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ABSTRACT

Identifying causes from observations can be particularly challenging when i) poten-
tial factors are difficult to manipulate individually and ii) observations are complex
and multi-dimensional. To address this issue, we introduce “Back-to-Back” regres-
sion (B2B), a method designed to efficiently measure, from a set of co-varying
factors, the causal influences that most plausibly account for multidimensional
observations. After proving the consistency of B2B and its links to other linear
approaches, we show that our method outperforms least-squares regression and
cross-decomposition techniques (e.g. canonical correlation analysis and partial
least squares) on causal identification. Finally, we apply B2B to neuroimaging
recordings of 102 subjects reading word sequences. The results show that the early
and late brain representations, caused by low- and high-level word features respec-
tively, are more reliably detected with B2B than with other standard techniques.

1 INTRODUCTION

Natural sciences are tasked to find, from a set of hypothetical factors, the minimal subset that suffices
to reliably predict novel observations. This endeavor is impeded by two major challenges.

First, causal and non-causal factors may be numerous and collinear. In physics, for example, one
may be challenged to identify whether fusion is caused by a change in temperature or a change
in pressure, as these two factors may, at first, be difficult to manipulate independently. This issue
becomes increasingly pronounced as the number of potential factors increases. In neuroscience, for
example, identifying whether the frequency of a word presented on a subject’s retina modulates brain
activity can be surprisingly difficult. Indeed, the frequency of words in natural language covaries with
other factors such as their length (short words are more frequent than long words), their categories
(determinants are more frequent than adverbs) and so forth (Kutas & Federmeier, 2011; Pegado et al.,
2014). Instead of selecting a set of words that control for all of these factors simultaneously, it is thus
common to use forward modeling, i.e. to train a model to predict observations (e.g. brain activity)
from a minimal combination of competing factors (e.g. word length, word frequency, e.g. (Huth et al.,
2016)), and investigate, in the model, the estimated contribution of each factor (Friston et al., 1994).

The second challenge to measuring causal influence is that observations can be large and complex.
The relationship between causes and effects is thus often considered in a backward manner, by
training models to maximally predict causes from multidimensional observations. For example,
brain activity is often recorded with hundreds or thousands of sensors simultaneously. As multiple
sensors may be affected by common noise sources, it is common to use ‘decoding’ techniques, by,
for example, fitting a support vector machine across multiple sensors to predict the category of a
stimulus (Cichy et al., 2014; Kriegeskorte et al., 2008; Norman et al., 2006).

Both forward and backward modeling have competing benefits and drawbacks. Specifically, forward
modeling disentangles the independent contribution of collinear factors, but does not combine
multidimensional observations. By contrast, backward modeling combines multiple observations,
but does not disentangle collinear factors Weichwald et al. (2015); Hebart & Baker (2018); King
et al. (2018). To combine the benefits of forward and backward modeling, several authors have
proposed to use cross-decomposition techniques such as Partial Least Squares (PLS) and Canonical
Correlation Analysis (CCA) (de Cheveigne et al., 2019). CCA and PLS aim to find, from two sets of
data X and Y , the components H and G were XH and Y G are maximially correlated or maximally
covarying respectively. Because CCA and PLS are are based on a generalized eigen decomposition,
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Ê = Diag((X>2 X2 + ΛX)−1X>2 Y2

1) X̂: regression from Y toX︷ ︸︸ ︷
(Y >1 Y1 + ΛY )−1Y >1 X1︸ ︷︷ ︸

2) regression fromX to X̂

)

Figure 1: Back-to-back regression identifies the subset of factors Eii = 1 in X that influence some
observations Y by 1) regressing from Y to X to obtain X̂ , and ii) returning the diagonal of the
regression coefficients from X to X̂ .

their resulting coefficients are mixing the features of X and Y in a way that makes them notoriously
difficult to interpret (Lebart et al., 1995).

Here, we introduce the ‘back-to-back regression’ (B2B), which not only combines the benefits of for-
ward and backward modeling (Section 2), but also provide robust and interpretable causal coefficients.
After detailing the method and proving its convergence (Section 2.2), we show with synthetic data that
it outperforms state-of-the-art forward, backward and cross-decomposition techniques in identifying
causal influence (Section 3.1). Finally, we apply B2B to a large neuroimaging dataset and reveal that
distinct but collinear word features lead to distinguishable brain representations (Section 3.5).

