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ABSTRACT

Cloud computing is becoming increasingly popular as a platform for distributed
training of deep neural networks. Synchronous stochastic gradient descent (SSGD)
suffers from substantial slowdowns due to stragglers if the environment is non-
dedicated, as is common in cloud computing. Asynchronous SGD (ASGD) meth-
ods are immune to these slowdowns but are scarcely used due to gradient staleness,
which encumbers the convergence process. Recent techniques have had limited suc-
cess mitigating the gradient staleness when scaling up to many workers (computing
nodes). In this paper we define the Gap as a measure of gradient staleness and
propose Gap-Aware (GA), a novel asynchronous-distributed method that penalizes
stale gradients linearly to the Gap and performs well even when scaling to large
numbers of workers. Our evaluation on the CIFAR, ImageNet, and WikiText-103
datasets shows that GA outperforms the currently acceptable gradient penalization
method, in final test accuracy. We also provide convergence rate proof for GA.
Despite prior beliefs, we show that if GA is applied, momentum becomes beneficial
in asynchronous environments, even when the number of workers scales up.

1 INTRODUCTION

The steady growth of deep neural networks over the years has made it impractical to train them from
scratch on a single worker (i.e., computational device). Distributing the computations over several
workers can drastically reduce the training time. However, due to the sequential nature of the widely
used stochastic gradient descent (SGD) method, distributing the process is not an easy task.

Synchronous SGD (SSGD) is the most common method used to distribute the learning process across
multiple workers. Several recent works (Mikami et al., 2018; Ying et al., 2018; Yamazaki et al.,
2019; Goyal et al., 2017) have shown that SSGD can achieve large speedups while maintaining
high accuracy. The major drawback of SSGD is that its speed is confined to the slowest worker
in every iteration. This shortcoming is magnified in non-dedicated1 environments such as cloud
computing. For this reason, all the above mentioned works were forced to use homogeneous workers
in a dedicated network, which serves to reduce the variance in the workers’ iteration times. Unlike
cloud computing, dedicated networks are expensive and therefore not available to most users.

In asynchronous SGD (ASGD), each worker communicates independently of the others, thereby
addressing the major drawback of SSGD. ASGD enjoys linear speedup in terms of the number of
workers, even on non-dedicated networks. This makes ASGD a potentially better alternative to
SSGD when using cloud computing. Unfortunately, ASGD also has a significant weakness known
as gradient staleness; the gradients used to update the parameter server’s (master) parameters are
often based on older parameters and therefore are inaccurate. Prior works have shown that gradient
staleness severely hinders the convergence process by reaching reduced final accuracy (Chen et al.,
2016; Cui et al., 2016). Mitliagkas et al. (2016) showed that gradient staleness also induces implicit
momentum, thus the momentum coefficient γ must be decayed when scaling up the number of
workers. Most research works measure the gradient staleness of a worker according to the delay: the
number of master updates since the worker began calculating the stochastic gradient g, until g is used
to update the master. To overcome gradient staleness, Zhang et al. (2015b) proposed Staleness-Aware
(SA), which penalizes the step size of stale gradients linearly to their delay. This method was later
embraced by other works (Jiang et al., 2017; Hardy et al., 2017) and is currently the common method
for penalizing stale gradients. Unfortunately, this method suffers from a degradation of the final

1An environment of computation nodes who are not specifically optimized to work together
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accuracy, especially when scaling up the number of workers. In Section 4.1, we show that the main
reason for this degradation is the over-penalization and under-penalization caused by SA.

SSGD and ASGD rely on hyperparameter tuning for every different number of workers (Shallue
et al., 2018). Tuning is extremely time-consuming, thus avoiding it is beneficial, whenever possible.

Our contribution: To mitigate gradient staleness while minimizing the degradation of final accuracy,
we define a measure of gradient staleness we refer to as the Gap. The Gap is based on the difference
between the parameters used to calculate the gradient and the parameters on which the gradient is
applied. We propose a new method called Gap-Aware (GA) that penalizes the step size of stale
gradients linearly to their Gap, while eliminating the over-penalization or under-penalization of SA.
No new hyperparameters are introduced using the GA method.

• We show that GA out-performs SA, especially as the number of workers scales up.
• We prove that the convergence rate of the GA-ASGD algorithm with a non-convex loss function is

consistent with SGD: O
(

1√
BK

)
where K is the total number of steps and B is the batch size.

