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ABSTRACT

Incorporating the desired invariance into representation learning is a key chal-
lenge in many situations, e.g., for domain generalization and privacy/fairness con-
straints. An adversarial invariance induction (AII) shows its power on this pur-
pose, which maximizes the proxy of the conditional entropy between representa-
tions and attributes by adversarial training between an attribute discriminator and
feature extractor (Xie et al., 2017). However, the practical behavior of AII is still
unclear as the previous analysis assumes the optimality of the attribute classifier,
which is rarely held in practice. This paper first analyzes the practical behav-
ior of AII both theoretically and empirically, indicating that AII has theoretical
difficulty as it maximizes variational upper bound of the actual conditional en-
tropy, and AII catastrophically fails to induce invariance even in simple cases as
suggested by the above theoretical findings. We then argue that a simple modifi-
cation to AII can significantly stabilize the adversarial induction framework and
achieve better invariant representations. Our modification is based on the property
of conditional entropy; it is maximized if and only if the divergence between all
pairs of marginal distributions over z between different attributes is minimized.
The proposed method, invariance induction by discriminator matching, modify
AII objective to explicitly consider the divergence minimization requirements by
defining a proxy of the divergence by using the attribute discriminator. Empirical
validations on both the toy dataset and four real-world datasets (related to applica-
tions of user anonymization and domain generalization) reveal that the proposed
method provides superior performance when inducing invariance for nuisance fac-
tors.

1 INTRODUCTION

Extensive studies have demonstrated that deep neural networks (DNNs) can uncover complicated
variations in data to provide powerful representations that are useful for classification tasks (Hinton
et al., 2006; Krizhevsky et al., 2012). However, in some scenarios, the learned representation should
be invariant to some attribute of the input data. A motivating example is a task called domain gen-
eralization (Blanchard et al., 2011), which requires learning a domain-invariant representation that
applies to unseen domains (e.g., the data of an unseen user or different image sources). When prac-
titioners apply DNNs to data that include a large amount of user information (such as images with
usernames (Edwards & Storkey, 2016) or data from wearables (Iwasawa et al., 2017)), the desired
representations should not include user identifying information. For legal and ethical reasons, ma-
chine learning algorithms must make fair decisions that are independent of sensitive variables such
as gender, age, or race (Louizos et al., 2016). Therefore, this study aims to answer the following
question: how can we systematically incorporate the desired invariance into representation learning?

Invariance induction is a systematic solution to this problem, which often introduces an additional
regularization term that measures the level of invariance. One theoretically sound metric is the
conditional entropy of attributes given representations of data, denoted by H(a|z) where a and z
denote the random variables of attributes and representations, as it is maximized if and only if the
representations are invariant to attributes. However, exact calculation is intractable as it requires
integration over high dimensional z, and p(a|z) is unknown in general.
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Figure 1: Comparison between the previous method and the proposed method. The detailed descrip-
tion of this dataset is shown in Section 3. The arrow in (b) and (c) represents the gradient vector
of each method. (a) Both methods utilize the learned critic function qϕ(a|z), which represented as
counterplot in the figure. (b) AII update fθ by keeping a distribution away from the decision bound-
ary. Note that, only the information from the decision boundary is used in AII. (c) Our proposal
minimize the proxy of divergence between distributions, which uses qϕ(a|z). The proxy minimiza-
tion keeps the distribution near the decision boundary, as indicated by the gradient vector fields.

Recently, Xie et al. (2017) introduced a sensible way to approximate the conditional entropy, which
uses an external attribute classifier to estimate the conditional distribution and uses the estimates to
regularize an encoder fθ, where θ represents the parameter of the neural network encoder. Mathe-
matically, the method optimizes following min–max game:

min
θ

max
ϕ

E[log qϕ(a|z=fθ(x))], (1)

where qϕ(a|.) is a conditional probability distribution approximated by an attribute classifier param-
eterized by ϕ. Since fθ and qϕ is an adversarial relationship, this framework is called adversarial
invariance induction (AII). Intuitively speaking, the optimization push representations to the region
where learned classier can not correctly distinguish the attributes (as shown in Figure 1-a, b). As Xie
et al. (2017) demonstrated the game possesses an equilibrium where the encoder maximizes the true
conditional entropy, under the assumption that qϕ(a|z) correctly estimates the true p(a|z). A simi-
lar approach was extensively used in domain generalization, fair-prediction, and privacy-protection
contexts (Edwards & Storkey, 2016; Motiian et al., 2017; Xie et al., 2017; Iwasawa et al., 2017).

Build upon the above achievements, we first analyze the practical behavior of AII both theoretically
and empirically. Note that, although the connection to the conditional entropy is intuitive, the con-
nection does not guarantee the practical behavior of AII, as the assumption of qϕ(a|z) = p(a|z)
is rarely holds in practice, and the interpretation does not give any indication of whether the gra-
dient for the encoder is informative or not. This result suggests that optimization of AII, without
the assumption of the optimality of qϕ(a|z), does not need to maximize the conditional entropy,
as the maximizing (unbounded) upper bound does not gives any guarantees. We also empirically
verify that AII catastrophically fails to induce invariance even in simple situations as suggested by
the above theoretical findings.

