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ABSTRACT

With the rise in employment of deep learning methods in safety-critical scenar-
ios, interpretability is more essential than ever before. Although many different
directions regarding interpretability have been explored for visual modalities, time-
series data has been neglected with only a handful of methods tested due to their
poor intelligibility. We approach the problem of interpretability in a novel way by
proposing TSInsight1 where we attach an auto-encoder with a sparsity-inducing
norm on its output to the classifier and fine-tune it based on the gradients from the
classifier and a reconstruction penalty. The auto-encoder learns to preserve features
that are important for the prediction by the classifier and suppresses the ones that
are irrelevant i.e. serves as a feature attribution method to boost interpretability. In
other words, we ask the network to only reconstruct parts which are useful for the
classifier i.e. are correlated or causal for the prediction. In contrast to most other
attribution frameworks, TSInsight is capable of generating both instance-based and
model-based explanations. We evaluated TSInsight along with other commonly
used attribution methods on a range of different time-series datasets to validate its
efficacy. Furthermore, we analyzed the set of properties that TSInsight achieves out
of the box including adversarial robustness and output space contraction. The ob-
tained results advocate that TSInsight can be an effective tool for the interpretability
of deep time-series models.

1 INTRODUCTION

Deep learning models have been at the forefront of technology in a range of different domains
including image classification (Krizhevsky et al., 2012), object detection (Girshick, 2015), speech
recognition (Dahl et al., 2010), text recognition (Breuel, 2008), image captioning (Karpathy & Fei-Fei,
2015) and pose estimation (Cao et al., 2018). These models are particularly effective in automatically
discovering useful features. However, this automated feature extraction comes at the cost of lack of
transparency of the system. Therefore, despite these advances, their employment in safety-critical
domains like finance (Knight, 2017), self-driving cars (Kim et al., 2018) and medicine (Zintgraf et al.,
2017) is limited due to the lack of interpretability of the decision made by the network.

Numerous efforts have been made for the interpretation of these black-box models. These efforts
can be mainly classified into two separate directions. The first set of strategies focuses on making
the network itself interpretable by trading off some performance. These strategies include Self-
Explainable Neural Network (SENN) (Alvarez-Melis & Jaakkola, 2018) and Bayesian non-parametric
regression models (Guo et al., 2018). The second set of strategies focuses on explaining a pretrained
model i.e. they try to infer the reason for a particular prediction. These attribution techniques
include saliency map (Yosinski et al., 2015) and layer-wise relevance propagation (Bach et al., 2015).
However, all of these methods have been particularly developed and tested for visual modalities which
are directly intelligible for humans. Transferring methodologies developed for visual modalities to
time-series data is difficult due to the non-intuitive nature of time-series. Therefore, only a handful of
methods have been focused on explaining time-series models in the past (Kumar et al., 2017; Siddiqui
et al., 2019).

We approach the attribution problem in a novel way by attaching an auto-encoder on top of the
classifier. The auto-encoder is fine-tuned based on the gradients from the classifier. Rather than

1Code along with the trained models will be made publicly available upon publication
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asking the auto-encoder to reconstruct the whole input, we ask the network to only reconstruct parts
which are useful for the classifier i.e. are correlated or causal for the prediction. In order to achieve
this, we introduce a sparsity inducing norm onto the output of the auto-encoder. In particular, the
contributions of this paper are twofold:

• A novel attribution method for time-series data which makes it much easier to interpret the
decision of any deep learning model. The method also leverages dataset-level insights when
explaining individual decisions in contrast to other attribution methods.

• Detailed analysis of the information captured by different attribution techniques using a
simple suppression test on a range of different time-series datasets. This also includes
analysis of the different out of the box properties achieved by TSInsight including generic
applicability, contraction in the output space and resistance against trivial adversarial noise.

2 RELATED WORK

Since the resurgence of deep learning in 2012 after a deep network comprehensively outperformed its
feature engineered counterparts (Krizhevsky et al., 2012) on the ImageNet visual recognition challenge
comprising of 1.2 million images (Russakovsky et al., 2015), deep learning has been integrated into a
range of different applications to gain unprecedented levels of improvement. Significant efforts have
been made in the past regarding the interpretability of deep models, specifically for image modality.
These methods are mainly categorized into two different streams where the first stream is focused on
explaining the decisions of a pretrained network which is much more applicable in the real-world.
The second stream is directed towards making models more interpretable by trading off accuracy.

