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ABSTRACT

This paper contrasts the two canonical recurrent neural networks (RNNs) of long
short-term memory (LSTM) and gated recurrent unit (GRU) to propose our novel
light-weight RNN of extrapolated input for network simplification (EINS). We
treat LSTMs and GRUs as differential equations, and our analysis highlights sev-
eral auxiliary components in the standard LSTM design that are secondary in
importance. Guided by these insights, we present a design that abandons the
LSTM redundancies, thereby introducing EINS. We test EINS against the LSTM
over a carefully chosen range of tasks from language modelling and medical data
imputation-prediction through a sentence-level variational autoencoder and image
generation to learning to learn to optimise another neural network. Despite having
both a simpler design and fewer parameters, this simplification either performs
comparably, or better, than the LSTM in each task.

1 INTRODUCTION

Neural networks are powerful universal approximators that are difficult to interpret. This paper
studies the forward pass of the two canonical recurrent neural networks (RNNs) of long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) and gated recurrent unit (GRU) (Cho et al.,
2014). Advancements in RNNs have pushed the state-of-the-art for a variety of natural language
processing problems, including speech recognition (Sundermeyer et al., 2012), text modelling (Kim
et al., 2016), and neural machine translation(Kalchbrenner & Blunsom, 2013). RNNs inspire the
architectural design of the attention mechanism (Bahdanau et al., 2015) and the bidirectional de-
sign (Schuster & Paliwal, 1997); and more importantly, they are prevalent and actively studied in
multiple fields of machine learning, including computer vision (Shi et al., 2015; Sun & Fu, 2019) and
meta-learning (Vinyals et al., 2016; Ravi & Larochelle, 2017). Though LSTM and GRU networks
have been extensively applied in a wide range of tasks, there are difficulties in justifying whether
they are optimal designs for RNNs (Jozefowicz et al., 2015; Chung et al., 2014). In addition, they
both have intricate designs with gated units employed to synchronise network memories, but the sig-
nificance of these individual components are unclear, and understanding the network’s learnt utility
requires empirical explorations (Karpathy et al., 2015; Wu & King, 2016).

By treating LSTMs and GRUs as systems of differential equations, our study seeks to understand
the intricacies in the updates of their network memories. These two networks behave similarly to
differential equations — iteratively, they provide the network memories, the cells, with small packets
of incremental updates. From our mathematical analysis, we first reveal the presence of multiple
auxiliary components. Consequently, we proceed to present an RNN with a novel extrapolated
input for network simplification (EINS) that has a much simpler architectural design than the LSTM
and the GRU, while enjoying comparable or better generalisation ability. Furthermore, our analysis
shows that gated units are analogous to timescales in differential equations and dictate speeds of
variable propagation, thereby increasing network interpretability.

Our novel EINS RNN is based on the LSTM architecture. We dispense with the previously men-
tioned LSTM redundancies, and introduce a procedure that extrapolates the network input. EINS
has a simple architectural design and, dependent on the task, can remove up to 85.4 per cent1 of the

185.4% for image generation and 63.3% for language modelling. See Section 5 — Experiments for details.
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Figure 1: Architectural designs of the LSTM and the GRU RNN

parameters of the standard LSTM RNN module. We test2 EINS against the LSTM on a wide variety
of carefully chosen tasks. Our tasks include language modelling (Mikolov et al., 2010) for RNNs as
generative models; medical data imputation (Che et al., 2018; Cao et al., 2018) and sentence-level
autoencoders (Bowman et al., 2016) for RNNs as encoders; image generation (Gregor et al., 2015)
for RNNs as decoders; and on the meta-learning task of learning to learn to optimise another neural
network (Ravi & Larochelle, 2017; Andrychowicz et al., 2016) for RNNs to run online for a variable
length. For all tasks, EINSs were able to yield comparable or better results than LSTMs.

The main contributions of this paper are listed as follows:

• We treat LSTMs and GRUs as differential equations and reveal that gated units serve as
timescales to dictate neural value propagation, thereby increasing interpretability.

• The same mathematical analysis allows us to present an argument on the inferior computa-
tional power of GRUs against LSTMs under identical hyperparametric setups.

• The same mathematical analysis allows us to identify removable auxiliary terms in LSTMs.
• We introduce EINS, a novel RNN that removes up to 85.4 per cent1 parameters of the

LSTM, with comparable or better computational power than the LSTM.

2 LSTM AND GRU

This section introduces the canonical RNNs of LSTM and GRU. Without loss of generality,
we use LSTM-terminologies to describe GRUs.

For every time step t , the LSTM RNN receives input xt to compute
System (2.1): the LSTM RNN

a set of gated units: ft, it,ot = σ(W{F ,I ,O}xt +WR{F ,I ,O}qt−1 + b{F ,I ,O}),
and an internal input: at = tanh(WAxt +WRAqt−1 + bA),
to update the cell state: st = ft � st−1 + it � at,
and the hidden state: qt = ot � tanh(st).

In a similar but slightly simpler fashion, the GRU is driven by input xt to compute
System (2.2): the GRU RNN

a set of gated units: it, rt = σ(W{I ,R}xt +WR{I ,R}st−1 + b{I ,R}),
and an internal input: at = tanh(WAxt +WRA(rt � st−1) + bA),
to update the cell: st = (1− it)� st−1 + it � at.

Operators σ and tanh represent the sigmoid function and the hyperbolic tangent function respec-
tively; whereas W, WR, and b represent the forward connections, the recursive connections, and
the biases. Given ξ and θ as the input and the hidden dimensions, we have W ∈ Rθ×ξ, WR ∈ Rθ×θ,
xt ∈ Rξ; the gated units, along st and qt, and the biases, are of Rθ. Refer to Figure 1 for visual
representations of the networks.