We then argue that the simple modification to AII attains better property from the optimization
perspective while achieving the same goal asymptotically. Our modification is based on the property
of the conditional entropy, i.e., it is maximized if and only if the divergence between all pairs of
marginal distributions over z between different attributes are minimized. This property suggests that
the invariance induction algorithm should also minimize the divergence, which is not considered on
AII and possibly induce unstable behavior. In contrast, our proposed method, invariance induction
by discriminator matching (IIDM), explicitly considers the divergence minimization requirements
by minimizing the proxy of the divergence between the marginals, which push the representations
with different attributes are recognized similarly by the discriminator (as shown in Figure 1-c).
Thanks to the consideration of the divergence minimization requirements, IIDM try to keep the
distributions near the decision boundary, which allvaite the possibility that qϕ(a|z) gives wrong
information. We discuss the relationship among our proxy, the divergence between the marginals,
and non-saturating heuristics used in different but related community (Goodfellow et al., 2014).

The main contributions of this paper can be summarized as follows. (1) We highlight the practical
issues of AII, which is a state-of-the-art framework for invariance induction, both theoretically and
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empirically (Section 3). (2) We propose a modification to AII by explicitly consider the property of
the maximum conditional entropy (Section 4). Empirical validations on both the toy dataset and four
real-world datasets demonstrate that the proposed method provides superior performance and faster
convergence at the level of invariance induction. For example, in the experiments on toy dataset, the
proposed method converges to mostly the maximum conditional entropy, while the optimization of
AII is catastrophically unstable.

2 RELATED WORKS

The goal of the invariance induction is to learn attribute-invariant spaces given a training dataset
made of tuples of

{
(xn, yn, an)

}N
n=1

(supervised setting) or pairs of
{
(xn, yn)

}N
n=1

(referred to
as unsupervised setting (Jaiswal et al., 2018)), where xn is an observation and yn is a target of
xn, an ∈ A is a realization of a categorical random variable a. In particular, we focus on the
supervised settings as it has a broader range of applications, such as fairness aware machine learning
and privacy preservation. Assume fθ is a function (encoder) that parameterized by a neural network,
which maps observations to representations z ∈ Z . A natural way to induce invariance is to define
differentiable dependency measurements between attribute and representations of the data and use it
as a regularization term to learn fθ: E [L(fθ(xn), yn) + λV (fθ(xn), an)], where a λ is the weighting
parameter, V somehow measures invariance of the representations regarding the attribute, and L is
a loss function that represents how much information about y is present in the representations.

Adversarial invariance induction (AII) is a recently proposed approach for measuring the V by an
external neural network. That is, if the external network can accurately predict a from z = fθ(x),
AII considers z to have considerable information about a. The external neural network is often called
a discriminator or adversary in this context. Information from the discriminator is used to update
the weights of the encoder fθ so that the updated representations have less information about a (Eq.
1). The merit of this framework is that it does not depend on the pre-defined metrics, such as L2
distance and maximum mean discrepancy (Zemel et al., 2013; Li et al., 2014; Louizos et al., 2016).
However, this advantage often comes at the cost of the optimization difficulty, which motivates us
to identify the cause of the difficulty and to develop better methods.

Another related area of our work is generative adversarial networks (GAN) (Goodfellow et al., 2014)
and domain adversarial networks (DAN) (Ajakan et al., 2014; Gan et al., 2016). Initially, this ap-
proach has a similar min–max formulation with our adversarial invariance induction framework.
However, we rarely use its naive min–max optimization in practice. Instead, they often incorpo-
rate several heuristics, e.g., non-saturating heuristics in GAN, and asymmetric mapping in domain
adaptation (Tzeng et al., 2017), which gives the same fixed points but have better convergence prop-
erty. These works motivate us to replace the min–max game of the adversarial invariance induction
problem by deriving alternative interpretations of adversarial invariance induction frameworks.

To this ends, this paper proposes discriminator matching, which derived from the divergence min-
imization interpretation of conditional entropy maximization. The derived algorithm relates the
proposal in (Jolicoeur-Martineau, 2018a), which point out the misconception that regards genera-
tive adversarial networks as divergence minimization framework, and modifications to recover the
divergence minimization interpretations. (Jolicoeur-Martineau, 2018a), which point out the mis-
conception that regards generative adversarial networks as divergence minimization framework, and
modifications to recover the divergence minimization interpretations. In a similar spirit, (Jolicoeur-
Martineau, 2018b) presents relativistic discriminator training. Note that, our scenario differ with
GAN and DAN in many ways, e.g., (1) we typically need to match the several distributions, and
(2) there are no explicit target distribution (data distribution in GAN and source data distribution in
DAN), which makes the applications of heuristics in GAN and DAN into our scenario nontrivial.
We focus on the problem of invariance induction and show that the invariance induction problem can
be interpreted as divergence minimization involving multiple distributions, and this interpretation is
significant in practice.