2 BACK-TO-BACK REGRESSION

We consider the measurement of multivariate signal Y , generated from a set of putative causes X ,
via some unknown linear apparatus F . Not all the variables in X exert a causal influence on Y . By
considering a square binary diagonal matrix of causal influences E, we denote by XE the causal
factors of Y . In summary, the problem can be formalized as:

Y = (XE +N)F, (1)

where N is a centered, unobserved noise variable. While the triplet of variables X and N are
independent, we allow each of them to have any form of covariance. In practice, we observe n
samples (X,Y ) from the model. This problem space, along with the sizes of all variables involved, is
illustrated in Figure 1. Given the model in Equation (1), the goal of Back-to-Back Regression (B2B)
is to estimate the matrix of causal influences E.

2.1 ALGORITHM

Back-to-Back Regression (B2B) consists of two steps. First, we estimate the linear regression
coefficients Ĝ from Y to X , and construct the predictions X̂ = Y Ĝ. This backward regression
recovers the correlations between Y and each factor of X . Second, we estimate the linear regression
coefficients Ĥ fromX to X̂ . The diagonal of the regression coefficients Ĥ , denoted by Ê = Diag(Ĥ),
is the desired estimate of the causal influence matrix E.
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If using regularized least-squares, arguably the most commonly employed linear regression technique
(Hoerl, 1959; Rifkin & Lippert, 2007), the solution of B2B has a closed form solution:

Ĝ = (Y >Y + ΛY )−1Y >X, (2)

Ĥ = (X>X + ΛX)−1X>Y Ĝ, (3)

where ΛX and ΛY are two diagonal matrices of regularization parameters, useful to invert the
covariance matrices of X and Y if these are ill-conditioned.

Performing two regressions over the same data sample can result in overfitting, as spurious correlations
in the data absorbed by the first regression will be leveraged by the second one. To avoid this issue, we
split our sample (X,Y ) into two splits (X1, Y1) and (X2, Y2). Then, the first regression is performed
using (X1, Y1), and the second regression is performed using (X2, Y2). To compensate for the
reduction in sample size caused by the split, B2B is repeated over many random splits, and the final
estimate Ê of the causal influence matrix is the average over the estimates associated to each split
(Efron, 1992). To accelerate this ensembling procedure, we implemented an efficient leave-one-out
cross-validation scheme as detailed in (Rifkin & Lippert, 2007) , as follows:

Ŷ = (ΣXGY − diag(ΣXG)Y ) / diag(I − ΣXG) (element-wise division) (4)

where ΣX is the X kernel matrix and where G is computed with an eigen decomposition of X:

ΣX = QV QT

G = Q(V + λ ∗ I)−1QT
(5)

where Q, V and λ are the eigen vectors, eigen values and regularization, respectively.

We summarize the B2B procedure in Algorithm 1. The rest of this section provides a theoretical
guarantee on the correctness of B2B.

Algorithm 1: Back-to-back regression.

Input: input data X ∈ Rn×dx , output data Y ∈ Rn×dy , number of repetitions m ∈ N.
Output: estimate of causal influences Ê ∈ Ddx×dx .

1 Ê ← 0;
2 for i = 1, . . . ,m do
3 (X,Y )← ShuffleRows((X,Y ));
4 (X1, Y1), (X2, Y2)← SplitRowsInHalf((X,Y ));
5 Ĝ = LinearRegression(Y1, X1) ; . Ĝ = (Y >1 Y1 + ΛY )−1Y >1 X1

6 Ĥ = LinearRegression(X2, Y2Ĝ) ; . Ĥ = (X>2 X2 + ΛX)−1X>2 Y2Ĝ

7 Ê ← Ê + Diag(Ĥ);
8 end
9 Ê ← Ê/m;

10 Ŵ ← LinearRegression(XÊ, Y );
11 return Ê, Ŵ

2.2 THEORETICAL GUARANTEES

Theorem 1 (B2B consistency - general case). Consider the B2B model from Equation Y = (XE +
N)F , N centred and full rank noise. If F and X are full-rank on Img(E), then, the solution of B2B,
Ĥ , will minimize minH ‖X −XH‖2 + ‖NH‖2and satisfy EĤ = Ĥ

Proof. See Appendix A.1.