The first stream for explainable systems which attempts to explain pretrained models using attribution
techniques has been a major focus of research in the past years. The most common strategy is to
visualize the filters of the deep model (Zeiler & Fergus, 2013; Simonyan et al., 2013; Yosinski et al.,
2015; Palacio et al., 2018; Bach et al., 2015). This is very effective for visual modalities since
images are directly intelligible for humans. Zeiler & Fergus (2013) introduced deconvnet layer to
understand the intermediate representations of the network. They not only visualized the network,
but were also able to improve the network based on these visualizations to achieve state-of-the-art
performance on ImageNet (Russakovsky et al., 2015). Simonyan et al. (2013) proposed a method
to visualize class-specific saliency maps. Yosinski et al. (2015) proposed a visualization framework
for image based deep learning models. They tried to visualize the features that a particular filter
was responding to by using regularized optimization. Instead of using first-order gradients, Bach
et al. (2015) introduced a Layer-wise Relevance Propagation (LRP) framework which identified
the relevant portions of the image by distributing the contribution to the incoming nodes. Smilkov
et al. (2017) introduced the SmoothGrad method where they computed the mean gradients after
adding small random noise sampled from a zero-mean Gaussian distribution to the original point.
Integrated gradients method introduced by Sundararajan et al. (2017) computed the average gradient
from the original point to the baseline input (zero-image in their case) at regular intervals. Guo et al.
(2018) used Bayesian non-parametric regression mixture model with multiple elastic nets to extract
generalizable insights from the trained model. Either these methods are not directly applicable to
time-series data, or are inferior in terms of intelligibility for time-series data.

Palacio et al. (2018) introduced yet another approach to understand a deep model by leveraging
auto-encoders. After training both the classifier and the auto-encoder in isolation, they attached the
auto-encoder to the head of the classifier and fine-tuned only the decoder freezing the parameters of
the classifier and the encoder. This transforms the decoder to focus on features which are relevant for
the network. Applying this method directly to time-series yields no interesting insights (Fig. 1b) into
the network’s preference for input. Therefore, this method is strictly a special case of the TSInsight’s
formulation.

In the second stream for explainable systems, Alvarez-Melis & Jaakkola (2018) proposed Self-
Explaining Neural Networks (SENN) where they learn two different networks. The first network is
the concept encoder which encodes different concepts while the second network learns the weightings
of these concepts. This transforms the system into a linear problem with a set of features making
it easily interpretable for humans. SENN trade-offs accuracy in favor of interpretability. Kim et al.
(2018) attached a second network (video-to-text) to the classifier which was responsible for the
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(a) Auto-encoder (b) Fine-tuned auto-encoder

Figure 1: Plot at the top shows the original input while plot at the bottom indicates the reconstructed
input from the raw auto-encoder or the fine-tuned auto-encoder.

production of natural language based explanation of the decisions taken by the network using the
saliency information from the classifier. This framework relies on LSTM for the generation of the
descriptions adding yet another level of opaqueness making it hard to decipher whether the error
originated from the classification network or from the explanation generator.

Kumar et al. (2017) made the first attempt to understand deep learning models for time-series analysis
where they specifically focused on financial data. They computed the input saliency based on the first-
order gradients of the network. Siddiqui et al. (2019) proposed an influence computation framework
which enabled exploration of the network at the filter level by computing the per filter saliency map
and filter importance again based on first-order gradients. However, both methods lack in providing
useful insights due to the noise inherent to first-order gradients. Another major limitation of saliency
based methods is the sole use of local information. Therefore, TSInsight significantly supersedes in
the identification of the important regions of the input using a combination of both local information
for that particular example along with generalizable insights extracted from the entire dataset in order
to reach a particular description.