3 ANALYSIS ON ADVERSARIAL INVARIANCE INDUCTION

In the remainder of this paper, we assume the use of alternating optimization to solve the adversar-
ial game. At each iteration, AII first updates the discriminator κ times by minimizing the negative
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log-likelihood E [− log qϕ(a = an|fθ(xn))]. AII then updates the encoder by maximizing the neg-
ative log-likelihood while fixing qϕ. In supervised classification case, the encoder is trained with a
classifier hψ by mixing the adversarial and supervised objectives (typically cross-entropy) to ensure
that the representations are useful for predicting target variables.

The advantage of this approach is that it avoids using pre-defined metrics, which often ease compu-
tation but reduce efficiency. It learns the critic function itself by approximating measurements that
are hard to compute but possibly increase efficiency. In the case of invariance induction, the learned
critic function approximates the conditional entropy between z and a. Formally, AII objective is the
variational upper bound of the conditional entropy:

H(a|z) = Epθ(z,a) [− log p(an|zn)] = Epθ(zn,an) [− log qϕ(an|zn)]−DKL(p(a|z)||qϕ(a|z))
≤ Epθ(zn,an) [− log qϕ(an|zn)] = Hq(a|z),

where DKL represents the Kullback–Leibler (KL) divergence, which is greater than zero by
definition, and pθ(z) is an empirical distribution of representations. The bound is tight when
DKL(p(a|z)||qϕ(a|z)) = 0. Maximizing Hq(a|z) yields the encoder update in AII framework ex-
actly. The updation of the discriminator is equivalent to minimizing this KL divergence; therefore,
the update of the discriminator tighten the bound. As (Xie et al., 2017) explained, if the discrimina-
tor correctly approximates the true conditional distribution p(a|z), the objective of the updation of
fθ is equal to maximizing H(a|z). Xie et al. (2017) also demonstrated that the min–max game has
an equilibrium, at which fθ maximizes the conditional entropy H(a|z).
Unfortunately, it is not practical to assume the optimality of qϕ(a|z) due to the limitation of the
capacity of the ϕ and computational costs to increase κ. It means, in a more practical case where
qϕ(a|z) is not optimal, AII maximize the upper bounds of the conditional entropy. In general,
maximizing the upper bound of the function of interest f does not guarantee the minimizing the
f (in our case, f is the conditional entropy). Moreover, in this case, Hq(a|z) itself is not upper-
bounded, as assigning zero probability for correct pair of z, a makes Hq(a|z) infinity. Note that, the
above observations do not immediately mean that maximizing Hq(a|z) is useless, rather it implies
that there are regions where maximizing Hq(a|z) does not increase H(a|z). For example, in the
most exaggerated case, moving the entire distribution in a specific direction increases the upper
bound while the actual conditional entropy remains constant.

To clarify the problem of AII, we design the toy dataset, which comprises samples from several
Gaussian distributions with different means ([sin( iKπ), cos(

i
Kπ)], and i ∈ 1, 2, · · ·K) and the same

variance, assuming that each distribution corresponds to different attributes. We test AII on this
synthesized dataset while varying the number of distributions K and κ (number of updates of ϕ
per iteration). Specifically, we first train the discriminator 100 times with a batch size of 128 and
update qϕ and fθ iteratively using stochastic gradient descent with a learning rate=0.1. Figure 2-(b)
visualizes how distributions move during the optimization of AII on synthesized data (K = 3 and
κ=1). Each figure corresponds to a different timestep of the alternating optimization. The red line
in Figure 3-a represents the quantitative results on this configuration, where solid lines represent the
approximated conditional entropy by using a post-hoc classifier qeval, which is parameterized by the
neural network having the same architecture as that of qϕ. For reference, the theoretical maximum
value of the conditional entropy (gray line) and the negative log-likelihood of qϕ (dashed lines) are
also depicted. Figure 3-(b) compares the performances of AII on different configurations of {K,κ},
where color denotes different K, marker denotes different κ, and the dashed line denotes optimal
values.

As shown in the visualization of AII and the vibration of the red lines in Figure 3-a, AII is catas-
trophically unstable, even such a simple case. Figure 3-a also indicates that, at some points (e.g.,
around 50 iterations), the approximated conditional entropy becomes significantly large, whereas
the true conditional entropy remains constant or even decreases. The issue may be alleviated if the
discriminator has a sufficiently large capacity and is trained many times at each iteration, as sug-
gested by a faster convergence of AII when κ = 8, but this is an impractical assumption. Note that
the toy dataset is much simpler than real datasets, and it is fair to say that identifying the supremum
is more challenging.

It is noteworthy that the above formulation resembles the original formulation of GAN (Goodfellow
et al., 2014), which is never used practically. Although no works in the invariance induction com-
munity have been explicitly considered yet, one can derive a slightly better objective by transferring
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(a) AII (1, 3, 35, 40, 200 steps each) (b) IIDM (1, 3, 200 steps each)

Figure 2: Visualizing behaviors of AII and IIDM on toy datasets. (a) The behavior of AII
after different iterations. (b) The behavior of IIDM after different iterations. The follow-
ing url shows gif version of this visualization: https://drive.google.com/open?id=
1N2kuTCfwjQBGgv3dxTSD9oBklAenLj-J.
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Figure 3: Quantitative comparison of AII, NS and IIDM (proposed method) on the toy datasets.

the non-saturating heuristic used in the GAN via label flipping:

VNS(θ;ϕ) := Epθ(z,a)

− ∑
aj ̸=an

log qϕ(aj |zn)

 , (2)

which also enhances the discriminator to misclassify the attribute of the data. In the remainder of
this paper, we refer to this version as the non-saturating version and denote it by NS. As discussed in
the GAN community, this objective has the same fixed points as the original objective but provides
meaningful gradients because it not saturated even if the discriminator is a supremum. However,
it is unclear how it relates to the conditional entropy maximization. Later, we discuss the connec-
tion between the proposal and this objective, and how our proposal attains better properties while
inheriting the non-saturating nature of the NS objective.

