is entry-wise non-zero. Given this, it follows that the sign pattern

of

Vr′+1 = wT

(
d∏
i=1

(Wi)Sr′+1
i

)
Diag(sign(Agj))

will be precisely Sr
′+1

0 , as needed.

Now by Lemma 3.3, the number of sign patterns of k-dimensional vectors with at most k/2 non-zero entries which
are contained in the span of V is at most 2k√

k
. Let S be the set of sign patterns with at most k/2 non-zeros and

such that for every S ∈ S, S is not a sign pattern which can be realized in the row span of V. It follows that
|S| ≥ 1

22k − 2k√
k
≥ 1

42k, so by Assumption 1, we have that Pr
[
sign(Agr

′+1) ∈ S
]
≥ γ/4. By a union bound, we

have Pr
[
sign(Agr

′+1) ∈ S, Er′+1

]
≥ γ/8

Conditioned on sign(Agr
′+1) ∈ S) and Er′+1 simultaneously, it follows that adding the row vector Vr′+1 to the

matrix V will increase its rank by 1. Thus after O(log(k/δ)/γ) repetitions, the rank of V will be increased by at least
1 with probability 1 − δ/k. By a union bound, after after r = O(k log(k/δ)/γ), V ∈ Rr×k will have rank at least
k/2 with probability at least 1 − δ, which implies that the same will hold for Z since rank(Z) ≥ rank(V), which is
the desired result.

B MISSING PROOFS FROM SECTION 4

Proposition 4.1 Let V ⊂ Rn be a subspace of dimension k′ < k, and fix any ε0 > 0. Then we can find a vector x
with

0 ≤ σV (x)− 1 ≤ 2ε0

in expectedO(1/γ+N log(1/ε0)) time. Moreover, with probability γ/2 we have that∇xσV (x) > η/4 and the tighter
bound of

ε0η2−N ≤ σV (x)− 1 ≤ 2ε0

Proof. We begin by generating Gaussians g1, . . . and computing MV (gi). By Property 3 of the network assumptions,
we need only repeat the process 1/γ times until we obtain an input y = (In − PV )gi with M(y) = MV (gi) = 1.
Since all activation functions satisfy σi(0) = 0, we know that σV (0 · gi) = 0, and σV (gi) = 1. Since σ is continuous,
it follows that ψgi(c) = σV (c · gi) is a continuous function ψ : R 7→ R. By the intermediate value theorem, there
exists a c∗ ≤ 1 such that σV (c∗gi) = 1. We argue we can find a c with |c− c∗| ≤ ε02−N in time O(N log(1/ε0)).

To find c, we can perform a binary search. We first try c0 = 1/2, and if ψgi(c0) = 0, we recurse into [1/2, 1],
otherwise if ψgi(c0) = 1 we recurse into [0, 1/2]. Thus, we always recurse into an interval where ψgi switches
values. It follows that we can find a c with |c − c∗| ≤ ε0‖gi‖22−N in time O(N log(‖gi‖2/ε0)) for some c∗ with
σV (c∗gi) = 1. Now observe that it suffices to binary search a total of O(N log(‖gi‖2/ε0)) times, since 2N is an upper
bound on the Lipschitz constant of ψx, which gives 0 ≤ σV (cgi)− 1 ≤ ε0. Now the expected running time to do this
is O(1/γ+N log(‖gi‖2/ε0)), but since ‖gi‖2 has Gaussian tails, the expectation of the maximum value of ‖gi‖2 over
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1/γ repetitions is O(log(1/γ)
√
n), and thus the expected running time reduces to the stated bound, which completes

the first claim of the Proposition.

For the second claim, note that ∇giσV (c∗gi) > 0 by construction of the binary search, and since σV (c∗gi) > 0 = 1,
by Property 4 with probability γ we have that ∇giσV (gi) > η. Now with probability 1 − γ/2, we have that ‖gi‖22 ≤
O(n log(1/γ)) (see Lemma 1 Laurent & Massart (2000)), so by a union bound both of these occur with probability
γ/2. Now since ‖(c∗ − c)x‖2 ≤ ε02−N (after rescaling N by a factor of log(‖gi‖2) = O(log(n))), and since 2N is
also an upper bound on the spectral norm of the Hessian of σ by construction, it follows that∇giσV (cgi) > η/2.