Due to the use of auto-encoders, TSInsight is inherently related to sparse (Ng et al., 2011) and
contractive auto-encoders (Rifai et al., 2011). In sparse auto-encoders (Ng et al., 2011), the sparsity
is induced on the hidden representation by minimizing the KL-divergence between the average
activations and a hyperparameter which defines the fraction of non-zero units. This KL-divergence
is a necessity for sigmoid-based activation functions. However, in our case, the sparsity is induced
directly on the output of the auto-encoder, which introduces a contraction on the input space of the
classifier, and can directly be achieved by using Manhattan norm on the activations as we obtain
real-valued outputs. Albeit sparsity being introduced in both cases, the sparsity in the case of sparse
auto-encoders is not useful for interpretability. In the case of contractive auto-encoders (Rifai et al.,
2011), a contraction mapping is introduced by penalizing the Fobenius norm of the Jacobian of the
encoder along with the reconstruction error. This makes the learned representation invariant to minor
perturbations in the input. TSInsight on the other hand, induces a contraction on the input space for
interpretability, thus, favoring sparsity inducing norm.

3 METHOD

We first train an auto-encoder as well as a classifier in isolation on the desired dataset. Once both
the auto-encoder as well as the classifier are trained, we attach the auto-encoder to the head of the
classifier. TSInsight is based on a novel loss formulation, which introduces a sparsity-inducing
norm on the output of the auto-encoder along with a reconstruction and classification penalty for the
optimization of the auto-encoder keeping the classifier fixed. Inducing sparsity on the auto-encoder’s
output forces the network to only reproduce relevant regions of the input to the classifier since
the auto-encoder is optimized using the gradients from the classifier. As inducing sparsity on the
auto-encoder’s output significantly hampers the auto-encoder’s ability to reconstruct the input which
can in turn result in fully transformed outputs, it is important to have a reconstruction penalty in place.
This effect is illustrated in Fig. 2a where the auto-encoder produced a novel sparse representation of
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(a) Fine-tuned auto-encoder with Sparsity (b) TSInsight

Figure 2: Plot at the top shows the original input while plot at the bottom indicates the reconstructed
input either from TSInsight or the auto-encoder with just sparsity inducing norm.

the input, which albeit being an interesting one, doesn’t help with the interpretability of the model.
Therefore, the proposed optimization objective can be written as:
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where L represents the classification loss function which is cross-entropy in our case, Φ denotes the
classifier with pretrained weightsW∗, while E and D denotes the encoder and decoder respectively
with corresponding pretrained weightsW∗E andW∗D. We introduce two new hyperparameters, γ and
β. γ controls the auto-encoder’s focus on reconstruction of the input. β on the other hand, controls the
sparsity enforced on the output of the auto-encoder. Pretrained weights are obtained by training the
auto-encoder as well as the classifier in isolation as previously mentioned. With this new formulation,
the output of the auto-encoder is both sparse as well as aligned with the input as evident from Fig. 2b.

The selection of β can significantly impact the output of the model. Performing grid search to
determine this value is not possible as large values of β results in models which are more interpretable
but inferior in terms of performance, therefore, presenting a trade-off between performance and
interpretability which is difficult to quantify. A rudimentary way which we tested for automated
selection of these hyperparameters (β and γ) is via feature importance measures (Siddiqui et al.,
2019; Vidovic et al., 2016). The simplest candidate for this importance measure is saliency. This can
be written as:

I(x) =
∂aL

∂x

where L denotes the number of layers in the classifier and aL denotes the activations of the last layer
in the classifier. This computation is just based on the classifier i.e. we ignore the auto-encoder at this
point. Once the values of the corresponding importance metric is evaluated, the values are scaled in
the range of [0, 1] to serve as the corresponding reconstruction weight i.e. γ. The inverted importance
values serve as the corresponding sparsity weight i.e. β.
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j
I(x)j

γ∗(x) = I(x) & β∗(x) = 1.0− I(x)
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Table 1: Dataset Details

Dataset Train Validation Test Sequence Length Input Channels Output Classes

Synthetic Anomaly Detection 45000 5000 10000 50 3 2
Electric Devices 6244 2682 7711 50 3 7

Character Trajectories 1383 606 869 206 3 20
FordA 2520 1081 1320 500 1 2

Forest Cover 107110 45906 65580 50 10 2
ECG Thorax 1244 556 1965 750 1 42

WESAD 5929 846 1697 700 8 3
UWave Gesture 624 272 3582 946 1 8

Therefore, the final term imposing sparsity on the classifier can be written as:
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In contrast to the instance-based value of β, we used the average saliency value in our experiments.
This ensures that the activations are not sufficiently penalized so as to significantly impact the
performance of the classifier. Due to the low relative magnitude of the sparsity term, we scaled it by a
constant factor C (we used C = 10 in our experiments). This approach despite being interesting, still
results in inferior performance as compared to manual fine-tuning of hyperparameters. This needs
further investigation for it to work in the future.