4 INVARIANCE INDUCTION BY DISCRIMINATOR MATCHING

4.1 PROPERTY OF MAXIMUM CONDITIONAL ENTROPY

The above theoretical and empirical analyses suggest that maximizing the approximated conditional
entropy by using AII framework does not ensure the maximization of the true conditional entropy,
as the former is the upper bound of the latter. We derive an alternative approach to maximize the
conditional entropy by rethinking it from a divergence minimization perspective. Specifically, we
assume that A is a uniform categorical random variable. The maximum conditional entropy holds
the following property:

Proposition 1. The maximum conditional entropy H(a|z) is − log 1
K , and H(a|z) is maximized if

and only if p(z|ai) = p(z|aj) for all ai ̸= aj ∈ A and z ∈ Z .

The proof is shown in the Appendix A. This proposition means that maximizing conditional entropy
is asymptotically equal to minimizing pairwise divergence. Specifically, assume D is a divergence
measurement over a space of a possible probability distribution, i.e., positive-definitive function
(D(p||q) ≥ 0 for all p, q and D(p||q) = 0 if and only if p = q). For simplicity, we denote the
marginal distribution over a random variable z associated with an ttribute a = ai as piθ(z). Then,
the following corollary holds.

Corollary 1. If fθ gives an attribute invariant representation (i.e., conditional entropy H(a|z) is
maximized), then D(piθ(z)||p

j
θ(z)) = 0 for all ai, aj and vice versa.

5

https://drive.google.com/open?id=1N2kuTCfwjQBGgv3dxTSD9oBklAenLj-J
https://drive.google.com/open?id=1N2kuTCfwjQBGgv3dxTSD9oBklAenLj-J


Under review as a conference paper at ICLR 2020

The above analysis suggests that the invariance induction algorithm should also minimize the di-
vergence between marginal distributions of different attributes a. However, the original AII does
not consider such a constraint as AII keeps the distribution piθ(z) away from the non-desired point
where a discriminator correctly predicts the attribute but does not ensure that it approaches some
target distribution pj ̸=iθ (z).

4.2 DISCRIMINATOR MATCHING

Based on the analysis, we propose simple modifications to AII considering the divergence minimiza-
tion requirements. In the remainder of the paper, we assume to use KL-divergence as divergence
measurements, though it could be a design choice in practice. Similar to AII, IIDM is based on the
alternating training of attribute classifier qϕ and feature extractor fθ, but IIDM deceives the discrim-
inator differently. Using the conditional distribution qϕ(a|z), we denote qiϕ(a) =

∫
piθ(z)qϕ(a|z)dz.

Formally, IIDM minimizes the following discriminator matching loss for all pairs of ai and aj ̸= ai:

Vdm(piθ(z)||p
j
θ(z);ϕ) := Ezj∼pjθ(z)

[
DKL(q

i
ϕ(a)||qϕ(a|zj))

]
. (3)

Minimizing the Eq. 3 with respect to the encoder parameter θ push qϕ(a|zj) to qiθ(a), where zj
is drawn from pjθ and qiθ(a) represents the average discriminator’s perception over the sample from
attribute ai ̸= aj . In other words, IIDM deceives a discriminator by ensuring that the representations
from different attributes are recognized equally by the discriminator.

IIDM’s objective Vdm explicitly relates to the divergence DKL(p
i
θ(z)||p

j
θ(z)). Specifically, the

following inequality holds:

DKL(p
i
θ(z)||p

j
θ(z)) ≥ Ezj∼pjθ(z)

[
DKL(q

i
ϕ(a)||qϕ(a|zj))

]
. (4)

We first use data processing inequality DKL(p
i
θ(z)||p

j
θ(z)) ≥ DKL(q

i
ϕ(a)||q

j
ϕ(a)) (Gerchinovitz

et al., 2017; Barber et al., 2018), and then use Jensen’s inequality. The detailed proof is shown in
the Appendix B.

Intuitively speaking, the divergence minimization perspective restricts the update of the encoder to
consider the location of the marginal distributions of different attributes, in addition to the decision
boundary (which is all the information source of the AII). Note that, the inequality indicates that
the Vdm(piθ(z)||p

j
θ(z);ϕ) is the lower bound of the DKL(p

i
θ(z)||p

j
θ(z)), so minimizing the former

one does not ensure the minimization of the later one in general. The problem seems the same
as that in the case of AII; however, the proposed method still has the advantage that Vdm(θ, ϕ) is
also lower bounded (by zero), so minimizing it does not induce catastrophic failures. In contrast,
AII’s objective is not upper-bounded and maximizing it causes catastrophic behavior, as shown in
the simulation results. In addition, we empirically found that IDM try to keep the distributions
near the decision boundary, which alleviate the possibility that qϕ(a|z) gives wrong information as
shown in Figure 1-c. In a special case, if the discriminator is invertible, Vdm(θ, ϕ) = 0 ensures that
piθ(z) = pjθ(z), as shown in (Barber et al., 2018) Restricting the invertibility of the discriminator is
an interesting direction, but we did not add such a regularization as restricting neural networks is
difficult in general and open research areas (Jacobsen et al., 2018; Behrmann et al., 2018; Ardizzone
et al., 2018). Instead, we empirically validate that the proposed method reliably learns invariant
representations without such a regularization.