So, Ĥ = arg min
H
‖X −XEH‖2 + ‖NEH‖2 = (EX>XE + EN>NE)†EXX>. (6)
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Assuming, without loss of generality, that the active features are the k first, we have

X>X =

(
ΣX1 ΣX2

ΣX2 ΣX3

)
, N>N =

(
ΣN1 ΣN2

ΣN2 ΣN3

)
, (7)

Ĥ =

(
(ΣX1 + ΣN1)−1ΣX1 (ΣX1 + ΣN1)−1ΣX2

0 0

)
, (8)

Diagk(Ĥ) = Diag((ΣX1 + ΣN1)−1ΣX1) = Diag((I + Σ−1X1ΣN1)−1). (9)

In the absence of noise, we have Diag(Ĥ) = Diag(E). Otherwise the k first diagonal elements of
Ĥ are all positive, and bounded by σXk

σXk
+σN1

and σX1

σX1
+σNk

, where σX1 , σXk
, σN1 and σNk

denote
the largest and smallest eigenvalues of ΣX1 and ΣN1.

The average value of the coefficients of Diag(Ĥ) is the trace of Ĥ divided by k. On average,
since X and N are not correlated by definition, Σ−1X1ΣN1 should have a low condition number, and

V ar(X)
V ar(X)+V ar(N) provides a good estimate of 1

kTr(Ĥ).

3 EXPERIMENTS

We perform two experiments to evaluate B2B: one on controlled synthetic data, and a second one on
a real, large-scale magneto-encephalography (MEG) dataset. We use scikit-learn’s CCA, PLS, and
RidgeCV objects to compare B2B against the standard baselines (Pedregosa et al., 2011).

3.1 SYNTHETIC DATA

We evaluate the performance of B2B throughout a series of experiments on controlled synthetic
data. The purpose of these experiments is to evaluate the ability of B2B in terms of prediction of
independent and identically distributed data, as well as a method to recover causal factors.

The data generating process for each experiment constructs n = 1000 training examples according
to the model Y = (snr · XE + N)F , where snr is a scalar that modulates the signal-to-noise
ratio. Here, F ∈ Rdx×dy contains entries drawn from N (0, d−1x ), X ∈ Rn×dx contains rows
drawn from N (0,ΣX), N ∈ Rn×dx contains rows drawn from N (0,ΣN ), E ∈ Rdx×dx is a binary
diagonal matrix containing nc ones, ΣX = AA> where A ∈ Rdx×dx contains entries drawn from
N (0, d−1x ), ΣN = BB> where B ∈ Rdx×dx contains entries drawn from N (0, d−1x ), and the factor
snr ∈ (0,∞).

To simulate a wide range of experimental conditions, we sample 10 values in log-space for dx, dy ∈
[10, 100], nc ∈ [3, 63], snr ∈ [0.001, 10]. We discard the cases where nc > dx, limit dx, dy to 100 to
keep the running time under 2 hours for each condition, and average over 5 random seeds.

We compare the performance of B2B against four competing methods, all implemented in scikit-learn
(Pedregosa et al., 2011):

3.2 BASELINE MODELS

Forward regression consists of an l2-regularized ”ridge” regression from the putative causes X to the
observations Y :

H = (XTX + λI)−1XTY (10)

Backward regression consists of an l2-regularized ”ridge” regression from Y to X:

G = (Y TY + λI)−1Y TX (11)

CCA finds G ∈ Rdz,dy and H ∈ Rdz,dx s.t. X and Y are maximally correlated in a latent Z space:

G,H = argmax
G,H

corr(XHT , Y GT ) (12)
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Figure 2: Synthetic experiments. Average AUC (top) and Feature Importance ∆R (bottom) when
varying experimental conditions individually. Higher is better. B2B compares favorably in all cases.

PLS finds G ∈ Rdz,dy and H ∈ Rdz,dx s.t. X and Y are maximally covarying in a latent Z space:

G,H = argmax
G,H

cov(XHT , Y GT ) (13)

We employ 5-fold cross-validation to select the optimal number of components for CCA and PLS.
Regressions were `2-regularized with a λ regularization parameters fitted with the efficient leave-one-
out procedure implemented in scikit-learn RidgeCV (Pedregosa et al., 2011).