• We show that penalizing the gradient itself rather than the step-size, eliminates under-penalization.
• Our results suggest that GA can be used without re-tuning the hyperparameters.
• As opposed to conclusions by Mitliagkas et al. (2016), we show that applying momentum in an

asynchronous environment is advantageous (using GA), even when multiple workers are used.
• We combine GA with Adam (Kingma & Ba, 2015) (Adam-GA), and show that Adam-GA achieves

almost two orders of magnitude better perplexity than Adam or Adam-SA (which combines Adam
with SA) using several workers on the Transformers-XL model.

Our results establish GA as a superior gradient-penalizing option to SA and suggest that using
GA is a preferable alternative to SSGD in non-dedicated networks such as cloud computing, even
when scaling to large numbers of workers. To validate our claims, we performed experiments on
the CIFAR10, CIFAR100 (Hinton, 2007), ImageNet (Russakovsky et al., 2015), and WikiText-103
(Merity et al., 2016) datasets, using several state-of-the-art architectures. A version of GA has reached
72.18% final test accuracy on the ImageNet dataset using 128 simulated asynchronous workers. As
far as we know, this is the largest number of asynchronous workers reported to converge on ImageNet.

2 RELATED WORK

Eliminating gradient staleness is a challenging task and several papers suggested techniques to reduce
its detrimental effects. Zheng et al. (2017) proposed DC-ASGD, which uses a Taylor expansion to
mitigate the gradient staleness. EASGD (Zhang et al., 2015a) uses a center force to pull the workers’
parameters toward the master’s parameters. Both DC-ASGD and EASGD achieve high accuracy
on small numbers of workers, but fall short when trained on large clusters. Chan & Lane (2014)
proposed penalizing stale gradients by reducing their size and thus limiting their effect on the learning
process. They suggest decaying the learning rate exponentially to the delay; this makes the step
size arbitrarily small when the amount of workers grows, virtually ceasing the learning process. As
part of their convergence analysis, Dutta et al. (2018) suggest a penalizing method that is linear to
the norm between the master and worker’s parameters. However, their method introduces another
hyperparameter, which requires additional time to tune. As opposed to other methods, GA performs
well even when the number of workers is large, without introducing new hyperparameters.

Gupta et al. (2016) as well as Aji & Heafield (2019) suggest collecting several gradients before
updating the master to reduce the effects of gradient staleness. Wen et al. (2017) propose minimizing
the size of the gradients to reduce communication times. GA is orthogonal to both of these approaches.

3 BACKGROUND

The goal of an optimization procedure is to minimize f(θ), where f is a smooth, but not necessarily
convex, objective function (a.k.a. loss) and the vector θ ∈ Rd is the model’s parameters:

θ∗ = arg min
θ∈Rd

f(θ) := Eξ[F (θ; ξ)] (1)

where ξ ∈ Ξ is a random variable from Ξ, the entire set of training samples Ξ = {1, 2, · · · ,M}.
F (θ; ξ) is the stochastic loss function with respect to the training sample indexed by ξ. SGD is
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commonly the workhorse behind the optimization of deep neural networks. Denoting η as the learning
rate and k as the step number, SGD’s iterative update rule is: θk+1 = θk − ηk∇f(θk). We denote
Xk as the variable X at the kth step, where X is any variable.

Momentum Momentum (Polyak, 1964) is a widely adopted optimization technique due to its
accelerated convergence and oscillation reduction (Sutskever et al., 2013). Instead of simply using
the gradient, the momentum iterative update rule2 uses an exponentially-weighted moving average of
gradients called the update vector: vk+1 = γvk +∇f(θk). The update rule is: θk+1 = θk − ηkvk+1.
Nesterov’s Accelerated Gradient (NAG) (Nesterov, 1983) is a well-used variation of momentum that
has been proven to achieve quadratic speedup in convergence rate compared to SGD.

4 ASYNCHRONOUS SGD (ASGD)

We consider the commonly used ASGD, which operates with a parameter-server (master), used
to keep the model’s most up-to-date parameters. Each worker maintains a replica of the model’s
parameters. The workers run in parallel and synchronize with the master independently from each
other at the beginning of each batch iteration. We denote τk as the delay at the kth step. The worker
and master algorithms are given by Algorithm 1 and 2, respectively, where B is the batch-size and
ξk,b denotes the bth sample in the batch sampled at the kth iteration. Gradient staleness appears
when a gradient gk is computed on parameters θk−τk but applied to different parameters θk.