Now we set x← cgi+cε02−Ngi/(‖cgi‖2). First note that this increases σV (cx)−1 by at most ε0, so σ(cx)−1 ≤ 2ε0,
so this does not affect the first claim of the Proposition. But in addition, note that conditioned on the event in the prior
paragraph, we now have that σV (x) > 1 + ηε02−N . The above facts can be seen by the fact that 2N is polynomially
larger than the spectral norm of the Hessian of σ, thus perturbing x by ε02−N additive in the direction of x will result
in a positive change of at least 1

2 (η/4)(ε02−N ) in σ. Moreover, by applying a similar argument as in the last paragraph,
we will have ∇xσV (cx) > η/4 still after this update to x.

Lemma 4.2 Fix any ε, δ > 0, and letN = poly(n, k, 1γ ,
∑d
i=1 log(Li),

∑d
i=1 log(κi), log( 1

η ), log( 1
ε ), log( 1

δ )). Then
given any subspace V ⊂ Rn with dimension dim(V ) < k, and given x ∈ Rn, such that ε0η2−N ≤ σV (x)− 1 ≤ 2ε0
where ε0 = Θ(2−N

C

/ε) for a sufficiently large constant C = O(1), and ∇xσV (x) > η/2, then with probability
1− 2−N/n

2

, we can find a vector v ∈ Rn in expected poly(N) time, such that

‖PSpan(A)v‖2 ≥ (1− ε)‖v‖2

and such that ‖PV v‖2 ≤ ε‖v‖2.

Proof. We generate g1, g2, . . . , gn ∼ N (0, In), and set ui = gi2
−N − x/‖x‖2. We first condition on the event that

‖gi‖2 ≤ N for all i, which occurs with probability 1 − 2−N/n
2

. Note ∇ui [σV (x)] = wTA(In − PV )ui, where
wT = ∇ [σ(A(In −PV )x)]

T ∈ Rk, which does not depend on ui. Thus wTA(In −PV ) is a vector in the row span
of A(In −PV ). We can write

MV (x+ cui) = τ
(
(σV (x) + cwTA(In −PV )ui + Ξ(cui)

)
where Ξ(cui) = O(‖c(In − PV )ui‖222N ) = O(‖cui‖222N ) is the error term for the linear approximation. Note
that the factor of N comes from the fact that the spectral norm of the Hessian of σ : Rn → R can be bounded by∏
i κiLi ≤ 2N . Fix some β > 0. We can now binary search again, as in Proposition 4.1, with O(log(N/β)) iterations

over c, querying values MV (x+ cui) to find a value c = ci > 0 such that

1− β ≤MV (x+ cui) ≤ 1

so
1− β ≤

(
σV (x) + ciw

TA(In −PV )ui + Ξ(ciui)
)
≤ 1

We first claim that the ci which achieves this value satisfies ‖ciui‖2 ≤ (10 · 2−N ε0/η). To see this, first note that
by Proposition 4.1, we have ∇xσV (x) > η/4 with probability γ. We will condition on this occurring, and if it
fails to occur we argue that we can detect this and regenerate x. Now conditioned on the above, we first claim that
∇ui

σV (x) ≥ η/8, which follows from the fact that we can bound the angle between the unit vectors in the directions
of ui and x by

cos (angle(ui, x)) =
〈 ui
‖u‖2

,
x

‖x‖2

〉
≥ (1− n/2−N ) > (1− η/2−N/2)

along with the fact that we have∇xσV (x) > η/4. Since |σV (x)− 1| < 2ε0 < 2−N
C

, and since 2N is an upper bound
on the spectral norm of the Hessian of σ, we have that ∇uiσV (x + cui) > η/8 + 2−N > η/10 for all c < 2−2N .
In other words, if H is the hessian of σ, then perturbing x by a point with norm O(c) ≤ 2−2N can change the value
of the gradient by a vector of norm at most 22N‖H‖2 ≤ 2−N , where ‖H‖2 is the spectral norm of the Hessian. It
follows that setting c = (10 · 2−N ε0/η) is sufficient for σV (x+ cui) < 1, which completes the above claim.

Now observe that if after binary searching, the property that c ≤ (10 · 2−N ε0/η) does not hold, then this implies that
we did not have ∇σ(x) > η/4 to begin with, so we can throw away this x and repeat until this condition does hold.
By Assumption 4, we must only repeat O(1/γ) times in expectation in order for the assumption to hold.