3.3 EVALUATING CAUSAL DISCOVERY FROM MODELS’ COEFFICIENTS

B2B leads to unbiased (i.e. zeros-centered) scalar coefficients for non-causal features. In contrast, the
Forward, Backward, CCA and PLS models lead to a loading vector Hi per feature i (or one vector
Gi for the backward model). To transform such vector into an estimated causal contribution Ê, we
take the sum of square coefficients: Êi =

∑
j H

j
i

2

To estimate whether models accurately identify causal factors, we compute the area-under-the-curve
(AUC) across factors AUC(E, Ê). The AUC allows evaluating the capacity of models at detecting
the causal importance of factors when ground truth labels are available, as is the case in this setup.

We report AUC results in Figures 2 (top) and 6 (left, in Appendix), and compare favorably to all
baselines.

3.4 EVALUATING CAUSAL DISCOVERY WITH HELD-OUT PREDICTION RELIABILITY

In most cases, E is not known and AUC can thus not be estimated. To address this issue, we assess
the ability of each model to reliably predict independent and identically distributed data from Y ,
given all of the X features versus all-but-ones feature X−i (i.e. ’knock-out X’). This procedure
results in two correlation metrics Rfull and Rknockout, whose difference ∆Ri = Rfull −Rknockout
indicates how much each Xi improves the prediction of Y . In our figures, ∆R is the average of
∆Ri. A higher score means that for prediction, the model relies on individual features rather than
combinations of features.

We show in Appendix A.2 pseudo-code to assess feature importance for our algorithm as well as
baselines. For the Backward Model, feature importance cannot be assessed as the X colinearity is
never taken into account.

We show in Figures 2 (bottom) and 6 (right, in Appendix) that our method outperforms baselines.
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Figure 3: Ninety subjects each read
approximately 2,700 words while their
brain activity was recorded with MEG.
Top. Average brain response to words
(word onset at t=0 ms), as viewed from
above the head (red= higher gradient of
magnetic flux). Bottom. Each line rep-
resents a magnetometer, color-coded by
its spatial position. Posterior responses,
typical of primary visual cortex activity,
peak around 100 ms after word onset and
are followed by an anterior propagation
of activity typical of semantic processing
in the associative cortices.

3.5 MAGNETOENCEPHALOGRAPHY DATA

Next, we apply our method to brain imaging data from the anonymized multimodal neuroimaging
“Mother Of all Unification Studies” (MOUS) dataset (Schoffelen et al., 2019). The dataset contains
magneto-encephalography (MEG) recordings of 102 healthy native-Dutch adults who participated in
a reading task. Twelve subjects were excluded from the analysis because of corrupted file headers.
Subjects were exposed to a rapid serial visual presentation of Dutch words. The word lists consisted
of 120 sentences, and scrambled lists of the same words. Each word was presented on the computer
screen for 351ms on average (min: 300ms, max: 1400ms). Successive words were separated by a
blank screen for 300ms, and successive sentences were separated by an empty screen for a few (3-4)
seconds.

3.5.1 MEG PREPROCESSING

The raw MEG data was bandpass-filtered between 0.1 and 40Hz using MNE-Python default parame-
ters (Gramfort et al., 2013; 2014). Specifically, we used a zero-phase finite impulse response filter
(FIR) with a Hamming window and with transition bands of 0.1Hz and 10Hz for the low and high
cut-off frequencies. The raw data was then segmented 100ms before word onset and 1s after word
onset (t = 0ms corresponds to word onset). Finally, each resulting segment was baseline-corrected
between -100ms and 0ms, and decimated by 5 and thus led a sampling frequency of 240Hz. The
average responses across words is displayed in Figure 3. For each subject and each time sample
relative to word onset, we build an observation matrix Y ∈ Rn×dy of n ≈ 2700 words by dy = 301
MEG channels (273 magnetometers and 28 compensation channels). Each of the columns of Y is
normalized to have zero mean and unit variance.