4 DATASETS

In order to investigate the efficacy of TSInsight, we employed several different time-series datasets in
this study. The summary of the datasets is available in Table 1.

Synthetic Anomaly Detection Dataset: The synthetic anomaly detection dataset (Siddiqui et al.,
2019) is a synthetic dataset comprising of three different channels referring to the pressure, tem-
perature and torque values of a machine running in a production setting where the task is to detect
anomalies. The dataset only contains point-anomalies. If a point-anomaly is present in a sequence,
the whole sequence is marked as anomalous. Anomalies were intentionally never introduced on the
pressure signal in order to identify the treatment of the network to that particular channel.

Electric Devices Dataset: The electric devices dataset (Hills et al., 2014) is a small subset of the
data collected as part of the UK government’s sponsored study, Powering the Nation. The aim of this
study was to reduce UK’s carbon footprint. The electric devices dataset is comprised of data from
251 households, sampled in two-minute intervals over a month.

Character Trajectories Dataset: The character trajectories dataset2 contains hand-written characters
using a Wacom tablet. Only three dimensions are kept for the final dataset which includes x, y and
pen-tip force. The sampling rate was set to be 200 Hz. The data was numerically differentiated and
Gaussian smoothen with σ = 2. The task is to classify the characters into 20 different classes.

FordA Dataset: The FordA dataset3 was originally used for a competition organized by IEEE in the
IEEE World Congress on Computational Intelligence (2008). It is a binary classification problem
where the task is to identify whether a certain symptom exists in the automotive subsystem. FordA
dataset was collected with minimal noise contamination in typical operating conditions.

Forest Cover Dataset: The forest cover dataset (Tan et al., 2011) has been adapted from the UCI
repository for the classification of forest cover type from cartographic variables. The dataset has been
transformed into an anomaly detection dataset by selecting only 10 quantitative attributes out of a
total of 54. Instances from the second class were considered to be normal while instances from the

2https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
3http://www.timeseriesclassification.com/description.php?Dataset=FordA
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Figure 3: Output from different attribution methods as well as the input after suppressing all the
points except the top 5% highlighted by the corresponding attribution method on an anomalous
example from the synthetic anomaly detection dataset.

fourth class were considered to be anomalous. The ratio of the anomalies to normal data points is
0.90%. Since only two classes were considered, the rest of them were discarded.

WESAD Dataset: WESAD dataset (Schmidt et al., 2018) is a classification dataset introduced
by Bosch for person’s affective state classification with three different classes, namely, neutral,
amusement and stress.

ECG Thorax Dataset: The non-invasive fetal ECG Thorax dataset4 is a classification dataset
comprising of 42 classes.

UWave Gesture Dataset: The wave gesture dataset (Liu et al., 2009) contains accelerometer data
where the task is to recognize 8 different gestures.

5 MAIN RESULTS

The results we obtained with the proposed formulation were highly intelligible for the datasets we
employed in this study. TSInsight produced a sparse representation of the input focusing only on
the salient regions. With a careful tuning of the hyperparameters, TSInsight outperformed the base
classifier in terms of accuracy for most of the cases. This is evident from Table 3 (Appendix G).
However, it is important to note that TSInsight is not designed for the purpose of performance,
but rather for interpretability. Therefore, we expect that the performance will drop in many cases
depending on the amount of sparsity enforced.

In order to assess the obtained reconstructions qualitatively, we visualize an anomalous example from
the synthetic anomaly detection dataset in Fig. 3 along with the attributions from all the commonly
employed attribution techniques (listed below) including TSInsight. Since there were only a few
relevant discriminative points in the case of forest cover and synthetic anomaly detection datasets, the
auto-encoder suppressed most of the input making the decision directly interpretable.