Next, also note that we can bound ci ≥ ε0η2−N/N , since 2N again is an upper bound on the norm of the gradient of
σ and we know that σV (x) − 1 > ε0η2−N . Altogether, we now have that |Ξ(ciui)| ≤ c2i 2

N ≤ (10 · 2−N ε0/η)22N .
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We can repeat this binary search to find ci for n different perturbations u1, . . . , un, and obtain the resulting c1, . . . , cn,
such that for each i ∈ [n] we have

1− σV (x)− Ξ(ciui)− βi = ciw
TA(In −PV )ui

where βi is the error obtained from the binary seach on ci, and therefore satisfies |βi| ≤ 2−N
2

ε20 taking poly(N)
iterations in the search. Now we know ci and ui, so we can set up a linear system

min
y
‖yTB− bT ‖22

for an unknown y ∈ Rk where the i-th column of B is given by Bi = ui ∈ Rn, and bi = 1/ci for each i ∈ [n]. First
note that the set {u1, u2, . . . , un} is linearly independent with probability 1, since {u1 − x, u2 − x, . . . , un − x} is
just a set of Gaussian vectors. Thus B has rank n, and the above system has a unique solution y∗.

Next, observe that setting ŷ = wTA(In−PV )
(1−σV (x)) , we obtain that for each i ∈ [n]:

(ŷB)i =
1

ci
− 1

ci

Ξ(ciui)− βi
1− σV (x)

Thus

‖ŷTB − bT ‖2 ≤

(
n∑
i=1

(
1

ci
· Ξ(ciui)− βi

1− σV (x)

)2
)1/2

≤

n( 1

ci
· (10 · 2−N ε0/η)22N − 2−N

2

ε20
1− σV (x)

)2
1/2

≤ (2−N )O(1) ε20
ci(1− σ(x))

(5)

Now setting y∗ such that (y∗)TB = bT , we have that cost of the optimal solution is 0, and ‖ŷB − bT ‖2 ≤
(2−N )O(1) ε20

ci(1−σ(x)) , so ‖(y∗ − ŷ)B‖2 ≤ (2−N )O(1) ε20
ci(1−σ(x)) . By definition of the minimum singular value of

B, it follows that ‖y∗ − ŷ‖2 ≤ 1
σmin(B) (2

−N )O(1) ε20
ci(1−σ(x)) . Now using the fact that B = 2−NG + X where G is a

Gaussian matrix and X is the matrix with each row equal to x, we can apply Theorem 1.6 of Cook et al. (2018), we have
σmin(B) ≥ 1/(2−N )O(1), So ‖y∗−ŷ‖2 ≤ (2−N )O(1) ε20

ci(1−σ(x)) . Thus we have ‖y∗‖2 ≤ ‖ŷ‖2+(2−N )O(1) ε20
ci(1−σ(x)) ,

and moreover note that ‖ŷ‖2 ≥ ‖∇σ(x)‖2 1
1−σ(x) >

η
8(1−σ(x)) . So we have that

‖y∗ − ŷ‖2
‖ŷ‖2

≤
(2−N )O(1) ε20

ci(1−σ(x))

‖y∗‖2

≤ (2−N )O(1) ε
2
0

ci

≤ (2−N )O(1)ε0

≤ (2−N )O(1)ε0

≤ 2−N/2

(6)

Where the last inequality holds by taking C larger than some constant in the definition of ε0. Thus ‖y∗ − ŷ‖2 ≤
2−N/2‖ŷ‖2, thus ‖y∗ − ŷ‖2 ≤ 2 · 2−N/2‖y∗‖2 ≤ ε‖y∗‖2 after scaling N up by a factor of log2(1/ε). Thus by setting
v = y∗, and observing that ŷ is in the span of A, we ensure ‖PSpan(A)v‖2 ≥ (1 − ε)‖v‖2 as desired. For the final
claim, note that if we had y∗ = ŷ exactly, we would have ‖PV y∗‖2 = 0, since ŷ is orthogonal to the subspace V . It
follows that since ‖y∗ − ŷ‖22 ≤ ε2‖y∗‖22, we have ‖(In −PV )y∗‖22 ≥ (1− ε2)‖y∗‖22, so by the Pythagorean theorem,
we have ‖PV y∗‖22 = ‖y∗‖22 − ‖(In −PV )y∗‖22 ≤ ε2‖y∗‖22 as desired.