Algorithm 1 Momentum-ASGD: worker i

Always do:
Receive parameters θk−τk from the master
Get B training samples ξk−τk,[1...B]

Compute gradient: gik ←
∑B
b=1

∇F (θk−τk ;ξk−τk,b)

B

Send gik to the master

Algorithm 2 Momentum-ASGD: master

For k = 1...K do:
Receive gradient gik from worker i
Update momentum vk+1 ← γvk + gik
Update master’s weights:
θk+1 ← θk − ηk · vk+1

Send θk+1 to worker i

4.1 STALENESS-AWARE

Zhang et al. (2015b) proposed a gradient penalization method called Staleness-Aware (SA). SA
aims to reduce the effects of gradient staleness by dividing the step size by its corresponding τ
(Algorithm 3). The worker algorithm remains unchanged. The two ideas behind SA is that stale
gradients should be penalized to reduce their impact and that gradient staleness scales up with τ . SA
successfully mitigates the gradient staleness when N is small. Although commonly used, SA can
potentially over-penalize as well as under-penalize stale gradients as we show below.

Algorithm 3 Staleness-Aware: master

Initialize an iteration array: iter = [0] ∗N
For k = 1...K do:

Receive gradient gik from worker i
Calculate worker i’s delay τk ← k − iter[i]
Update momentum vk+1 ← γvk + gik
Update master θk+1 ← θk − ηk

τk
vk+1

Send θk+1 to worker i
Save current iteration iter[i]← k

Algorithm 4 Gap-Aware: master

For k = 1...K do:
Receive gradient gik from worker i
Calculate Gap: Gk =

|θk−θk−τk |
C + 1d

Update momentum vk+1 ← γvk +
(

1
Gk

)
� gik

Update master θk+1 ← θk − ηkvk+1

Save and send current parameters
θk+1 to worker i

Over-Penalizing Let us assume that at some step k, after τ master updates we get θk = θk−τ
just as the gradient calculated on θk−τ is applied. This means there is no gradient staleness for
the next gradient update since it was computed using the same parameters on which it is applied.
Unfortunately, the delay remains τ > 0, thereby causing over-penalization when SA is used.

Additionally, τ scales linearly with N , which dramatically reduces η when N is large. Consequently,
on large numbers of workers, the convergence rate of SA is sluggish and its accuracy plummets.

2We consider the version of momentum without dampening
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Under-Penalizing The SA method doesn’t take into account that when using momentum, the
update step also contains past gradients. To emphasize the importance of this issue, let’s examine
a fictional example: assume that some gradient gk is very stale (τk is large). Following the SA
technique, the update rule is: θk+1 = θk − ηk

τk
· vk+1 = θk − ηk

τk
· (γvk + gk). This means the stale

gradient gk is indeed penalized by being multiplied by ηk
τk

, which is small; thus gk doesn’t change the
parameters much. We further assume the next iteration is very fast (τk+1 is small). The next update
will be: θk+2 = θk+1 − ηk+1

τk+1
· (γ2vk + γgk + gk+1). The stale gradient gk is multiplied by γ ηk+1

τk+1
,

which is large (assuming ηk ≈ ηk+1). Despite the fact that gk was stale, it still has a significant
impact on the learning process. In other words, gk is under-penalized.

To eliminate this possibility we penalize the stale gradient itself rather than the learning rate. Using
this method, the staleness of each gradient is accounted for within the update vector v.

5 GAP-AWARE (GA)

In this section we propose a new method called Gap-Aware to mitigate over and under-penalization.

5.1 THE GAP AS A MEASURE OF GRADIENT STALENESS

An intuitive method to measure gradient staleness would be: ‖∇f(θk)−∇f(θk−τk)‖. This essentially
measures the difference between the stale gradient and the accurate gradient that is computed on the
up-to-date parameters. (Of course, ∇f(θk) is never calculated in ASGD algorithms.) Commonly
used in deep learning is the Lipschitzian gradients assumption:

‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖, ∀x,∀y, L ∈ R (2)

Setting x = θk, y = θk−τk into Equation 2 we get: ‖∇f (θk) − ∇f (θk−τk)‖ ≤ L‖θk − θk−τk‖.
This implies that ‖θk − θk−τk‖ is a valid (and easily calculated) measure of the gradient staleness.
This measure also addresses the delay’s over-penalization; using the same simple example described
in Section 4.1, the term ‖θk − θk−τk‖ will now be zero, correctly measuring the gradient staleness.

