
Under review as a conference paper at ICLR 2020

LAGRANGIAN FLUID SIMULATION
WITH CONTINUOUS CONVOLUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an approach to Lagrangian fluid simulation with a new type of convo-
lutional network. Our networks process sets of moving particles, which describe
fluids in space and time. Unlike previous approaches, we do not build an ex-
plicit graph structure to connect the particles but use spatial convolutions as the
main differentiable operation that relates particles to their neighbors. To this end
we present a simple, novel, and effective extension of N-D convolutions to the
continuous domain. We show that our network architecture can simulate differ-
ent materials, generalizes to arbitrary collision geometries, and can be used for
inverse problems. In addition, we demonstrate that our continuous convolutions
outperform prior formulations in terms of accuracy and speed.

1 INTRODUCTION

Understanding physics is a fundamental ability required to reason about our environment and to
interact with it. Neural networks have emerged as a particularly promising approach to capture the
complexity of natural phenomena from data (Ling et al., 2016; Tompson et al., 2017; Morton et al.,
2018). An important aspect of learning physics with neural networks is the choice of representation.
Lagrangian representations based on particles are particularly popular and have supported a range
of impressive results with rigid bodies, deformable solids, and fluids (Battaglia et al., 2016; Mrowca
et al., 2018; Li et al., 2019). Many of these approaches use graph structures to define interactions;
the existence of an edge determines in a binary fashion whether two particles interact.

However, a wide range of physical processes such as fluid mechanics are described by continuous
partial differential equations rather than discrete graph structures. The continuous, volumetric, and
tightly coupled nature of these processes causes inherent difficulties for graph-based approaches,
such as a large number of edge connections that must be established, tracked, and disengaged as
the particles move. In this work, instead of using graphs as the underlying representation, we adopt
a continuous viewpoint. We propose to use convolutional networks (ConvNets) with continuous
convolutions on particles for learning fluid mechanics. We treat fluids as spatially continuous func-
tions sampled at a finite number of (continuously evolving) positions and process them with a novel
continuous convolution layer. This matches the continuous nature of the problem more closely and
simplifies the definition of neural networks by abstracting the underlying particle representation.

We naturally extend the grid-based filter representation commonly used for discrete convolutions to
the continuous domain by simple linear interpolation. Linear interpolation of the filters allows effi-
cient lookup of spatially varying filter values at arbitrary positions while retaining the compactness
and efficiency of the grid representation. We show that our convolutions, despite their simplicity,
perform better than more sophisticated representations (Wang et al., 2018; Schenck & Fox, 2018).

With the presented continuous convolution layer, we develop an efficient ConvNet architecture for
learning fluid mechanics. The network processes sets of particles. We use dynamic particles to
represent the fluid and static particles to describe the boundary of the scene. Modelling the scene
boundary with particles makes it easy to apply our network to new scenes and allows the network
to learn collision handling in a unified framework. Our network generalizes to arbitrary obstacle
configurations and can simulate a range of material behavior. To demonstrate the usefulness of
a learned – and hence differentiable – fluid simulator, we show that material properties can be
estimated from observed simulation data. Experimental results indicate that the presented approach
outperforms a state-of-the-art graph-based framework (Li et al., 2019).

1

Under review as a conference paper at ICLR 2020

2 RELATED WORK

Fluids encompass a range of materials that are important in everyday life and throughout science
and engineering (Wilcox, 2006). A prominent set of methods, known as Smoothed Particle Hydro-
dynamics (SPH), employs a Lagrangian viewpoint to simulate these phenomena. SPH originated
in particle-based models for astrophysics (Gingold & Monaghan, 1977) and has become extremely
popular for simulating complex �ows in many �elds of science (Monaghan, 1988). Among others,
it has been highly successful for modeling interface �ows (Colagrossi & Landrini, 2003), complex
multi-phase phenomena (Hu & Adams, 2006), and even magnetohydrodynamics (Price, 2012).