3.5.2 FEATURE DEFINITION

We aim to identify the word features that cause a variation in brain responses. We consider four
distinct but colinear features. First, ’Word Length’ refers to the total number of letters. Word Length
is expected to specifically cause a variation in the early evoked MEG responses (i.e. from 100
ms after stimulus onset) elicited by the retinotopically-tuned visual cortices (e.g. (Pegado et al.,
2014).). Second, ’Word Frequency’ indexes how frequently each word appears in Dutch and was
derived with the the Zipf logarithmic scale of (Van Heuven et al., 2014) provided by the WordFreq
package (Speer et al., 2018). Word Frequency is expected to specifically cause a variation in the
late evoked MEG responses (i.e. from 400 ms), because it variably engages semantic processes in
the temporal cortices (Kutas & Federmeier, 2011). Third, ’Word Function’ indicates whether each
word is a content word (i.e. a noun, a verb, an adjective or an adverb) or a function word (i.e. a
preposition, a conjunction, a determinant, a pronoun or a numeral), and was derived from Spacy’s
part of speech tagger (Honnibal & Montani, 2017). To our knowledge, this feature has not been
thouroughly investigated with MEG. Its causal contribution to reading processes in the brain thus
remains unclear. Finally, to verify that B2B and other methods would not inadequately identify
non-causal features, we added a dummy feature, constructed from a noisy combination of Word
Length and Word Frequency: dummy = z(length) + z(frequency) + N , where z normalizes
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features and N is a random vector sampling Gaussian distribution (all terms thus have a zero-mean
and a unit-variance). This procedure yields an X ∈ Rn×dx matrix of n ≈ 2700 words by dx = 4
features for each subject. Each of the columns of X is normalized to have a mean and a standard
deviation of 0 and 1 respectively.

3.5.3 MODELS AND STATISTICS

We compare B2B to four standard methods: Forward regression, Backward regression, CCA and PLS,
as implemented in scikit-learn (Pedregosa et al., 2011), and optimized with nested cross-validation
over twenty l2 regularization parameters logarithmically spaced between 10−4 and 104 (for regression
methods) or 1 to 4 canonical components (for cross-decomposition methods).

We used the feature importance described in Algorithm 2 to assess the extent to which each feature
Xi specifically improves the prediction of held-out Y data, using a 5-fold cross-validation (with
shuffled trials to homogeneize the distributions between the training and testing splits).

Each model was implemented for each subject and each time sample independently. Pairwise
comparison between models were performed using a two-sided Wilcoxon test across subjects (n=90)
using the average ∆R across time. Corresponding effect sizes are shown in Figure 3.5.3, and p-values
are reported below.

3.5.4 RESULTS
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Figure 4: Multiple models (color-coded) are com-
pared on their ability to reliably predict single-trial
MEG signals evoked by words. Left. Average im-
provement of correlation coefficient ∆R for each
of the four features (rows). Error bars indicate
standard error of the mean (SEM) across subjects.
Right. Average ∆R across time for each subject
(dot). Top horizontal lines indicate when B2B sig-
nificantly outperforms other methods.

We compared the ability of Forward regression,
Backward regression, CCA, PLS and B2B to
estimate the causal contribution of four distinct
but collinear features on brain evoked responses
to words.

Supplementary Figure 5 shows that the Back-
ward model decodes the dummy variable well
above chance level. In addition, the Backward
model reveals a similar decoding time course for
Word Length and Word Frequency, even though
these features are known to specifically influ-
ence early and late MEG responses respectively
(Kutas & Federmeier, 2011). These results il-
lustrate that backward modelling cannot be used
to estimate the causal contribution of collinear
features.

We thus focus on the four remaining methods
(i.e. Forward Regression, PLS, CCA, and B2B)
and estimate their ∆R (i.e. the improvement
of Y prediction induced by the introduction of
a given feature into the model,as described in
Algorithm 2). Contrary to the Backward Model,
none of the models predicted the Dummy Vari-
able to improve the Y prediction: all ∆R < 0
(all p > .089).

Figure 3.5.3 shows, for each model, the effects
obtained across time (left) and subjects (right).

Word Length and Word Frequency improved the
prediction performance of all methods: ∆R > 0
for all models (all p < 0.0001). As expected,
the time course associated with Word Length
and Word Frequency rose from ≈ 100 ms and
from≈ 400 ms respectively. Furthermore, Word
Function improved the prediction performance
of all models (all p < 0.0002) except for
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PLS (p = 0.7989). Overall, these results confirm that Word Length, Word Frequency and Word
Function causally influence specific periods of brain responses to words.