The learning rate η, commonly decays as the training progresses. This decay can be viewed as a
built-in penalization to reduce variance. Following this notion, we suggest reducing the staleness
penalization as η decays. To accommodate all the attributes above, we define the Gap:
Definition 1. Gk, the Gap at the kth step, is defined as the minimal number of updates required
to traverse the current distance between the master’s and worker’s parameters using the maximal
learning rate and assuming all gradients have an average norm. Gk ∈ R is defined as:

Gk = ‖θk − θk−τk‖/C + 1

Where C = ηmaxEk[‖∇f(θk−τk)‖] is a constant representing the maximal distance the parameters
can travel in a single update, given the gradient’s norm is the average gradient norm.

Definition 1 means that dividing η by the Gap produces larger steps than those produced by SA
This allows exploring more distant minimas while still mitigating the gradient staleness. Note that
E[Gk] = τk occurs only if all previous τk updates were in the exact same direction, which rarely
happens. Empirically, we found that E[Gk] < τk (See Appendix C.8).

To mitigate the gradient staleness, while eliminating the over-penalization and under-penalization, we
divide the gradients themselves by their respective Gap. We refer to this method as Gap-Aware (GA).

5.2 CONVERGENCE ANALYSIS

In this section we provide the outlines of the convergence analysis. The complete proofs are given in
Appendix B. The GA-ASGD update rule (without momentum) is:

θk+1 = θk − ηk
(

1

Gk

)
·
B∑
b=1

∇F (θk−τk ; ξk−τk,b) (3)

The convergence rate is the speed (or number of steps) at which a convergent sequence approaches its
limit. We follow ideas similar to Lian et al. (2015) to show that the upper bound of the convergence
rate of GA on a non-convex loss function is similar to that of SGD.
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Assumption 1. We assume the following, commonly-used assumptions, hold:

• Unbiased gradient: The stochastic gradient∇F (θ; ξ) is unbiased:

∇f(θ) = Eξ[∇F (θ; ξ)] (4)

• Bounded variance: The variance of the stochastic gradient is bounded:

Eξ[‖∇F (θ; ξ)−∇f(θ)‖2] ≤ σ2, ∀θ (5)

• Lipschitzian gradients: See Equation 2.

• Independence: All the random variables {ξk,b}k=1...K;b=1...B , are independent.

• Bounded age: All delay variables τ1, ...τK are bounded:

max
k

τk ≤ T (6)

Theorem 1. Assume that Assumption 1 holds and the learning rate sequence {ηk}k=1···K satisfies:

BLηk
Gk

+ 2B2L2T
T∑
t=1

η2k+t
G2
k+t

≤ 1 for all k = 1, 2, ... (7)

We have the following ergodic convergence rate for the iteration of GA-ASGD:

1∑K
k=1

ηk
Gk

K∑
k=1

ηk
Gk

E(‖∇f(θk)‖2) ≤
2(f(θ1)−f(θ∗))

B +
∑K
k=1

(
ηk
Gk

+ 2BL
∑k−1
j=k−T

η2j
G2
j

)
ηkLσ

2

Gk∑K
k=1

ηk
Gk

(8)
Where E[·] denotes taking expectation in terms of all random variables.

To simplify the upper bound in Theorem 1, we observed that setting the learning rate ηk such that the
expression ηk

Gk
is a constant value across all k obtains the following convergence rate:

Corollary 1. Assume that Assumption 1 holds and that ηk are set such that ηk
Gk

is constant for any k
as follows:

ηk
Gk

:= η =

√
f(θ1)− f(θ∗)

BLKσ2
, ∀k ∈ [1, . . . ,K] (9)

If the maximal delay parameter T satisfies:

K ≥ 4BL(T + 1)2(f(θ1)− f(θ∗))

σ2
(10)

then the output of GA satisfies the following ergodic convergence rate:

min
k∈{1,··· ,K}

E[‖∇f(θk)‖2] ≤ 1

K

K∑
k=1

E[‖∇f(θk)‖2] ≤ 4

√
(f(θ1)− f(θ∗))Lσ2

BK
(11)

Corollary 1 claims that if the total iterations K is greater thanO(BT 2), the convergence rate achieves
O(1/

√
BK), which is consistent with the convergence rate of ASGD presented in Lian et al. (2015),

and with the convergence rate of SGD.