It is worth mentioning that the proposed method is closely related to the non-saturating version of
AII. Specifically, the proposed method minimizes

Ezj∼pjθ(z)
[
DKL(q

i
ϕ(a)||qϕ(a|zj))

]
= Ezj∼pjθ(z)

[∑
a∈A

qiϕ(a) log
qiϕ(a)

qϕ(a|zj))

]
(5)

= Ezj∼pjθ(z)

[∑
a∈A

−qiϕ(a) log qϕ(a|zj))

]
+ C, (6)

and the NS objective (Eq. 2) can be rewritten as

VNS(θ;ϕ) =
∑
aj∈A

∑
aj ̸=ai

Ezj∼pjθ(z)

[∑
a∈A

−pi(a) log qϕ(a|zj))

]
, (7)
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where pi(a) is equal to 1.0 for a = ai and zero otherwise. Ignoring the constant term, the only dif-
ference is whether to push qϕ(a|zj) to average perception by a discriminator of a different attribute
qiϕ(a), or true marginal pi(a). Because the discriminator matching loss considers qϕ(a ̸= aj |zj),
similar to the NS objective, its gradient does not vanish even if qϕ is the supremum, as with the
NS loss. This property encourages faster convergence, especially when the representations have a
significant amount of information regarding attributes. It differs from NS as it explicitly considers
the divergence minimization requirements, while NS does not as it only considers the current deci-
sion boundary of the discriminator but does not consider information from piθ(z) directly (similar
to AII). Therefore, NS push representations as far as possible as long as it successfully changes the
discriminator’s prediction regardless of whether it aligns marginal distributions.

To clarify the benefit of the proposal, we test NS and IIDM on the synthesized datasets. All the
experimental settings are identical to those of the simulation in Section 3. Figure 2-(b) visualizes
how distributions move during the optimization of IIDM on synthesized data (K = 3 and κ=1). The
quantitative results on this configuration are represented in Figure 3-a, where color represents the
different methods (red: AII, blue: NS, and green: IIDM). Figure 3-(c, d) compares the performances
of NS and IIDM on different configurations of {K,κ}, where color denotes different K, marker
denotes different κ, and the dashed line denotes the optimal values. We can make the following
observations. (1) NS is superior to AII, but it still unstable near the optimal point, as indicated
by the vibration of the plots. (2) IIDM consistently reaches the theoretical maximum values in all
configurations, as depicted in Figure 3-d.

One implementation choice is how to calculate qiϕ(a) in Eq. 6. The straightforward approach is
through Monte Carlo approximation: qiϕ(a) =

∫
piθ(z)qϕ(a|z)dz = Epiθ(z)[qϕ(a|z)]. Although it

is an unbiased estimation, the variance is large if the number of samples is small. The average can
be calculated from all samples (or a sufficiently large number of samples from each K attributes) at
every iteration, but it requires additional computation other than standard mini-batch estimation. We
address these issues by using the moving centroid mechanism. Specifically, instead of estimating
qiθ,ϕ(a) every time with sufficiently large samples, the proposed method stores the moving average
of discriminator perceptions:

Qit(a) = γQit−1(a) + (1− γ)qit(a), (8)

where Qjt−1 is a previous centroid, qit(a) is the new estimation of the centroid based on a single
batch, and γ is the decay parameter for controlling the speed at which the centroids change. We
initialized Qj0 by computing the centroids of all training data points.

Then we can use the standard mini-batch method to calculate

VIIDM (θ;ϕ) = Ezn,an∼pθ(z,a)

 ∑
ai ̸=an

[DKL(Qi(a)||qϕ(a|zn))

 . (9)

Finally, the encoder and the classifier are trained by minimizing:

min
θ,ψ

[
L(θ, ψ) + λVIIDM (θ;ϕ)

]
, (10)

where ψ is the parameter of the classifier, L is any classification loss, and λ is a weighting parameter.

4.3 ANALYSIS

Remark 1. Continuous nuisance attribute: One may question the applicability of our method
to the continuous attribute case, e.g., the goal is to learn age-invariant representations. Firstly, the
treatment of continuous R.V. is an open question. The most straightforward yet practically used
answer is to discretize the continuous R.V. For example, (Xie et al., 2017) divides an age variable
into two groups. We can apply the proposed method with similar discretization.