To assess which model would be most sensitive to these causal discoveries, we compared B2B to
other models across subjects (Figure 3.5.3 right). For Word Length B2B outperforms all models
(all p < 0.00001) but CCA (p = 0.0678). For Word Frequency, B2B outperforms all models (all
p < 0.0006). For ”Word Function”, B2B outperforms all models (all p < 0.0015). Overall, these
results show that B2B reliably outperforms standard methods, especially when the effects are difficult
to detect.

4 RELATED WORK

Forward and cross-decomposition (CCA, PLS) models are regularly used to identify the causal
contribution of collinear features onto multi-dimensional observations (e.g. (Naselaris et al., 2011)).
These approaches typically lead to multiple coefficients for each features (i.e. one per dimension of
Y or one per component respectively). Furthermore, these coefficients can be difficult to summarize
into a single causal estimate. By contrast, B2B quickly (Fig. 7) leads to a single unbiased scalar
values Ê tending towards 1 and 0 for causal and non-causal features respectively.

A variety of other statistical methods applied to neuroimaging data have been proposed to clarify
what is being represented in brain responses - i.e. what feature causes specific brain activity. One
of the popular linear method is Representational Similarity Analysis (RSA) (Kriegeskorte et al.,
2008), and consists in analyzing the similarity of brain responses associated with specific categorical
conditions (e.g. distinct images), by (1) fitting one-against-all classifiers on each condition and (2)
testing whether these classifiers can discriminate all other conditions. The resulting confusion matrix
is then analyzed in an unsupervised manner to reveal which conditions lead to similar brain activity
patterns. B2B differs from RSA in that (1) it uses regressions instead of classifications, and can thus
generalize to new items and new contexts and (2) it is fully supervised.

Furthermore, B2B closely relates to CCA (Hotelling, 1936), but departs from it in four main aspects.
First, B2B is not symmetric between X and Y : it aims to identify specific causal features by first
optimizing over the decoders G and then over H . By contrast, CCA is symmetric between X and
Y , and aims to find G and H such that they project X and Y on maximally correlated dimensions.
Second, CCA is based an eigen decomposition of XH and Y G - the corresponding canonical
components are thus mixing the X features in way that limit interpretability. Third, CCA does not
typically optimize two distinct regularization parameters. Finally, CCA does not use different data
splits to estimate G and H . Together, these differences may explain why B2B reliably outperform
CCA on estimating causal influences (Figs. 2 and 6). Extensions of CCA have been explored in
neuroimaging (see (de Cheveigne et al., 2019) for brief review), but typically do not address the issue
of causal discovery.

Finally, B2B is also related to, but different from causal discovery algorithms used outside the
neuroimaging field. These methods are often nonlinear (Peters et al., 2017) and base their causal
estimates on temporal delays (Granger, 1969; Janzing et al., 2013). For example, B2B relates to
tthe half-sibling regression (Schölkopf et al., 2016), in the sense that we observe a large number
of variables corrupted by the same source of noise; we leave the extension of B2B to nonlinear
time-series for future work.

5 CONCLUSION

In this work, we proposed Back-to-Back (B2B) regression, a linear method to measure the causal
influence of a potential set of variables generating multidimensional observations. B2B performs
two successive multidimensional regressions: one from the output domain, and another one from the
input domain. We provided a theoretical guarantee about the consistency of B2B, and compared it to
several baselines in controlled synthetic experiments. We also applied B2B to a recent brain imaging
dataset, analyzing the timing of brain responses and their connection to word features. We obtained
results consistent with prior work in neuroscience literature, confirming the efficacy of B2B for real
data analysis.
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A APPENDIX

A.1 PROOF OF CONSISTENCY THEOREM

Proof of the theorem in 2.2:
Theorem (B2B consistency - general case). Consider the B2B model from Equation Y = (XE +
N)F , N centred and full rank noise. If F and X are full-rank on Img(E), then, the solution of B2B,
Ĥ , will minimize minH ‖X −XH‖2 + ‖NH‖2and satisfy EĤ = Ĥ

Proof. Let Ĝ and Ĥ be the solutions of the first and second regressions of B2B, we have