5.3 GAP-AWARE VERSIONS

We explore three ways to measure Gk:

• Global: Gk ∈ R as defined in Definition 1.
• Layer-wise: Every layer is penalized differently and independently. Gk ∈ RP where P is the

number of layers in the model. We denote 1S as an S-dimensional vector of ones. We denote any
vector X∗,p is the pth layer in the vector X∗. Every element in Gk is calculated per-layer:

Gk,p = ‖θk,p − θk−τk,p‖/Cp + 1p (12)

5



Under review as a conference paper at ICLR 2020

4 8 16 24 32
# Workers

6

8

Te
st

 E
rro

r (
%

)

Global
Layer-Wise
Parameter-Wise

4 8 16 24 32
# Workers

0.00

0.05

Tr
ai

n 
Er

ro
r (

%
)

Global
Layer-Wise
Parameter-Wise

Figure 1: Final test and train error for different numbers of asynchronous workers N . The figure
shows the average (bold line) and standard deviation (band) of 5 runs on the CIFAR10 dataset using
the WideResNet model. The black dashed line is the SGD error using a single worker.

• Parameter-wise: Every parameter (element in the parameter vector θ) is penalized differently and
independently. Gk ∈ Rd where d is the number of parameters. We denote | · | on vector X , as the
absolute value per element of X . Every element in Gk is calculated and applied per-element:

Gk = |θk − θk−τk |/C + 1d (13)

Where C ∈ Rd is also calculated element-wise. Specifically, C = ηmaxEk[|∇f(θk−τk)|].
We tested these variations on three different frameworks3 to determine which technique has the best
performance. Figure 1 demonstrates that the parameter-wise method (equation 13) resulted in the
best test and train error. Since this phenomenon repeats across all frameworks, we henceforth use the
parameter-wise method in the Gap-Aware algorithm. We denote � as an element-wise multiplication
between vectors and describe the final GA algorithm of the master as Algorithm 4. The worker
algorithm remains the same as in Algorithm 1.

6 EXPERIMENTS

We simulated multiple distributed workers4 to measure the final test error, train error, and convergence
speed of different cluster sizes. To validate that penalizing linearly to the Gap is the factor that
leads to better performance, we used the same hyperparameters across all the tested algorithms
(see Appendix C.4). These hyperparameters are the ones tuned for a single worker, suggested by
the authors of the respective papers for each framework. We simulated the workers’ execution
time using a gamma-distributed model (Ali et al., 2000) (see Appendix C.3), where the execution
time for each individual batch was drawn from a gamma distribution. The gamma distribution is a
well-accepted model for task execution time, which naturally gives rise to stragglers. The importance
of asynchronous over synchronous training is explained in Appendix D.

Combining GA with DANA One way to verify whether it is better to penalize using the Gap or
the delay, is to change the Gap while fixing the delay, and examining the results using GA and SA.
Momentum generally increases the norm of the update vector; this in turn, increases the effective step
size thus increasing the Gap for a given delay. Hakimi et al. (2019) introduced DANA, which uses the
momentum to estimate the master’s parameters at the time of the gradient update, thus decreasing the
Gap. The combination of decreasing the Gap using DANA and penalizing stale gradients using GA
or SA is easily integrated since both methods are orthogonal. In our experiments, we also compared
between DANA-Gap-Aware (DANA-GA) and DANA-Staleness-Aware (DANA-SA). We note that
since DANA decreases the Gap, DANA-GA penalizes much less than DANA-SA (see Appendix C.8).

Algorithms Our evaluations consist of the following algorithms:

• Baseline: Single worker with the same tuned hyperparameters as in the respective framework’s
paper. See Appendix C.4.

• ASGD: ASGD (Algorithm 2) without momentum (γ = 0).
• NAG-ASGD: ASGD with momentum (Algorithm 2) using a NAG optimizer.
• Staleness-Aware: SA as described in Algorithm 3, using a NAG optimizer.
• Gap-Aware: Parameter-wise GA (Algorithm 4) as described in Section 5, using a NAG optimizer.
• DANA: DANA (Algorithm 6) as described in Appendix C.1.

3A framework is a unique combination of dataset and model. See full experiment in Appendix C.9.
4A worker is a machine with one or more accelerators (i.e., GPU). ASGD methods treat each machine with

multiple accelerators, all working synchronously locally, as a single worker.
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(a) CIFAR10 ResNet-20
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(b) CIFAR10 WideResNet
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(c) CIFAR100 WideResNet

Figure 2: Final test error for different numbers of asynchronous workers N . Each line in the figure
represents the average (bold line) and standard deviation (band) of 5 runs on a specific framework.
The black dashed line represents the average result of SGD using a single worker.