Both networks synchronise the update of the network memory st with gated units. For an LSTM, the
forget gate ft releases partial memory of the previous instance st−1, the input gate it controls the
influx of the newly formulated information at, and the hidden state qt is the transformed memory
with controlled exposure from the output gate ot. In comparison, a GRU couples its forget gate and
input gate, utilises its raw cell as its hidden state, and employs a reset gate rt to control the strength
of recurrent connections for generating the internal input at.

2Implementation of our algorithm will be available at https://github.com/anonymous author/EINS RNN/
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3 LSTMS AND GRUS AS DIFFERENTIAL EQUATIONS

In this section, we study LSTMs and GRUs as systems of dynamic Hopfield equations. We discuss
why the cells should be modelled as differential equations; and why the Hopfield network is a
suitable starting point. From there, we introduce more mathematical concepts and eventually derive
the GRU formulation.

3.1 CELL STATES AS DIFFERENTIAL EQUATIONS FOR CONTINUOUS UPDATES

As defined in Systems (2.1) and (2.2), the cell state st receives cumulative incremental updates from
at over a series of instances. That is, similar to variables of differential equations, their future values
are additively updated from their past values. For this reason, we define the update of the cell as

s′t = at, (1)
which is equivalent (in its discrete form) to

st = st−1 + hat, (2)
where at is an arbitrary package of update, with a small positive constant timescale h.

After asserting the intrinsic differential nature of the cell states, we revise the appropriateness of
Equation (1). That is, we question “What kind of differential equation should be considered as a
natural starting point?”

3.2 HOPFIELD NETWORKS FOR ROBUST PLASTIC MEMORY

In the present work, we model the cell states as Hopfield networks (Hopfield, 1988). Dynamic
Hopfield networks are well-studied in theoretical physics (Sompolinsky & Zippelius, 1982; Amit
et al., 1985; Crisanti et al., 1986; Sompolinsky et al., 1988) and have two desirable qualities. First,
there exist network equilibria — autonomous convergent configurations among the neurons. This
corresponds to the capability to develop stable robust memories. Second, the network has phase
transitions — parametric transitional boundaries for internal degrees of freedom to successively fall
out of equilibrium. This corresponds to the plasticity of the memories.

Dynamic Hopfield networks have also been extensively studied in statistical machine learning. In
the field of reservoir computing (Lukoševičius & Jaeger, 2009), they serve as the foundations of the
powerful class of RNN known as the echo state network (Jaeger, 2001; 2002; Sussillo & F Abbott,
2009). For all of the reasons above, we model st as the dynamic Hopfield network

s′t = −st−1 + at. (3)

3.3 DERIVING THE GRU FORMULATION

Similar to how Equation (2) was rewritten from Equation (1), we now rewrite Equation (3) into
st = st−1 + h(−st−1 + at), (4)

= (1− h)st−1 + hat. (5)
The readers should find clear resemblances between Equation (5) and the cell state of the GRU
RNN, where h corresponds to the input gate it.

Hence from Equation (5), we understand that the gated units correspond to the timescales for re-
current neural variables. A natural question that follows is “Is it sensible, for timescales of an RNN
to behave as variables, instead of constants, for generating deterministic outputs?”

Here, we draw inspiration from the Newton-Raphson method (Ypma, 1995), an iterative method
for finding roots of an arbitrary continuous differentiable function g(s). The method derives better
approximated root-values of st from the previous approximations of st−1 via

st = st−1 −
g(st−1)

g′(st−1)
, (6)

which is graphically equivalent3 to satisfying (s, y) = (st, 0) with h = g′ for
y = g(st) + h(st)(s− st). (7)

3Refer to Ypma (1995, p. 535, Section 3, Figure 2).
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In Equation (7), the term h(st) serves the same functional purpose as the term h in Equation (5).
Thus, it is sensible to include variable timescales in recursive systems for deterministic outcomes.

In accordance with this analysis, if we were to define

h = h(st) = it = σ(WIxt +WRIst−1 + bI), and (8)

at = tanh(WAxt +WRA(rt � st−1) + bA), where (9)
rt = σ(WRxt +WRRst−1 + br), (10)

and substitute Equations (8)–(10) into Equation (5), we derive the GRU of System (2.2). That
is, our mathematical analysis therein this section provides an illuminating perspective on viewing
existing RNNs as dynamic Hopfield model (Equation (3)) with variable timescales (Equation (7)).

Here, we emphasise that Equations (8)–(10) present simply one of the many possible network de-
signs. That is, we may choose our network architecture as long as they fit under the dynamical
mathematical framework. In Section 4, we present a well-justified step-by-step network simplifica-
tion for the LSTM for a more optimal architectural design for RNNs.

3.4 THEORETICAL DISPARITY OF THE COMPUTATIONAL POWER OF LSTMS AND GRUS

Our claim begins with an important remark stated in a paper by Greff et al. (2017) that addressed an
in-depth lesion study on trained LSTMs across a wide variety of tasks. For all tasks, the removal of
the output gate ot severely impaired LSTM performances. The authors of that paper thus conjectured
that ot is needed to prevent unbounded cells from propagating through the network and destabilise
learning. Our analysis in Subsection 3.3, as elaborated below, is in line with their conjecture.

In Equation (5), we saw that 1−h serves as the timescale for st−1 and h as that of at; furthermore,
we saw that h can be defined as the input gate it via Equation (8). Hence, the GRU does not need a
forget gate ft given the presence of it. Under the same mathematical narrative, if an extra ft were
to be introduced to replace 1− it, numeric overflow will occur when ft < 1− it. That is, when the
removal rate of old memory st−1 is lower than the replenishment rate of new information at. Thus,
LSTMs require ot to prevent the regurgitation of uncontrollably growing memories.