SPH and its variants have been widely used to model complex real-world phenomena for visual
effects. Following the earlier development of physics-based �uid simulation for special effects by
Foster & Metaxas (1996), the introduction of SPH (Müller et al., 2003) has led to a large class of
powerful algorithms (Solenthaler & Pajarola, 2009; Bender & Koschier, 2015). These applications
often involve complex geometries at large scales, and extensions such as FleX (Macklin et al., 2014)
and pressure-aware rigid body coupling (Gissler et al., 2018) broaden the framework to encompass
many physical phenomena.

Lagrangian �ows have also been considered in machine learning. The seminal work of Ladický
et al. (2015) demonstrated that �ow representations can be learned with regression forests. CNNs
were used by Tompson et al. (2017) to accelerate the expensive pressure correction step of grid-
based solvers, while other works have focused on super-resolution (Xie et al., 2018), learning time
evolution via the Koopman operator (Morton et al., 2018), and learning reduced representations
(Kim et al., 2019). Differentiable SPH solvers were proposed to solve control tasks for robotic
applications (Schenck & Fox, 2018). More generic physics simulations for Lagrangian rigid and
deformable bodies were the target of a series of works that developed graph-based representations
(Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018). Such graph-based representations were
recently applied directly to �uid simulation (Mrowca et al., 2018; Li et al., 2019). We share with
these recent works the goal of modelling Lagrangian �uids with differentiable neural networks, but
take a different tack: rather than using graph-based representations, we work with point clouds and
continuous convolutions over the spatial domain.

From a technical perspective, our approach is also related to existing works that apply convolutions
on point clouds. A number of methods transferred the convolution concept to point clouds in the
context of semantic classi�cation and segmentation of 3D objects (Hua et al., 2018; Atzmon et al.,
2018; Hermosilla et al., 2018; Li et al., 2018; Su et al., 2018; Wu et al., 2018; Xu et al., 2018; Lei
et al., 2019). Particularly notable in our context are the works of Wang et al. (2018), who used con-
tinuous convolutions to compute the scene �ow between two point clouds, and the aforementioned
work of Schenck & Fox (2018), who used convolutions to implement a differentiable version of
position-based �uids (Macklin & M̈uller, 2013). Both works de�ne continuous convolution opera-
tors that can be used for regression tasks and we compare with them directly in Section 6.

3 BASICS

Fluids have been studied for centuries, and the Navier-Stokes equations for incompressible �uids
are well established (Batchelor, 1967):

@v
@t

+ v � r v = �
1
�

r p + � r 2v + g; s.t. r � v = 0 : (1)

A common approach to solve these partial differential equations is to approximate the �uid with a
set of smooth particles (Monaghan, 1988). Each particle corresponds to a continuous blob of matter
and carries the local properties of the �uid, such as velocity and density, which move with the �ow.
This is motivated by the fact that a functionA(x) can be represented by an integral interpolation

A(x) =
Z

A(x0)� (kx � x0k2)dV(x0); (2)

where� (x) denotes the Dirac delta function. This equation can be discretized as

A(x) �
X

i

Vi A i W (kx � x0k2; h); (3)

2

Under review as a conference paper at ICLR 2020

whereVi is the volume at the given point in space and

lim
h! 0

W (jx � x0j; h) = � (jx � x0j): (4)

Here W (x) is a smooth kernel or convolution with radiush, usually in the form of a Gaussian
distribution, but more complex functions can also be used. In practice, the kernel is �nite and
yields localized neighborhoods of particles that interact via interactions weighted by the kernel of
its derivatives. In this way, the continuous description for �uids from Equation 1 can be discretized
in a Lagrangian fashion and solved numerically. Typically, internal forces are calculated based on the
local pressure, viscosity, and surface tension, which give an update for the position of each particle.
Below, we adopt the position-based �uids (PBF) method (Macklin & Müller, 2013; Macklin et al.,
2014), which likewise is based on SPH, but reformulates the updates as constraints on the positions.