Remark 2. Semantic alignments: One well-known problem of invariant feature learning is de-
termining how to incorporate semantic alignment, i.e., how to align only the pair of samples that
have the same semantic (typically, the target label). For this purpose, (Li et al., 2018b) proposes
adversarial training based semantic alignment method, which prepares multiple domain classifica-
tion networks where each classifier specialize for each class label y. Another merit of the proposed
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method is that we can enforce semantic alignment with a simple modification, without any additional
computational costs. Individually, semantic alignment can be carried out by merely computing the
centroids for each (attribute, label) tuple and aligning the perceptions of {x, y, a} between only
centroids of the same label y′ = y but different attributes a′ ̸= a. Since most applications of in-
variant feature learning require that Ly is also minimized, we also test this modification for all the
later-described experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

In addition to the simulation results, we provide experimental results on two tasks (four datasets)
relevant to invariant feature learning: (1) user anonymization (Opportunity and USC datasets), and
(2) domain generalization (MNISTR and PACS datasets). All experiments were implemented in
PyTorch and were run on GPUs (either GTX 1080 or Tesla V100).

For user anonymization tasks, Opportunity and USC datasets were used. This task is to learn
anonymized representations (z that does not contain user-identifiable information) while maintain-
ing classification performance. The Opportunity dataset (Sagha et al., 2011) consists of sensory
data regarding human activity in a breakfast scenario. Each record consists of 113 real-value sensory
readings, excluding time information. We considered the task of recognizing 18 classes1. Following
previous studies (Yang et al., 2015; Iwasawa et al., 2017), we use a sliding window procedure with
30 frames and a 50% overlap. The number of samples was 57,790 in total. We parameterize the en-
coder using convolutional neural networks (CNN) with three convolution-ReLU-pooling repetitions
followed by one fully connected layer and classification by logistic regression, following previous
studies (Yang et al., 2015; Iwasawa et al., 2017). The discriminator is a simple feedforward network
with 800–400 hidden units. The USC-HAD dataset is another activity recognition dataset that con-
sists of 14 subjects (Zhang & Sawchuk, 2012). The data include 12 activity classes2 that correspond
to people’s most essential and daily activities. MotionNode, which is a 6 DOF inertial measurement
unit, is used to record the output from accelerometers that record six real sensory values. The sliding
window procedure, with 30 frames and a 50% overlap, produced 172,169 samples.

The MNISTR and PACS are two typical datasets of domain generalization tasks. The MNISTR
dataset, derived from MNIST, was introduced by (Ghifary et al., 2015). Its labels comprise the ten
digits; domains are created by rotating the images in multiples of 15 degrees: 0, 15, 30, 45, 60,
and 75. The domains are labeled with the angle by which they are rotated, e.g., M15 and M30.
Each image is cropped to 16× 16 pixel in accordance with a previous study (Ghifary et al., 2015)3.
Similar to (Ghifary et al., 2015), we used two convolution layers with 32 and 48 filters of 5 × 5
kernels, followed by a max-pooling layer and two fully connected layers with 100 hidden units.
A discriminator with 100 hidden units is connected to the output of the first fully connected layer.
The PACS dataset is a relatively new benchmark dataset designed for cross-domain recognition (Li
et al., 2017). The dataset has 9991 images in total across seven categories (dog, elephant, giraffe,
guitar, house, horse, and person) and four domains of different stylistic depictions (photo, painting,
cartoon, and sketch). The diverse depiction styles provide a significant domain gap. We use the
ImageNet pre-trained AlexNet CNN (Krizhevsky et al., 2012) as a base network, following previous
studies(Li et al., 2017; 2018a). A discriminator with 1024 hidden units is connected to the output of
the last fully connected layer.

Baselines: To demonstrate the efficacy of the proposed method, we compared it with the following
methods. (1) A CNN trained on the aggregation of data from all source domains. Although there are
special treatments for domain generalization, (Li et al., 2017) reports that CNN outperforms many
domain generalization methods on the PACS dataset. (2) AII (Xie et al., 2017), is a main baseline.
(3) AII+GP uses a variant of AII with an additional gradient penalty regularization used in GAN

1open door 1, open door 2, close door 1, close door 2, open fridge, close fridge, open dishwasher, close
dishwasher, open drawer 1, close drawer 1, open drawer 2, close drawer 2, open drawer 3, close drawer 3, clean
table, drink from cup, toggle switch, and null

2walking forward, walking left, walking right, walking upstairs, walking downstairs, running forward, jump-
ing, sitting, standing, sleeping, elevator up, and elevator down

3Specifically, we used the dataset distributed at https://github.com/ghif/mtae.
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Table 1: Performance comparison of user anonymization tasks. The value is the lowest user-
classification accuracy with specific performance degradation (0.01, 0.03 points) from CNN.

dataset Opp-S1 Opp-S2 Opp-S3 Opp-S4 USC
threshold 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03

CNN 0.939 0.939 0.973 0.973 0.984 0.967 0.983 0.983 0.683 0.683
AII 0.631 0.517 0.590 0.590 0.694 0.659 0.589 0.586 0.512 0.179

AII+GP 0.619 0.619 0.521 0.521 0.471 0.471 0.673 0.510 0.580 0.569
NS 0.635 0.452 0.614 0.523 0.484 0.484 0.499 0.482 None None

IIDM 0.462 0.417 0.415 0.415 0.409 0.409 0.486 0.486 0.499 0.499
IIDM+ 0.502 0.433 0.474 0.474 0.495 0.495 0.631 0.461 0.478 0.478

(Mescheder et al., 2018). (4) RevGrad is a slightly modified version of AII, which uses the gradient
reversal layer (Ganin et al., 2016) to train all the networks (encoder, classifier, and discriminator) at
the same time. (5) NS is a non-saturating version of AII introduced in section 3 of this paper. (6)
CrossGrad (Shankar et al., 2018) is regarded as a state-of-the-art method in domain generalization
tasks. Note that it does not intend to learn invariant representation, so we use CrossGrad only for
comparing domain generalization performance. (7) IIDM is our proposal. We used the gradient
penalty as well.