However, the training stability of the GRU comes with the detrimental price of a simplified solution
space. For GRUs, the cell is solely conditioned on it alone; whereas cells of LSTMs are conditioned
on the superposition of (ft, it). That is, the update of the LSTM cell explores for an additional
subspace of Rθ for every marginal dimension that it is conditioned on it. Dimensionality θ is the
network hidden dimension, see Section 2 for details. In other words, LSTMs have the potential
to have more equilibrium states, or more complicated periodic equilibrium expressions, than the
GRUs. This quality makes the LSTM memory considerably more versatile than that of the GRU.

This theoretical disparity in memorisational computational power is also observed in practice. The
empirical sequential modelling study of Chung et al. (2014) showed that GRUs perform comparably
to LSTMs when the two networks had similar amounts of parameters4 — for when the GRUs had
larger hidden dimensionalities than the LSTMs. In other words, GRUs are less powerful than LSTMs
for the same number of hyper-parameters.

For reasons listed in this subsection, EINS — our novel light-weight RNN — to be introduced in the
next section, will be a simplification from the LSTM RNN, instead of the GRU RNN. Furthermore,
to ensure all experiments are conducted under identical hyper-parameter settings, EINS will be
benchmarked against LSTMs, instead of GRUs, in the experimental section of this paper.

4 EINS, EXTRAPOLATED INPUTS FOR NETWORK SIMPLIFICATION

In Subsection 3.3, we chose Equations (8)–(10) for recovering the GRU formulation; but now
we question “Are GRUs and LSTMs optimal architectural designs for RNNs?” In this section, we
present arguments of the existences of redundant terms, which we now identify and remove to pro-
pose our novel light-weight RNN of EINS. EINS is simplified from the LSTM instead of the GRU,
refer to Subsection 3.4 for justifications.

4Refer to Chung et al. (2014, p. 6, Section 4.2,Table 1).
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Figure 2: Architectural design of EINS

4.1 REMOVING UNNECESSARY TERMS IN THE PACKAGE UPDATE

Equation (3) of s′t = −st−1 + at dictates the cell st to receive incremental package updates
from at. However, no mathematical constraints were imposed on the update to undergo nonlinear
transformation. Thus, we simplify the statistical engineering effort of at as

at = WAxt. (11)

4.2 REMOVING UNNECESSARY SYNAPTIC CONNECTIONS

As defined in System (2.1), the LSTM gated units take the form of
ft, it,ot = σ(W{F ,I ,O}xt +WR{F ,I ,O}qt−1 + b{F ,I ,O}).

However, there was no indication in Equation (8) for the need of recurrent connections. For this
reason, we simplify the gated units as

ft, it,ot = σ(W{F ,I ,O}xt). (12)

4.3 INPUT EXTRAPOLATION

In Subsection 4.2, we remove the recurrent connections because of their non-necessity un-
der the lens of the dynamic mathematical study presented in Subsection 3.3. However, the
same mathematical analysis has not provided insights towards why the original LSTM design
functions smoothly with the inclusion of the redundant terms. In this paper, we propose to interpret
the recurrent inputs of WRqt−1 as regularisations similar to batch normalisation (Ioffe & Szegedy,
2015). That is, they ease the training of the feedforward input in activation functions.

With this asserted interpretation, we can then simplify the LSTM regularisation mechanism via
regularising the feedforward pre-activated neurons of Wxt prior to their projections under W. That
is, for the standard LSTM gated units shown in Equation (12), we substitute the original input of
xt with the newly regulated input of vt, xt ← vt, where

vt = (1− dt)� xt + dt �Wρxt, with (13)
dt = σ(WDxt +WΩqt−1 + bD). (14)

To summarise, the EINS RNN encompasses
System (4.1): the EINS RNN

the self-diagnosis gate: dt = σ(WDxt +WΩqt−1 + bD),
the extrapolated input: vt = (1− dt)� xt + dt �Wρxt,
the orthodox gated units: ft, it,ot = σ(W{F ,I ,O}vt),
the internal input: at = WAvt,
the update of the cell state: st = ft � st−1 + it � at,
and the hidden state: qt = ot � tanh(st).

The newly introduced components have dimensionalities dt,vt, bD ∈ Rξ, Wρ,WD ∈ Rξ×ξ, and
WΩ ∈ Rξ×θ; those remaining ones follow the dimensionalities listed in Section 2. We stress that
WD has fewer parameters than the orthodox feedforward synapses of W, and similarly WΩ has
fewer parameters than WR. EINSs have significantly less parameters than LSTMs through the
removal of recurrent synaptic connections from the gated units. When implemented in PyTorch
(Paszke et al., 2017)5, EINSs have 2ξ2+5ξθ+2ξ parameters in contrast to LSTMs’ 4ξθ+4θ2+8θ.

5The PyTorch implementation for LSTM have 2 biases each gate, refer to their source code for details.
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5 EXPERIMENTS

Our tasks test RNNs as generative models, as encoders, as decoders, and for their abilities to run for
variable lengths of time. Generative capabilities test the ability to represent and manipulate high-
dimensional probability distributions (Goodfellow, 2016). Encoding powers test the efficiency in
leveraging statistical information to produce a vector space with meaningful sub-structure (Penning-
ton et al., 2014). Decoding powers are similar to generative capabilities but additionally test for
the reconstruction powers given outsourced encoded features. Finally, the ability to run for variable
lengths tests the robustness against the regurgitation of compounded prediction errors conditioned
on unseen sequential context at test time, from those seen during training (Goyal et al., 2016).