4 CONTINUOUS CONVOLUTIONS

The discrete convolution operator as commonly used in ConvNets is de�ned as

(f � g)(x) =
X

� 2

f (x + �)g(�); (5)

wheref andg are the input and the pre-mirrored �lter function,x is the position,� is the shift
vector, and
 is the set of shift vectors that de�nes the support of the �lter function. On regular data
such as images, the positionsx range over a regular grid and the shift vectors� are integer-valued,
i.e. x ; � 2 Zd for some dimensionalityd. In the continuous domain, the convolution is de�ned as

(f � g)(x) =
Z

Rd
f (x + �)g(�)d� ; (6)

wherex and� are real-valued vectors, i.e.x ; � 2 Rd.

We now adapt this de�nition to unstructured point clouds. In this setting we have a �nite number of
points that sample the functionf but do not lie on a grid. For a point cloud withi = 1 ; ::; N points
with valuesf i at positionsx i , we de�ne the convolution at a positionx as

(f � g)(x) =
1

 (x)

X

i 2N (x ;R)

a(x i ; x) f i g(�(x i � x)) : (7)

N (x; R) is the set of points within a radiusR aroundx. a is a scalar function that can be used for
density normalization speci�c to the pointsx i andx as in Hermosilla et al. (2018). In the simplest
case,a can be a constant function:a = 1 . In our case we want to ensure a smooth response of our
convolution under varying particle neighborhoods, therefore we de�nea as a window function:

a(x i ; x) =
�

(R2 � k x i � xk2
2)3 for kx i � xk2 < R

0 else:
(8)

A similar function has been used by Müller et al. (2003) in the SPH framework. is another scalar
function for normalization, which can be set in our implementation as either

 (x) = 1 or (x) =
X

i 2N (x ;R)

a(x i ; x): (9)

We use (x) = 1 as changes in the density of particles are an important feature for simulating �uids.

For the �lter functiong we simply use a regular grid to store the �lter values but use linear interpola-
tion to makeg a continuous function. In addition, we use a mapping�(r) of a unit ball to a unit cube
to implement spherical �lters as shown in Figure 1. We use the mapping described by Griepentrog
et al. (2008). The intermediate coordinate mapping� provides the �exibility to implement different
spatial shapes while keeping the advantages of a regular grid for the storage and lookup of �lter
values.

Note that Equation 7 uses a similar approximation as in the SPH framework (Equation 3). Assuming
that each point represents the same volume,Vi is a constant factor in Equation 3, which we drop in
our de�nition.

3

Under review as a conference paper at ICLR 2020

Figure 1: We use a regular grid to store the �lter values of our continuous convolutions. To look
up �lter values for spherical �lter shapes, we map the relative positionr to normalized coordinates,
which de�ne the lookup with trilinear interpolation in the regular grid.

5 LEARNING FLUID MECHANICS WITH CONVOLUTIONAL NETWORKS

Our goal is to learn �uid mechanics from observing the motion of particles, thus the input to our
ConvNet is a set of particles with corresponding features. Note that we must assign a feature vector
to each particle as the position itself is not a feature but de�nes the particle's position in space. As
a feature vector we use a constant scalar1 accompanied by the velocityv and the viscosity� . A
particlepi with its position and input feature vector at timestepn is thus a tuple(xn �

i ; [1; v n �
i ; � i]).

De�ning the velocity explicitly as an input feature allows us to compute intermediate velocities and
positions as in Ladicḱy et al. (2015) and to apply external forces and pass this information to the
network. We compute the intermediate positionsxn �

i and velocitiesv n �
i beginning with timestepn

with the midpoint method as

v n �
i = v n

i + � t aext (10)

xn �
i = xn

i + � t
v n

i + v n �
i

2
: (11)

The vectoraext is an acceleration through which we can apply external forces to control the �uid
or to simply apply gravity. The intermediate positions and velocities lack any interactions between
particles or the scene, which we are going to implement with a ConvNet. To enable the network
to handle collisions with the environment we de�ne a second set of static particlessj . We sample
particles on the boundaries of the scene with normalsn j as the feature vectors, i.e.sj = (x j ; [n j]).
Our network implements the function

[� x1; : : : ; � xN] = ConvNet(f p1; : : : ; pN g; f s1; : : : ; sM g); (12)

which uses convolutions to combine features from both particle sets.� x is a correction of the
position which accounts for all particle interactions including the collision handling with the scene.
Finally, we apply the correction to update positions and velocities forn + 1 as

xn +1
i = xn �

i + � x i (13)

v n +1
i =

xn +1
i � xn

i

� t
: (14)

Note that the updated positionxn +1
i depends on the networks output vector� x i and allows us to

directly de�ne our learning objective on the particle positions.