Optimization: For all datasets and methods, we used RMSprop for each optimization. For all
datasets except PACS, we set the learning rate to 0.001 and the batch size to 128. For PACS,
we set the learning rate to 5e − 5 and the batch size to 64. The number of iterations was 10k,
5k, 20k, 30k, and 50k for MNISTR, PACS, Opp, and USC, respectively. For a fair comparison,
hyperparameters were tuned on a validation set for each baseline. For the adversarial-training-based
method, we optimized weighting parameter λ from {0.001, 0.01, 0.1, 1.0}, except for MNISTR, for
which it was optimized from {0.01, 0.1, 1.0, 10.0}. The value of α for CrossGrad was selected
from {0.1, 0.25, 0.5, 0.75, 0.9}. Unless mentioned otherwise, we set the decay rate γ to 0.7 for all
experiments.

Evaluation: In all the experiments, we selected the data of one or several domains for the test set
and used the data of a disjoint domain as the training/validation data. Accurately, we split the data
of the disjoint domain into groupings of 80% and 20%. We denote the test domain by a suffix
(e.g., MNISTR-M0 denotes that the model is trained with the data from M15, M30, M45, M60,
and M75 and evaluated on M0). We conducted 20 validations during training at equal intervals. In
each validation, we measured the label classification accuracy (Y-acc) and the level of invariance.
We empirically measured the level of invariance by training a post-hoc classifier Deval that tries to
predict a over learned representations, following previous studies (Xie et al., 2017; Iwasawa et al.,
2017). Specifically, we trained the classifier with 800 hidden units 1k iterations (by RMSprop
optimizer, with a learning rate of 0.001 and a batch size of 128) with the data that are used to train
the encoder and evaluate attribute classification accuracy on the validation dataset.

5.2 RESULTS

User anonymization: Table 1 compares the user-anonymization performance. The value represents
the lowest user-classification accuracy (the lower the better) with specific performance degradation
compared to CNN on classification accuracy. For example, the columns with 0.01 represent the
lowest user-classification accuracy with less than 0.01 point performance degradation. The best per-
formance is underlined and highlighted in bold, and the second-best performance is only highlighted
in bold. IIDM+ represents the variants that use the semantic alignment extension introduced in sec-
tion 4. The results show the clear benefit of our proposal to inducing user invariance. Specifically,
IIDM performs best on seven out of ten configurations. Note that the value with ’None’ represents
the method always reduce the label classification performance significantly.

Domain generalization: Table 2 summarizes the classification performance on two different
datasets: MNISTR, and PACS. The top row of each table represents the test domain. We report
the mean accuracy as well as the standard error of three different seeds (five seeds for MNISTR
and three seeds for PACS). The best performance is underlined and highlighted in bold, and the
second-best performance is only highlighted in bold. We can make the following observations. (1)
IIDM and IIDM+ demonstrate the best or comparable performance on all conditions except sketch
domain. Although the semantic alignment extension does not help the performance on a simpler
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Table 2: Classification accuracies on unseen domains.
(a) MNISTR

M0 M15 M30 M45 M60 M75 Avg

CNN 84.0± 1.7 99.1± 0.5 97.6± 0.9 91.9± 1.8 97.5± 0.5 87.7± 1.7 92.97
RevGrad 84.4± 1.6 98.8± 0.2 97.9± 0.8 92.1± 0.8 95.7± 2.2 85.9± 4.7 92.45

AII 83.8± 2.1 98.5± 0.4 97.4± 0.9 91.0± 1.4 97.0± 0.4 87.4± 2.4 92.52
AII+GP 86.2± 1.4 98.5± 0.2 97.9± 0.5 91.2± 0.7 97.0± 0.9 87.9± 2.0 93.11

CrossGrad 85.3± 0.9 98.9± 0.5 97.6± 0.8 90.9± 1.0 98.2± 0.4 87.5± 2.0 93.09
IIDM 88.0± 1.6 98.2± 1.0 98.1± 0.7 94.3± 0.8 98.0± 0.7 88.9± 1.3 94.25