We include tasks of a variety of different machine learning disciplines, including natural language
processing, computer vision, and meta-learning. GRUs are not included for reasons previously
justified in Subsection 3.4. Due to space constraint, we refer readers to the Appendicies for training
details and additional results. Last, we stress that experiments are included to demonstrate LSTM-
like performances exhibited by EINS; our goal is not to compete for the state-of-the-art results.

5.1 RESULTS AS GENERATIVE MODELS

Language models (LMs) employ RNNs to construct probabilistic predictions of the next word given
preceding ones. Following Merity et al. (2018), we trained 3-layer RNN-LMs with 400-word em-
bedding dimension and 1150-hidden dimension on word-level Penn TreeBank (PTB) (Mikolov et al.,
2010). Results in Table 1 show that EINS removed up to 63.3% parameters of an LSTM module,
and that EINSs and LSTMs yielded respective perplexity of 57.44 and 58.32. Refer to Appendix A
for additional experiments, statistical analysis, and for architectural and training details.

5.2 RESULTS AS ENCODERS

Following Bowman et al. (2016), we employed one-layer RNN variational autoencoders (VAEs) as
extensions to LMs to prevent inferences over unknown words for sentence imputation. The RNN-
VAEs had 300-word embedding dimension with 256-hidden dimension to encode Gaussian prior
distributions on cells6 of one-layer GRU-LMs for word-level PTB. Table 2 presents some imputed
words for original sentences with their final four tokens removed. Refer to Appendix B for addi-
tional experiments, length analysis, NLL analysis, and for training details.

5.3 RESULTS AS SEMI-ENCODER DISCRIMINATIVE MODELS

Che et al. (2018) presented the GRU-D architecture as an extension to GRUs for medical data
imputation-prediction. It was test on PhysioNet (Silva et al., 2012), a challenging real-world clinical
task with 78% missing rate, for mortality prediction. The network first imputes for missing values
and then makes predictions. Cao et al. (2018) extended on this concept and proposed the LSTM-
based bidirectional recurrent imputation for time series (BRITS). We tested one-layer RNN-BRITS
with 70-input dimension and 100-hidden dimension on PhysioNet, and reported the area under the
ROC curve (AUC) (Bradley, 1997), mean absolute error (MAE), and mean relative error (MRE).
Table 3 shows that EINS removed 34.4% parameters of the LSTM, and that LSTMs and EINSs
scored respective AUC/MAE/MRE of 0.866/0.270/0.382 and 0.850/0.261/0.370. Refer to Appendix
C for results on different BRITS variants, and for architectural and training details.

5.4 RESULTS AS DECODERS

Gregor et al. (2015) proposed the deep recurrent attention writer (DRAW) architecture to generate
images of photographs of house numbers (Goodfellow et al., 2014). DRAW employs single-layer
LSTMs with 100-input dimension and 800-hidden dimension to decode pixel information in latent
distributions to reassess previously generated images. We followed their setup and Figure 3 shows
that DRAW-EINS generated images of similar quality to those of DRAW-LSTM. The LSTMs had
2.88 million parameters, while the EINSs had only 0.42 million, removing 85.4% parameters. Refer
to Appendix D for examples of sequential image generation, and architectural and training details.

6As mentioned in Section 2, we use LSTM-terminologies to describe GRUs.
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Table 1: Language modelling on word-level PTB
Model Test Perplexity / Dimensionality # Parameters

Equivalent Loss
Merity et al. (2018)
3-Layer LSTM-LM 57.3 / 4.0483 identical as the cell below
our implementation
3-Layer LSTM-LM 58.32 / 4.0695 L1: (ξ, θ) = (400, 1150) 7.13M

L2: (ξ, θ) = (1150, 1150) 10.58M
L3: (ξ, θ) = (1150, 400) 7.13M

our proposed model
3-Layer EINS-LM 57.44 / 4.0507 L1: (ξ, θ) = (400, 1150) 2.62M (63.3% less)

L2: (ξ, θ) = (1150, 1150) 9.26M (12.5% less)
L3: (ξ, θ) = (1150, 400) 2.62M (63.3% less)

‡ lower, better ‡ lower, better

Table 2: RNN-VAE for sentence imputation∗

Example sentence 1
from n to n n billion kent cigarettes with the filters were sold 1 1 1 1 True: the company said .
LSTM-VAE Dimensionality (ξ, θ) = (300, 256) # Parameters 570.37K
Sample 1: by toyota moto co. . Sample 2: to $ n billion from n billion .
EINS-VAE Dimensionality (ξ, θ) = (300, 256) # Parameters 564.30K (1.06% less)
Sample 1: through underwriters led by goldman Sample 2: at the end of the year’s n million

sachs & co. and salomon brother inc . shares outstanding .
Example sentence 2
but you have to recognize that these events took place 1 1 1 1 True: n years ago .
LSTM-VAE
Sample 1: and i’m not going to do . Sample 2: in the u . s . .
EINS-VAE
Sample 1: in the next few days . Sample 2: on the street .

*: With style of presentation adopted from Bowman et al. (2016, p. 6, Table 3).