A simple way to quantify the quality of the attribution is to just preserve parts of the input that are
considered to be important by the method, and then pass the suppressed input to the classifier. If

4http://www.timeseriesclassification.com/description.php?Dataset=
NonInvasiveFetalECGThorax1
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the selected points are indeed causal for the prediction generated by the classifier, the prediction
would stand. Otherwise, the prediction will flip. It is important to note that unless there is a
high amount of sparsity present in the signal, suppressing the signal itself will result in a loss of
accuracy for the classifier since there is a slight mismatch for the classifier for the inputs seen during
training. We compared TSInsight with a range of different saliency methods. In all of the cases,
we used the absolute magnitude of the corresponding feature attribution method to preserve the
most-important input features. Two methods i.e. ε− LRP and DeepLift were shown to be similar to
input�gradient (Adebayo et al., 2018), therefore, we compare only against input�gradient. We
don’t compute class-specific saliency, but instead, compute the saliency w.r.t. all the output classes.
For all the methods computing class specific activations maps e.g. GradCAM, guided GradCAM, and
occlusion sensitivity, we used the class with the maximum predicted score as our target. Following is
the list of the evaluated attribution techniques:

None: None refers to the absence of any importance measure. Therefore, in this case, the complete
input is passed on to the classifier without any suppression for comparison.

Random: Random points from the input are suppressed in this case.

Input Magnitude: We treat the absolute magnitude of the input to be a proxy for the features’
importance.

Occlusion sensitivity: We iterate over different input channels and positions and mask the corre-
sponding input features with a filter size of 3 and compute the difference in the confidence score
of the predicted class (i.e. the class with the maximum score on the original input). We treat this
sensitivity score as the features’ importance. This is a brute-force measure of feature importance and
employed commonly in prior literature as served as a strong baseline in our experiments (Zeiler &
Fergus, 2013).

TSInsight: We treat the absolute magnitude of the output from the auto-encoder of TSInsight as
features’ importance.

Palacio et al.: Similar to TSInsight, we use the absolute magnitude of the auto-encoder’s output as
the features’ importance (Palacio et al., 2018).

Gradient: We use the absolute value of the raw gradient of the classifier w.r.t. to all of the classes as
the features’ importance (Siddiqui et al., 2019; Kumar et al., 2017).

Gradient � Input: We compute the Hadamard (element-wise) product between the gradient and the
input, and use its absolute magnitude as the features’ importance (Sundararajan et al., 2017).

Integrated Gradients: We use absolute value of the integrated gradient with 100 discrete steps
between the input and the baseline (which was zero in our case) as the features’ importance (Sun-
dararajan et al., 2017).

SmoothGrad: We use the absolute value of the smoothened gradient computed by using 100
different random noise vector sampled from a Gaussian distribution with zero mean, and a variance
of 2/(maxjxj−minjxj) where x was the input as the features’ importance measure (Smilkov et al.,
2017).

Guided Backpropagation: We use the absolute value of the gradient provided by guided backpropa-
gation (Springenberg et al., 2014). In this case, all the ReLU layers were replaced with guided ReLU
layers which masks negative gradients, hence filtering out negative influences for a particular class to
improve visualization.

GradCAM: We use the absolute value of Gradient-based Class Activation Map (GradCAM) (Sel-
varaju et al., 2016) as our feature importance measure. GradCAM computes the importance of the
different filters present in the input in order to come up with a metric to score the overall output. Since
GradCAM visualizes a class activation map, we used the predicted class as the target for visualization.

Guided GradCAM: Guided GradCAM Selvaraju et al. (2016) is a guided variant of GradCAM
which performs a Hadamard product (pointwise) of the signal from guided backpropagation and
GradCAM to obtain guided GradCAM. We again use the absolute value of the guided GradCAM
output as importance measure.
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(a) WESAD (b) Character Trajectories (c) ECG Thorax (d) Electric Devices

(e) FordA (f) Forest Cover (g) UWave Gesture (h) Anomaly

Figure 4: Suppression results against a large number of baseline methods averaged over 5 random
runs. Enlarged version of the plots is available in Appendix H.