Theorem 4.3 Suppose the network M(x) = τ(σ(Ax)) satisfies the conditions described at the beginning of
this section. Then Algorithm 2 runs in poly(N) time, making at most poly(N) queries to M(x), where N =
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poly(n, k, 1γ ,
∑d
i=1 log(Li),

∑d
i=1 log(κi), log( 1

η ), log( 1
ε ), log( 1

δ )), and returns with probability 1 − δ a subspace
V ⊂ Rn of dimension k such that for any x ∈ V , we have

‖PSpan(A)x‖2 ≥ (1− ε)‖x‖2

Proof. We iteratively apply Lemma 4.2, each time appending the output v ∈ Rn of the proposition to the subspace
V ⊂ Rn constructed so far. WLOG we can assume v is a unit vector by scaling it. Note that we have the property
at any given point in time k′ < k that V = Span(v1, . . . , vk′) where each vi satisfies that ‖PSpan{v1,...,vi−1}vi‖2 ≤ ε.
Note that the latter fact implies that v1, . . . vk′ are linearly independent. Thus at the end, we recover a rank k subspace
V = Span(v1, . . . , vk), with the property that ‖PSpan(A)vi‖22 ≥ (1− ε)‖vi‖22 for each i ∈ [k].

Now let V ∈ Rn×n be the matrix with i-th column equal to vi. Fix any unit vector x = Va ∈ V , where a ∈ Rn is
uniquely determined by x. Let V = V+ +V− where V+ = PSpan(A)V and V− = V−V+ Then x = V+a+V−a,
and

‖(In −PSpan(A))x‖2 ≤ ‖(In −PSpan(A))V
+a‖2 + ‖(In −PSpan(A))V

−a‖2
≤ ‖(In −PSpan(A))V

−a‖2
≤ ‖V−‖2‖a‖2

(7)

First note that by the construction of the vi’s, each column of V− has norm O(ε), thus ‖V−‖2 ≤ O(
√
nε). Moreover,

since ‖x‖2 = 1, it follows that ‖a‖2 ≤ 1
σmin(V) , which we now bound. Since ‖PSpan{v1,...,vi−1}vi‖2 ≤ ε for each

i ∈ [k], we have

‖Va‖2 ≥ ‖
n∑
i=1

viai‖2

≥ ‖
n∑
i=1

(In −PSpan{v1,...,vi−1})viai +

n∑
i=1

PSpan{v1,...,vi−1}viai‖2

≥ ‖
n∑
i=1

(In −PSpan{v1,...,vi−1})viai‖2 − ‖
n∑
i=1

PSpan{v1,...,vi−1}viai‖2

≥ ‖
n∑
i=1

(In −PSpan{v1,...,vi−1})viai‖2 −O(ε)‖a‖2

=

(
‖

n∑
i=1

(In −PSpan{v1,...,vi−1})viai‖
2
2 −O(ε)‖a‖2‖

n∑
i=1

(In −PSpan{v1,...,vi−1})viai‖2 +O(ε2)‖a‖22

)1/2

=

(
‖

n∑
i=1

(In −PSpan{v1,...,vi−1})viai‖
2
2 −O(ε)‖a‖22

)1/2

=

(
n∑
i=1

‖(In −PSpan{v1,...,vi−1})viai‖
2
2 −O(ε)‖a‖22

)1/2

≥

(
n∑
i=1

(1−O(ε2))|ai|2 −O(ε)‖a‖22

)1/2

≥
(
‖a‖22 −O(ε)‖a‖22

)1/2
≥ (1−O(ε))‖a‖2

(8)

Thus σmin(V) ≥ (1 − O(ε)), so we have ‖(In − PSpan(A))x‖2 ≤ ‖V−‖2 1
σmin(V) ≤ 2

√
nε. By the Pythagorean

theorem: ‖PSpan(A))x‖22 = 1− ‖(In −PSpan(A))x‖22 ≥ 1−O(nε2). Thus we can scale ε by a factor of Θ(1/
√
n) in

the call to Lemma 4.2, which gives the desired result of ‖PSpan(A)x‖2 ≥ 1− ε.
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