Table 3: BRITS for PhysioNet
Model AUC MAE(MRE)
Cao et al. (2018)
LSTM-BRITS 0.850 0.281(0.391) identical as the cell below
our implementation Dimensionality (ξ, θ) = (70, 100)
LSTM-BRITS 0.866 0.270(0.382) # Parameters 136.80K
our proposed model Dimensionality (ξ, θ) = (70, 100)
EINS-BRITS 0.850 0.261(0.370) # Parameters 89.74K (34.4% less)

‡ higher, better ‡ lower, better

5.5 RUN ONLINE FOR VARIABLE LENGTH — LEARNING TO LEARN

Learning to learn was selected to test EINS’s ability to run online for a variable length of in-
stances. Andrychowicz et al. (2016) trained optimisee networks with LSTM-optimisers, and found
that the optimisees were trained faster than traditional optimisation methods such as SGD (Robbins
& Monro, 1951) and ADAM (Kingma & Ba, 2015), and also yielded lower losses in test time. For
classifying the CIFAR-10 dataset (Krizhevsky, 2009), Andrychowicz et al. (2016) selected an op-
timisee network with the architecture of three convolutional layers with max pooling followed by
a fully-connected layer. Their LSTM-optimiser was trained to update their optimisee network for
100 steps; and during testing, was set to run freely to optimise the optimisee for 1000 steps. We
selected to train the much deeper ResNet-16 (He et al., 2016), and updated weights of the ResNets
according to Ravi & Larochelle (2017). This was because we found this method allowed the RNN-
optimisers to train the ResNets faster than the method in Andrychowicz et al. (2016). The average
result over training 50 ResNet-16s are shown in Figure 4 (Appendix E). Both RNN-optimisers
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Sample images of DRAW-LSTM Sample images of DRAW-EINS Sample data

Figure 3: DRAW for generating street-view-house-number images.
The style of presentation adopted from Gregor et al. (2015, p.7, Figure 9).
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Figure 4: Optimising ResNet-16 on Cifar10

significantly outperformed the hand-crafted optimisers of SGD and ADAM. The EINS-optimiser al-
lowed ResNets to converge to lower losses than the LSTM-optimiser. With 20-input dimension and
20-hidden dimension, the LSTM-optimiser had 3.28 thousand parameters, while the EINS-optimiser
had 2.82 thousand, removing 14.0% of parameters.

6 DISCUSSION

This paper modelled cell states of LSTMs and GRUs as dynamic Hopfield networks. We interpreted
gated units as time scales of network variables, and highlighted redundant network components.
Based on our insights, we presented the novel light-weight RNN of EINS and evaluated it on various
tasks for a wide range of practical RNN aspects. Despite having both a simpler design and fewer
parameters, this simplification either performed comparably, or better, than the LSTM in each task.

LSTMs and GRUs have previously been studied with different approaches. Empirical studies in
text (Karpathy et al., 2015) found LSTM hidden states acting as quotation machines; and in speech
(Wu & King, 2016), they were found to correlate to the Mel-Cepsrtal coefficient. Search studies of
Jozefowicz et al. (2015) found no particular combinatory sets of variables consistently outperformed
LSTMs in all experimental conditions.

Our mathematical analysis aligned with the lesion study of Greff et al. (2017). We found that, as
in the GRU, the forget gate ft is not required given the presence of an input gate it. Based on this
analysis, we deduced that the LSTM output gate ot prevent numerical overflow from the deviated
values among ft and (1 − it). This aligned with the observations in Greff et al. (2017), where
they found that the removal of ot severely impacted LSTM performances across multiple tasks.
Furthermore, we provided a theoretical argument that the collaborative effort of LSTM ft, it, and
ot create a more powerful and more versatile cell than that of the GRU.

Dynamical mathematical analysis in RNN have also been previously reported in Tallec & Ollivier
(2018). The authors of that paper based their work on Jaeger (2002) and modelled hidden variables
of simple recurrent networks as leaky differential networks. In their paper, they interpreted the gated
units as autonomous heuristic derivatives. A similar mathematical approach can be found in echo
state networks (Jaeger, 2001) and in theoretical physics (Sompolinsky et al., 1988).
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A APPENDIX - LANGUAGE MODELLING

This appendix provides details for the RNN-LMs of Subsection 5.1. We will address training details
of as well as additional experimental results.

A.1 ARCHITECTURAL DESIGN AND TRAINING SETUP

The RNN-LM of Merity et al. (2018) consists a word embedding layer following 3 layers of LSTM
modules and then a softmax layer. For our experiments, we incorporated all regularisation meth-
ods detailed in Section 4 of that paper. However, since EINS-LMs do not have recurrent synaptic
connections in its gated units, we performed a 10% WeightDrop (Wan et al., 2013) on feedforward
synaptic connections for the EINS gated units instead.

We trained our RNN-LMs using a mixed procedure of the SGD optimiser and the ASGD optimiser
(Polyak & Juditsky, 1992) as according to Merity et al. (2018). However, we disabled the feature of
non-monotonically triggered ASGD (NT-ASGD) as described in Section 3 of that paper. This was
done for two reasons. First, there is yet a study to provide theoretical guidelines for when to switch
from SGD to ASGD, and this was also noted by Merity et al. (2018). Second, we wanted to ensure
that the LSTM-LMs and the EINS-LMs were optimised under the same training environment. For
these two reasons, we trained the RNN-LMs with SGD for 30 epochs, and followed with 470 epochs
of training on ASGD. That is, with 500 epochs of training in total. While using SGD, the learning
rate was set as 30; and as for ASGD, the first 100 epochs were trained with the learning rate of 30,
and that the remaining 370 were trained with 50.

A.2 IMPORTANT SOFTWARE ISSUES AND METRIC ISSUES

The PyTorch (Paszke et al., 2017) Github repository of Merity et al. (2018) of
https://github.com/salesforce/awd-lstm-lm
noted that the reported 57.3 perplexity of their paper were achieved under PyTorch version 0.4 on
seed 141. The authors of this manuscript found that, although similar performances can be repro-
duced under PyTorch version 0.4, such is not the case under the latest PyTorch version 1.0 . Under
our experimentation, we got a worse perplexity of 61.4 . After huge difficulties in inspecting po-
tential bugs, the first author of this manuscript concluded that, this performance discrepancy should
not be attributed to Merity et al. (2018), but instead to the updated random initialisation of PyTorch
version 1.0 , and to the update of the “flatten parameters()” function therein the “RNNCell” module.