The results with different amount of suppression are visualized in Fig. 4 which are averaged over 5
random runs. Since the datasets were picked to maximize diversity in terms of the features, there is no
perfect method which can perfectly generalize to all the datasets. The different attribution techniques
along with the corresponding suppressed input is visualized in Fig. 3 for the synthetic anomaly
detection datasets. TSInsight produced the most plausible looking explanations along with being
the most competitive saliency estimator on average in comparison to all other attribution techniques.
Alongside the numbers, TSInsight was also able to produce the most plausible explanations.

6 PROPERTIES OF TSINSIGHT

6.1 GENERIC APPLICABILITY

TSInsight is compatible with any base model. We tested our method with two prominent architectural
choices in time-series data i.e. CNN and LSTM. The results highlight that TSInsight was capable of
extracting the salient regions of the input regardless of the underlying architecture. It was interesting
to note that since LSTM uses memory cells to remember past states, the last point was found to be
the most salient. For CNN on the other hand, the network had access to the complete information
resulting in equal distribution of the saliency. A visual example is presented in Appendix E.

6.2 MODEL-BASED VS INSTANCE-BASED EXPLANATIONS

Since TSInsight poses the attribution problem itself as an optimization objective, the data based
on which this optimization problem is solved defines the explanation scope. If the optimization
problem is solved for the complete dataset, this tunes the auto-encoder to be a generic feature
extractor, enabling extraction of model/dataset-level insights using the attribution. In contrary, if
the optimization problem is solved for a particular input, the auto-encoder discovers an instance’s
attribution. This is contrary to most other attribution techniques which are only instance specific.

6.3 AUTO-ENCODER’S JACOBIAN SPECTRUM ANALYSIS

Fig. 5 visualizes the histogram of singular values of the average Jacobian on test set of the forest cover
dataset. We compare the spectrum of the formulation from Palacio et al. (2018) and TSInsight. It is
evident from the figure that most of the singular values for TSInsight are close to zero, indicating a
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Figure 5: Spectrum analysis of the auto-encoder’s average Jacobian computed over the entire test
set of the forest cover dataset. Large singular values corresponds to directions which the network
retained. The sharp decrease in the spectrum for TSInsight suggests that the network was successful
in inducing a contraction of the input space.

(a) Character Trajectories Dataset (b) ECG Thorax Dataset (c) UWave Gesture Dataset

Figure 6: Accuracy of the adversarial examples curated using FGSM attack with varying max ε.

contraction being induced in those directions. This is similar to the contraction induced in contractive
auto-encoders (Rifai et al., 2011) without explicitly regularizing the Jacobian of the encoder.

6.4 ADVERSARIAL ROBUSTNESS

We used the fastest and the simplest attack i.e. Fast-Gradient Sign Method (Goodfellow et al., 2014)
as a dummy check. The accuracy with increasing values of ε are plotted to provide a hint regarding the
possibility of attaining higher level of robustness since the setup is similar to high-level representation
guided denoising with an emphasis on interpretability instead of robustness (Liao et al., 2018). Recent
studies have indicated that the two objectives i.e. interpretability and robustness are complementary to
each other (Engstrom et al., 2019). Fig. 6 indicates that TSInsight achieved a high level of immunity
against adversarial noise in comparison to the base classifier which is better or on par with Palacio
et al. (2018). It is important to note that this is not a proper adversarial evaluation, but rather, only a
speculation which needs further investigation in the future.

7 CONCLUSION

We presented a novel method to discover the salient features of the input for the prediction by using
the global context. With the obtained results, it is evident that the features highlighted by TSInsight
are intelligible as well as reliable at the same time. In addition to interpretability, TSInsight also offers
off the shelf properties which are suitable in a wide range of problems. Interpretability is essential in
many domains, and we believe that our method opens up a new research direction for interpretability
of deep models for time-series analysis. We would like to further investigate the automated selection
of hyperparameters in the future which is primitive for the wide-scale applicability of TSInsight along
with its impact on adversarial robustness.
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A APPENDIX

B SYSTEM PIPELINE

The system overview pipeline is visualized in Fig. 7.
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C HYPERPARAMETERS

Table 2: Hyperparameters

Hyperparameter Value
Initial learning rate 0.0001

Learning rate reduction factor 0.9
Learning rate reduction tolerance 4
Activation regularization (L1) - β 0.0001