IIDM+ 88.3± 0.9 98.6± 0.5 98.1± 0.6 93.0± 1.8 98.1± 0.9 86.9± 2.5 93.85

(b) PACS

photo art cartoon sketch Avg

80.8± 1.3 58.1± 2.6 62.7± 2.6 60.6± 4.5 65.57
82.9± 1.3 57.2± 1.9 61.6± 0.6 54.6± 4.6 64.06
81.1± 0.7 59.1± 1.7 60.7± 3.1 62.1± 3.0 65.75
81.8± 0.4 60.7± 0.2 64.0± 2.1 60.6± 3.3 66.76
81.4± 1.8 58.1± 4.7 60.5± 3.1 60.5± 1.3 65.15
82.9± 1.2 61.7± 1.5 63.4± 0.7 59.5± 0.5 66.89
84.8± 0.6 62.3± 1.6 64.8± 1.5 60.2± 2.5 68.04
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Figure 4: Comparison of AII and IIDM with different configurations on MNISTR dataset (M0 as
test domain). The number in parenthesis represents the corresponding configuration.

task (MNISTR), it improves the performance on PACS dataset, giving approximately 1.0 point per-
formance gain. (2) RevGrad and AII often fail to improve performance even when compared with
a standard CNN. The score of AII+GP suggests that gradient penalty helps to improve the perfor-
mance, but the improvements are lower than our proposal. (3) The Wilcoxon rank-sum test shows
that IIDM is statistically better than CNN, RevGrad, AII, AII+GP, and CrossGrad with p < 0.01.

Figure 4 compares AII and IIDM on different (a) weighing parameter γ, (b) the number of the
discriminator update κ, and (c) the network architecture of the discriminator. The dataset used is
MNISTR with M0 as a test domain. In each figure, color represents a different method (red: AII,
blue: IIDM) and marker denotes different configurations. The value represents the attribute classi-
fication accuracy (the lower the better invariant) by a post-hoc classifier qeval(a|z). For λ we used
1.0 by default. For κ and the architecture, we used default setting described in Section 5.1. The re-
sults show that our proposal is consistently to learn better invariant representations regardless of the
choice of the hyperparameters. These results suggest that our proposal is better than searching such
hyperparameters. Note that, λ = 10.0 for AII seems to attain better invariance, it was degenerated
to the random representations and gives a random performance on the classification of y.

6 CONCLUSION

This paper presents a new method for invariance induction, called IIDM, by analyzing and extending
current state-of-the-art adversarial invariance induction framework. This paper first examines the in-
stability issue of AII both theoretically and empirically, indicating that AII has theoretical difficulty
as it maximizes variational upper bound of the actual conditional entropy, and this fact leads AII to
catastrophically fails even in simple cases. We then argue that a simple modification to AII can sig-
nificantly stabilize the adversarial induction framework and achieve better invariant representations.
The fundamental principle of our proposal is that a desirable invariance induction algorithm should
also minimize the divergence between marginal distribution p(z) between different attributes, as it
is a requirement of maximum conditional entropy (Corollary 1) and missing in AII optimization.
IIDM minimizes discriminator matching loss (Eq. 3), which is a proxy of the divergence between
the marginals (Eq. 4). On toy dataset, we compare our proposal with the adversarial invariance
induction framework, and show that our proposal significantly stabilizes the optimization (Figure 2
and Figure 3). Two real-world tasks (user-anonymization in Table 1 and domain generalization in
Table 1) also supports that our proposal achieve better invariance induction.
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A PROOF OF THE PROPOSITION 1

Proof. Using the Lagrange multiplier method, the derivative of

L = −
∑
a∈A

p(a, z) log p(a|z) + λ(1−
∑
a∈A

p(a|z)) (11)

is equal to zero for the maximum entropy H(a|z). Solving the simultaneous equations, we can say
p(a1|z) = p(a2|z) = · · · = p(aK |z) = 1

K for all z ∈ Z when the conditional entropy is maximized,
and based on the definition, the conditional entropy becomes − log 1

K .

From Bayes’ law and the assumption of uniform assumption of p(a), p(z|ai) = p(z|aj) holds
∀ai ̸= aj ∈ A and z ∈ Z .

B PROOF OF EQUATION 4

The proof use the data processing inequality for f-divergence and Jensen’s inequality.
Theorem 1. Consider a channel that produces y given x based on the p(y|x). For any f-divergence
Df (.||.)

Df (p(y)||q(y)) ≤ Df (p(x)||q(x)) (12)

As the KL divergence is also the family of the f-divergence, by replacing the p(y|x) to qϕ(a|z), p(x)
to piθ(z), q(x) to pjθ(z), p(y) to qiϕ(a), and p(y) to qjϕ(a),

DKL(p
i
θ(z)||p

j
θ(z)) ≥ DKL(q

i
ϕ(a)||q

j
ϕ(a)). (13)

By expanding the KL divergence and uses qjϕ(a) = Epjθ(z)[qϕ(a|z)],

DKL(q
i
ϕ(a)||q

j
ϕ(a)) =

∑
qiϕ(a) log q

i
ϕ(a)−

∑
qiϕ(a) logEpjθ(z)[qϕ(a|z)]

≥
∑

qiϕ(a) log q
i
ϕ(a)−

∑
qiϕ(a)Epjθ(z)

[
logϕ(a|z)

]
= Ezj∼pjθ(z)

[
DKL(q

i
ϕ(a)||qϕ(a|zj))

]
.

Then,
DKL(p

i
θ(z)||p

j
θ(z)) ≥ Ezj∼pjθ(z)

[
DKL(q

i
ϕ(a)||qϕ(a|zj))

]
.
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