5.1 NETWORK ARCHITECTURE

We use a simple convolutional architecture with an effective depth of four. An overview of the
network is shown in Figure 2. Since we want to compute the correction for all dynamic particles
in our scene, we compute convolutions for the intermediate positions de�ned in Equation 11. Our
network is a sequence of continuous convolutions (CConv), which are de�ned by an input particle
set, the positions at which we want to evaluate the convolution, its �ltersG and the radiusR. For
instance, to describe a convolution on the static particlessi at the intermediate positionsxn �

i as used
in the beginning of our network we can write

[f1; : : : ; fN] = CConv(f s1; : : : ; sM g; [xn �
1 ; : : : ; xn �

N]; G; R); (15)

wheref i are the computed output features for each positionxn �
i . G is a 5D array storing all �lters

in the layout[width; height; depth; chin; chout]. In contrast to discrete convolutions on a regular grid,

4

Under review as a conference paper at ICLR 2020

Figure 2: Our network has a depth of four. In the �rst depth level we compute convolutions at each
dynamic particle location with the set of static particles that de�ne the environment as well as the
dynamic particle set. We also directly process the features of each particle via a fully-connected
stream. In the following levels, we compute convolutions only on the dynamic particles. At each
level we use addition to aggregate the features computed by convolutions and fully-connected layers.
Between the second and third level we also include a residual connection. The �nal level generates
the correction of the position� x .

the spatial �lter dimensions here do not de�ne the receptive �eld but the resolution of the �lters. The
receptive �eld depends only on the radiusR describing the spatial extent. Throughout our network
we use �lters with a spatial resolution of[4; 4; 4] and a radius of4:5 times the particle radius.

For convolutions within the dynamic particles we exclude the particle at which we evaluate the
convolution and instead process the particle's own features in a stream of fully-connected layers.
After each depth level we then combine the result from the convolutions and the fully-connected
layers by addition. This can be interpreted as a convolution with a spatial resolution of4� 4� 4 + 1.

5.2 TRAINING PROCEDURE

We train our �uid simulation network in a supervised fashion based on the observed particle posi-
tions from a ground-truth simulation. Our loss is de�ned as follows:

L n +1 =
NX

i =1

� i

 xn +1

i � x̂n +1
i

2 : (16)

The ground-truth position at timestepn + 1 is denoted bŷxn +1
i and the predicted position from the

network is denoted byxn +1
i = xn �

i +� x i , where� x i is provided by the network.� i is an individual
weight for each point to emphasize the loss for particles with a small number of neighbors, which we
express as� i = exp(� 1

c jN (xn �
i)j). We choosec = 40, which corresponds to the average number

of neighbors across our experiments. Particles with a small number of neighbors are close to the
surface or interact with the scene boundary. Both cases are important for �uid simulation because
particles near the surface de�ne the liquid-air interface, which is particularly salient, and particles
near the scene boundary require collision handling. The parameter = 0 :5 makes our loss function
more sensitive to small particle motions, which is important for increasing the accuracy and visual
�delity for small �uid �ows. During training we predict particle positions for two future timesteps,
namelyn + 1 andn + 2 . The combined lossL is

L = L n +1 + L n +2 : (17)

We found that optimizing a loss de�ned over two frames improves the overall quality of the simu-
lation. (Optimization for three frames did not result in further improvements.) We optimizeL over
50,000 iterations with Adam (Kingma & Ba, 2015) and a learning rate decay with multiple steps,
starting with a learning rate of0:001and stopping with1:56� 10� 5.

5

	Introduction
	Related Work
	Basics
	Continuous Convolutions
	Learning Fluid Mechanics with Convolutional Networks
	Network Architecture
	Training Procedure
	Datasets

	Evaluation
	Conclusion
	Appendix
	Implementation Details
	Dataset Details