The following comments are provided specifically to readers who are less familiar with language
modelling. Perplexity is the exponentiated version of the loss value (which Merity et al. (2018)
chose the cross entropy loss). That is, though a perplexity of 61.4 is worse than that of 57.3 with
an relative increase of 7.16%, their original losses are actually very similar. Perplexity 61.4 has an
equivalent loss of 4.1174 while that of perplexity 57.3 is 4.0483. That is, the difference in loss is
merely 0.0691. Our reported results in Subsection 5.1 were conducted with PyTorch version 0.4,
and we deliberately chose this version of PyTorch in order to reproduce similar perplexity results to
the baseline 57.3. However, while using PyTorch version 1.0 with the exact same code, we yielded
63.89 for LSTM-LM and 63.50 for EINS-LM. That is, we yielded equivalent loss of 4.1572 and
4.1510 for LSTM-LM and EINS-LM, respectively; but they were close to perplexity 57.3, with
equivalent loss of 4.0483, reported in the original paper of Merity et al. (2018).

A.3 ADDITIONAL EXPERIMENTS FOR MODELS THAT ARE LESS OVERFIT

As shown in Subsection 5.1, each layer of the LSTM-LM consisted more than 7M parameters and
it was highly likely that the RNN-LMs (though used as standard practice) were overfitting severely.
For this reason, we now present additional experiments with 2-layer RNN-LMs trained for mere
50 epochs. The RNNs had 400-embedding dimension with 1150-hidden dimension; and again, the
first 30 epochs were trained with SGD with learning rate 30 and that the later 20 were with ASGD
with learning rate 30. Across 50 random initialisations, the shallow LSTM-LMs and shallow EINS-
LMs achieved perplexities of 67.76±0.22 and 67.77±0.13 respectively. Thus, with the significant
reduction of 63.3% parameters in each layer modules, shallow EINS-LMs achieved performances
with no practical significant difference to that of LSTM-LMs.
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B APPENDIX - SENTENCE VAE

This appendix provides details for the RNN-VAEs of Subsection 5.2. We will address training
details of the RNN-VAE as well as additional experimental results.

B.1 ARCHITECTURAL DESIGN

For sentence imputation, we implemented the network architectural design according to Bowman
et al. (2016). The network consists of two components, an RNN-VAE and an LM. The RNN-VAE
is added as an extensions to the language model, which, for this task, is a GRU-LM.

The purpose of the RNN-VAE is to provide the LM with distributed latent representations of entire
sentences. Both the GRU-LM and the RNN-VAE were one-layer deep and had 300-word embedding
dimension with 256-hidden dimension.

B.2 TRAINING SETUP

The network was trained on the ADAM optimiser with learning rate 0.001 for 10 epochs. During
training, we applied 0.5 embedding dropout and, both the RNN-VAE as well as the GRU-LM, had
recurrent synaptic connection dropout (Wan et al., 2013) with rate 0.25.

B.3 ADDITIONAL EXPERIMENTS

The original paper of Bowman et al. (2016) presented negative log-likelihood (NLL) as a measure
of the typicality of the entire generated sentence. The lower the NLL, the better the score. However,
this metric may not be the most suitable indicator for two reasons. First, the generated outputs are of
various lengths. That means, due to the additive and non-negative nature of NLL, longer sequences
will usually result in higher scores; longer sentences are not necessarily worse sentences. Second,
using NLLs implicitly means that we trust the machine had learnt human-like probabilistic infer-
ences. This cannot be gaureenteed unless a separate in-depth empirical study, like that of Karpathy
et al. (2015), is conducted.

In this appendix, we provide two additional indicators to compare EINS-VAE against LSTM-VAE.
First, we aggregate the amount of unknown <unk> tokens generated during sentence imputation.
This provides us a glimpse of the output quality. Second, we provide lengths of the generated
sentences. Ideally, we would like to see sentences of moderate lengths or of diverse. Short sentences
imply the network is incapable of generating rich context, while extremely long sentences imply
malfunctioning networks.

Our additional experimental results can be found in Table 4 and Figures 5, 6. We considered sen-
tences of two different lengths, one short and one long, for testing RNN-VAEs’ abilities in encoding
latent information over different lengths of sequences. Furthermore, we sampled sentences with
different NLLs to show that subjectively good quality sentences can occur at different NLLs.

Over 20 imputed sequences of the short input, the LM with LSTM-VAE yielded 9 sentences with
<unk>, whereas the LM with EINS-VAE yielded 2 sentences with <unk>. The LM with EINS-
VAE was more capable of generating longer sentences than the LM with LSTM-VAE, and had
generated sentences with a larger variety of NLLs. However, both the NLLs and the sentence lengths
had overlaying interquartile ranges on the side-by-side box plots in the Figures. Thus there are no
significant differences between the performances of the two RNN-VAEs.