Ĝ = arg min
G

E[‖Y G−X‖2] = arg min
G

E[‖X − (XE +N)FG‖2]

= arg min
G
‖X −XEFG‖2 + ‖NFG‖2

Ĥ = arg min
H

E[‖XH − Y Ĝ‖2] = arg min
H

E[‖XH − (XE +N)FĜ‖2]

= arg min
H

E[‖X(H − EFĜ)‖2] + E[‖NFĜ‖2]

= EFĜ

Let us prove that EFĜ = FĜ, that is, that the dx bottom rows of FĜ are zero. Let Z = F †EFĜ.
We have FZ = FF †EFĜ = EFĜ (FF †E = E since F is full rank on Img(E)). Since E is a
contraction, we have ‖NEFĜ‖2 ≤ ‖NFĜ‖2. Therefore,

‖X −XEFZ‖2 + ‖NFZ‖2 = ‖X −XEFĜ‖2 + ‖NEFĜ‖2 ≤ ‖X −XEFĜ‖2 + ‖NFĜ‖2

But as Ĝ = arg minG ‖X −XEFG‖2 + ‖NFG‖2, the above inequality is an equality, Z = Ĝ

and EFĜ = FĜ. Therefore, ‖X −XEFG‖2 + ‖NFG‖2 = ‖X −XEFG‖2 + ‖NEFG‖2 =

‖X −XH‖2 + ‖NH‖2 is minimised by Ĝ and Ĥ . Finally, EĤ = EEFĜ = EFĜ = Ĥ . This
completes the proof.
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A.2 FEATURE IMPORTANCE

For B2B, feature importance is assessed as follows:

Algorithm 2: B2B feature importance.

Input: Xtrain ∈ Rn×dx , Xtest ∈ Rn′×dx , Ytrain ∈ Rn×dy , Ytest ∈ Rn′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx .

1 H,G = B2B(Xtrain, Ytrain);
2 Rfull = corr(XtestH,YtestG);
3 for i = 1, . . . , dx do
4 K = Id;
5 K[i]← 0;
6 Hk = LinearRegression(XtrainK,YtrainGi);
7 Rk = corr(XtestHk, YtestGi);
8 ∆Ri = Rfull −Rk;
9 end

10 return ∆R

For the Forward Model, the feature importance is assessed as follows:

Algorithm 3: Forward feature importance.

Input: Xtrain ∈ Rn×dx , Xtest ∈ Rn′×dx , Ytrain ∈ Rn×dy , Ytest ∈ Rn′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx,dy .

1 H = LinearRegression(Xtrain, Ytrain);
2 Rfull = corr(XtestH,Ytest);
3 for i = 1, . . . , dx do
4 K = Id;
5 K[i]← 0;
6 Hk = LinearRegression(XtrainK,Ytrain);
7 Rk = corr(XtestHk, Ytest);
8 ∆Ri = Rfull −Rk;
9 end

10 return ∆R

For the CCA and PLS models, the feature importance is assessed as follows:

Algorithm 4: CCA and PLS feature importance.

Input: Xtrain ∈ Rn×dx , Xtest ∈ Rn′×dx , Ytrain ∈ Rn×dy , Ytest ∈ Rn′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx,dz .

1 H,G = CCA(Xtrain, Ytrain);
2 Rfull = corr(XtestH,YtestG);
3 for i = 1, . . . , dx do
4 K = Id;
5 K[i]← 0;
6 Hk, Gk = CCA(XtrainK,Ytrain);
7 Rk = corr(XtestHk, YtestGk);
8 ∆Ri = Rfull −Rk;
9 end

10 return ∆R

For the Backward Model, feature importance cannot be assessed because there is no prediction.

B ADDITIONAL FIGURES
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Figure 5: Average ∆R for each Y dimension (Forward model), canonical components (PLS and
CCA) or feature (B2B) across subjects. Formally, Backward model cannot have a ∆R because it
never unmixes the multiple X features. In such cases, we thus simply report the decoding score.

Figure 6: Synthetic experiments. Distribution (over conditions) of differences in AUC (left) and
Feature Importance ∆R (right) metrics between our method and the baselines. Mass under the dashed
line corresponds to B2B outperforming the baseline.
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Figure 7: Wall-clock run-time for our method B2B and for the baselines. We see that B2B runs much
faster than baselines.
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