Reconstruction weight - γ 4.0
Max epochs 50
Batch size 256

Early stopping patience 10

D LOSS LANDSCAPE

We analyze the loss landscape in order to asses the impact of stacking the auto-encoder on top of
the original network on the overall optimization problem. We follow the scheme suggested by Li et
al. (2018) Li et al. (2017) where we first perform filter normalization using the norm of the filters.
This allows the network to be scale invariant. We then sample two random directions (δ and η) and
use a linear combination of these directions to identify the loss landscape. We keep the values of
the classifier in the combined model intact since we treat those parameters as fixed. The function
representing the manifold can be written as:

f(α, β) = L(θ∗ + αδ + βη) ∀α, β ∈ {−1.0,−0.95,−0.90, ..., 0.90, 0.95, 1.0} (2)

Once the loss function is evaluated for all the values of α and β (4000 different combinations),
we plot the resulting function as a 3D surface. This loss landscape for the model trained on forest
cover dataset is visualized in Fig. 8. The surface at the bottom (mostly in blue) signifies the loss
landscape for the classifier. The landscape was nearly convex. The surface on the top is from the
model coupled with the auto-encoder. It can be seen that the loss landscape has a kink at the optimal
position but remains flat otherwise with a significantly higher loss value. This indicates that problem
of optimizing the auto-encoder using gradients from the classifier is a significantly harder one to solve.
This is consistent with our observation where the network failed to converge in many cases. Similar
observations have been made by Palacio et al. Palacio et al. (2018) where they failed to fine-tune the
complete auto-encoder, resorting to only fine-tuning of the decoder to make the problem tractable.
The results were very similar when tested on other datasets.

E GENERIC APPLICABILITY

An example of TSInsight trained with a CNN and an LSTM is presented in Fig. 9.

F HARDWARE

All the models were trained on a single V-100 (16 GB) using the DGX-1 system. The system is
equipped with 512 GB Ram and two Xeon E5-2698 v4 processors (2.20GHz).

G CLASSIFICATION ACCURACY

The results from the classifier training highlighting the obtained accuracies are presented in Table 3.
It is evident from the table that attaching TSInsight had no statistically significant impact on the
classification performance. Although the accuracy itself went up after attaching the auto-encoder, we
consider it to be a coincidence rather than a feature of TSInsight.
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Figure 8: Loss landscape where the bottom surface indicates the manifold for the classifier while the
surface on the top indicates the manifold for the auto-encoder attached to the classifier.

Table 3: Results for the different datasets in terms of accuracy for both the classifier as well as
TSInsight.

Dataset Model γ β Accuracy

Synthetic Anomaly Classifier - - 98.01 %
Detection TSInsight 1.0 0.001 98.13 %

WESAD Classifier - - 99.94 %
TSInsight 2.0 0.00001 99.76 %

Character Trajectories Classifier - - 97.01 %
TSInsight 0.25 0.0001 97.24 %

FordA Classifier - - 91.74 %
TSInsight 2.0 0.0001 93.26 %

Forest Cover Classifier - - 95.79 %
TSInsight 4.0 0.0001 96.26 %

Electric Devices Classifier - - 65.14 %
TSInsight 4.0 0.0001 65.74 %

ECG Thorax Classifier - - 86.01 %
TSInsight 0.1 0.0001 84.07 %

UWave Gesture Classifier - - 91.76 %
TSInsight 4.0 0.0005 92.29 %
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(a) CNN Model (b) LSTM Model

Figure 9: Auto-encoder training with different base models (CNN and LSTM). TSInsight was able to
discover salient regions of the input regardless of the employed classifier.

H ATTRIBUTION RESULTS

The enlarged version of the attribution plots (Fig. 4) are presented in four different figures i.e. Fig. 10,
Fig. 11, Fig. 12 and Fig. 13.
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(a) WESAD

(b) Character Trajectories

Figure 10: Enlarged suppression plots (a). Copy of Fig. 4.
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(a) ECG Thorax

(b) Electric Devices

Figure 11: Enlarged suppression plots (b). Copy of Fig. 4.
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(a) FordA

(b) Forest Cover

Figure 12: Enlarged suppression plots (c). Copy of Fig. 4.
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(a) UWave Gesture

(b) Anomaly

Figure 13: Enlarged suppression plots (d). Copy of Fig. 4.
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