Over 20 imputed sequences of the long input, the LM with LSTM-VAE yielded 0 sentences with
<unk>, whereas the LM with EINS-VAE yielded 1 sentence with <unk>. Overall, the LM with
LSTM-VAE generated much shorter sentences than the LM with EINS-VAE, however both RNN-
VAEs generated sentences with similar NLLs. Similar to the generated sentences of the short input,
side-by-side box plots in the Figures showed overlaying interquartile ranges, indicating no signifi-
cant differences in the NLLs nor the sentence lengths.
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Table 4: Additional experiments for RNN-VAE on sentence imputation
Short input
there is no asbestos in 1 1 1 1 True: our products now .
LSTM-VAE
Sample 1 (NLL: 42.78) the next few weeks he says .
Sample 2 (NLL: 33.74) the u . s . and europe .
Sample 3 (NLL: 25.29) n to n .
Sample 4 (NLL: 13.89) <unk> .
EINS-VAE
Sample 1 (NLL: 51.19) the u . s . r . s . r . s . r . a . president and chief

executive officer of the u . s . ambassador to the u
. s . embassy .

Sample 2 (NLL: 32.17) any case he said .
Sample 3 (NLL: 21.33) new york stock exchange composite trading .
Sample 4 (NLL: 9.30) n .
Long input
united illuminating is based in new haven
conn . and northeast is based 1 1 1 1

True: in hartford conn .

LSTM-VAE
Sample 1 (NLL: 40.04) on cable networks .
Sample 2 (NLL: 33.62) on the tapes .
Sample 3 (NLL: 21.26) the san francisco area .
Sample 4 (NLL: 17.14) .
EINS-VAE
Sample 1 (NLL: 39.29) in sunnyvale calif . s president and chief executive

officer of <unk> inc . and puerto rico .
Sample 2 (NLL: 34.35) on the u . s . attorney general foods corp . a new

york state department spokesman said .
Sample 3 (NLL: 28.33) in palo alto calif . A unit of texas air corp .
Sample 4 (NLL: 13.99) on revenue of $ n billion .

Figure 5: Generated sentence NLLs of RNN-VAEs

Figure 6: Generated sentence lengths of RNN-VAEs
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C APPENDIX - BRTIS

This appendix provides details for the RNN-BRITS of Subsection 5.3. We will address training
details of the BRTIS as well as additional experimental results.

For medical data imputation-prediction, we implemented the network architectural design according
to Cao et al. (2018). The BRITS is an extended architecture of the GRU-D (Che et al., 2018); we
will first address the GRU-D before describing the BRITS.

C.1 THE GRU-D ARCHITECTURAL DESIGN

The GRU-D network consists of trainable decays to impute missing values for predictions. The
imputation is a two-step procedure. The network first masks existing values, and then applies a
trainable decay to modulate impacts of existing values on their missing counterparts. Values of the
hidden states are also depreciated in a similar fashion. Iteratively, over the non-equally discretised
time interval of κt, the network utilises the last observed input xt′ and emperical mean x̃ to

System (C.1): the GRU-D

mask existing values: mt =

{
1, if xt is observed
0, otherwise

,

and accounts time delay: δt =


κt − κt−1 + δt−1, t > 1,mt−1 = 0

κt − κt−1, mt−1 = 1

0, t = 1

,

to create scaling factors:
{
γxt = exp{−max(0,Wγxδt + bγx)}
γst = exp{−max(0,Wγsδt + bγs)}

,

for imputing inputs: x̂t = mtxt + (1−mt)(γ
x
t xt′ + (1− γxt )x̃),

and the cached cell: ŝt = γst � st−1,
with a set of gated units: it, rt = σ(W{I ,R}x̂t+WR{I ,R}ŝt−1+V{I ,R}mt+ b{I ,R}),
and an internal input: at = tanh(WAx̂t +WRA(rt � ŝt−1) +V{I ,R}mt + bA),
to update the cell: st = (1− it)� ŝt−1 + it � at.

Remember, as mentioned in Section 2, this paper uses LSTM-terminologies to describe GRUs.

C.2 THE BRITS ARCHITECTURAL DESIGN

The BRITS design is near identical to System (C.1). The only difference is that the internal input
of at is alternatively modelled by a bidirectional LSTM. When at is modelled by a unidirectional
LSTM, the resulting variant of BRITS is called RITS. For both the RITS and the BRITS architecture,
we used RNN modules with 70-input dimension and 100-hidden dimension.

Aside from the small architectural modification, another small contribution of the BRITS paper to
the GRU-D is the reformulation of the loss function. Interested readers can find the reformulation
documented in Section 4.3 “Correlated Recurrent Imputation” of page 6 of Cao et al. (2018).

C.3 TRAINING SETUP

The network is trained on the ADAM optimiser with learning rate 0.001 for 150 epochs. For
training, we follow the hyperparametric setting used in the official repository of Cao et al. (2018)
of https://github.com/caow13/BRITS . During our experiments, we found that the not-very-well-
explained weights of loss heavily influenced the quality of the final network. Interested readers can
find the these setups provided in https://github.com/caow13/BRITS/hyper param.py .

C.4 ADDITIONAL EXPERIMENTS

In this appendix, we provide additional experiments on the alternative network of RITS. Results are
shown in Table 5 overleaf.
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Table 5: RITS for PhysioNet
Model AUC MAE(MRE)
Cao et al. (2018)
LSTM-RITS 0.840 0.300(0.419)
our implementation Dimensionality (ξ, θ) = (70, 100)
LSTM-RITS 0.853 0.299(0.414) # Parameters 68.4K
our proposed model Dimensionality (ξ, θ) = (70, 100)
EINS-RITS 0.855 0.286(0.405) # Parameters 44.9K (34.4% less)

‡ higher, better ‡ lower, better

By combining the above results and those in Table 3, we found that the best result was achieved by
LSTM-BRITS at an AUC score of 0.866 with 136.80K parameters, and the second best result was
achieved by EINS-RITS at an AUC score of 0.855 with 44.9K parameters. In addition, LSTM-RITS
was also able of achieving the competitive result of an AUC score of 0.853 with 68.4K parameters.
Thus we conclude that it is unnecessary to go for the bidirectional design for modelling the internal
input of at.
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D APPENDIX - DRAW

This appendix provides details for DRAW of Subsection 5.4.

D.1 ARCHITECTURAL DESIGN

We implemented the DRAW architecture for image generation according to Gregor et al. (2015).
DRAW employs a VAE network to compress information of images x to prepare for a latent vector
of Gaussian information z, which is then fed to a decoder network to infer for pixel information on
an image canvas c. At its core, the network can be summarised as

System (D.1): the core of the DRAW architecture
prior distribution tuning: lENC = ENCODER(x, c) ,
latent information sampling: z ∼ N(Z|lENC),
for canvas pixel inference: c = DECODER(z).

When an RNN-decoder is employed, we have

canvas pixel inference: ct = ct−1 +
Recurrent-DECODER([qt−1, ct−1, z])

where qt−1 is the hidden state of the RNN module of the recurrent-decoder, and that c0 = 0̃.

D.2 TRAINING SETUP

The networks were trained on the ADAM optimiser with learning rate 0.001 for 100 epochs. The
RNN modules of the decoder network had 100-input dimension with 800-hidden dimension. Latent
vectors are of R100 and the canvas was reassessed for 32 iterations as according to the paper. An
extremely important detail to the RNN-Decoders is that, the forget gate needs to be initialised with
a positive bias of +1 to allow for successful training, a recommended practice in Gers et al. (2000).

One minor difference in our implementation lies in the format of the dataset. According to Sec-
tion 4.4 “Street View House Number Generation” on page 7, Gregor et al. (2015) used the pre-
processing of Goodfellow et al. (2014). This means that they have used the Format 1 dataset of
http://ufldl.stanford.edu/housenumbers/ (Netzer et al., 2011), and then cropped for relevant number
images. In contrast, we used the pre-cropped Format 2 dataset provided by the same data suppliers.
As a consequence, our input images are of pixel sizes 32×32, while theirs are of size 54×54.

D.3 ADDITIONAL EXPERIMENTS

Figures 7 in below are additional experiments for the iterative reassessments of generated images.
The NLL metric for the generated images are not provided, for similar reasons previously elaborated
in Subsection B.3

Iterations
6 11 16 21 26 31 6 11 16 21 26 31

(a) LSTM (b) EINS

Figure 7: Sequentially updating generated images with DRAW
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E APPENDIX - LEARNING TO LEARN

This appendix provides details for the RNN-optimisers of Subsection 5.5. We will address different
variants of updates for the parameters of the optimisee network as well as training setups for the
task.

E.1 EXPERIMENTAL SETUP

Three important components are involved in this task — an optimisee network, an RNN-optimiser,
and an optimiser for the RNN-optimiser. Our optimisee networks followed the ResNet-16 (He et al.,
2016) architecture and were trained to learn to classify images of the CIFAR-10 dataset (Krizhevsky,
2009). The RNN-optimiser was trained by a handcrafted optimiser to learn to update the parameters
of an optimisee network.

We followed Andrychowicz et al. (2016) for general practices in the learning to learn task. The
RNN-optimisers had 20-input dimension with 20-hidden dimension and were updated for 200
epochs. For each epoch, the RNN-optimiser updated 10 randomly initialised ResNet optimisees.
Each optimisee network is set to run for 100 steps. For each step, the optimisees provided informa-
tion of their gradients as well as their parameters to the RNN-optimisers for parametric updates.

The RNN-optimisers were updated for every 10 steps ran by the optimisee network. This was
referred to as unrolling in Andrychowicz et al. (2016). The hidden states and the cell states of
the RNN-optimisers were removed from the chained differential computational graph after each
unrolling. This was done to prevent leakage of previously computed gradient information. For each
unrolling step, the RNN-optimisers were updated by the ADAM optimiser with learning rate 0.001.

E.2 UPDATING PARAMETERS OF THE OPTIMISEE NETWORK

The RNN-optimiser of Andrychowicz et al. (2016) is a vanilla single-layer LSTM module, which
updates the optimisee weights of M(φ) as a function of its own parameters of φ. That is, given the
gradients of the optimisee∇t, the RNN-optimiser infers for a package of update gt to M, such that

Mt = Mt−1 + gt, where (15)[
gt
qt

]
= RNN-optimiser(∇t, qt−1|φ) (16)

and where qt is the hidden state of the RNN-optimiser.

This method of update differs to handcrafted updates that usually take the form of

M = (1− ηλ)M− η ∂E
∂M

(17)

where η is the learning rate, and that λ is the weight decay. For this reason, we also employed a
vanilla single-layer LSTM to train the optimisee via

Mt = (1− ηtλt)Mt−1 − ηt∇t, where (18)[
ηt
λt
qt

]
= RNN-optimiser(∇t, qt−1|φ). (19)

However, we found that this method did not yield ResNet-optimisees with lower losses, nor did it
allow the RNN-optimisers to train faster.

As a follow-up experiment, we implemented the RNN-optimiser described in Ravi & Larochelle
(2017). Their RNN-optimiser consists of a single layer of vanilla LSTM module with an extra meta-
update layer. Layer Normalisation (Ba et al., 2016) is applied to all synaptic connections within
the LSTM module. The meta-update layer formulates the parametric update of the optimisee as the
propagation of an LSTM cell, where

Mt = ftMt−1 + itgt (20)

such that ft, it, and gt are recurrent units that takes the hidden state of the first vanila LSTM layer
as input. During our experiments, we found this method updated the RNN-optimiser the fastest, and
also yielded ResNet-optimisees with the least loss.
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