• DANA-SA: DANA-Staleness-Aware (Algorithm 7) as described in Appendix C.1.
• DANA-GA: DANA-Gap-Aware (Algorithm 8) as described in Appendix C.1.
• Adam: Adam (Algorithm 9) as described in Appendix C.1.
• Adam-SA: Adam-Staleness-Aware (Algorithm 10) as described in Appendix C.1.
• Adam-GA: Adam-Gap-Aware (Algorithm 11) as described in Appendix C.1.

Our evaluation was extensive on image classification tasks such as CIFAR10, CIFAR100 (Hinton,
2007), and ImageNet (Russakovsky et al., 2015). It also included a language modeling task using the
WikiText-103 corpus (Merity et al., 2016). All datasets and models are detailed in Appendix C.2.

6.1 EVALUATION ON CIFAR

Gradient Staleness Effects In Figure 2, NAG-ASGD shows how gradient staleness is exacerbated
by momentum. NAG-ASGD yields high accuracy with few workers, but the test error climbs sharply
when more than 16 workers are used. On the other hand, ASGD without momentum performs poorly
using few workers. When using many workers, ASGD significantly surpasses NAG-ASGD because
of the implicit momentum generated in asynchronous training (Mitliagkas et al., 2016).

SA & GA Figure 2 also demonstrates that both staleness penalization methods (GA and SA) out-
perform the naive NAG-ASGD. GA results in better final test error than SA across all experiments.
This empirically proves that GA is the better method for penalizing the gradients. We claim this
occurs mainly because SA over-penalizes the gradients, thereby making it impossible to reach any
distant, good minima when the number of steps is limited (for more details see Appendix C.8).

DANA Versions Figure 2 shows that DANA potentially diverges when N grows as opposed to
DANA-GA and DANA-SA. This shows that DANA benefits from staleness penalization. Furthermore,
DANA-GA out-performs all other methods and remains close to the baseline’s error across all
frameworks. The fact that DANA-GA out-performs DANA-SA validates that GA is superior to SA.

Tuned ASGD To validate that the staleness penalization helps overcome the gradient staleness and
improve the results, we tuned the momentum and learning rate of ASGD using 32 workers on the 3
frameworks shown in Figure 2. For each framework, we performed a grid search of 70 perturbations
(See Appendix C.12). Table 1 shows that GA and DANA-GA, using the same hyperparameters as the
baseline, provide similar or better results than tuning both γ and η, which is highly time-consuming.

According to Mitliagkas et al. (2016), if momentum is used, the asynchronous implicit momentum
should impede the convergence as N increases. However, GA and DANA-GA, which use a large
momentum, generally perform better than the tuned ASGD even when N is large. This phenomenon
repeats across all frameworks, which suggests that GA, and especially DANA-GA, can mitigate the
asynchronous implicit momentum problem. Tuning these methods should further improve the results.

The graphs of the train error also show the same concepts discussed here regarding the test error and
are presented in Figure 6, Appendix C.10. The convergence rate analysis appears in Appendix C.11.
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Table 1: Test accuracy on different frameworksa. N=32.

Framework Tuned ASGD GA DANA-GA

C10 R 88% 87.9% 91.1%
C10 WR 91.6% 92.3% 94.3%

C100 WR 71.1% 70.6% 74.3%

aC10/C100=CIFAR10/100, R=ResNet, WR=WideResNet.

Table 2: Final test perplexity using
Transformer-XL on WikiText-103. (Base-
line 24.25. Lower is better).

N Adam Adam-SA Adam-GA

4 1644.76 1210.8 26.48
8 1603.01 1129.9 28.7

Table 3: ResNet-50 ImageNet final test accuracy (Baseline 75.64%)

N ASGD NAG-ASGD SA GA DANA DANA-SA DANA-GA

32 70.53% 70.64% 61.73% 70.27% 74.89% 65.66% 75.06%
48 69.05% 66.78% 56.22% 67.75% 73.75% 61.16% 74.23%
64 67.1% 59.81% 50.79% 64.78% 69.88% 56.98% 74.11%
128 NaN NaN NaN NaN NaN NaN 72.18%

6.2 IMAGENET EXPERIMENTS

We conducted experiments on the ImageNet dataset using the ResNet-50 model (He et al., 2016).
Every asynchronous worker is a machine with 8 GPUs, so the 128 workers in our experiments
simulate a total of 1024 GPUs. For reference, Goyal et al. (2017) used 256 GPUs synchronously. The
hyperparameters we used are those of the tuned single worker (see Appendix C.4). Table 3 shows that
GA out-performs SA due to the high number of workers, which exacerbates the over-penalizing of
SA. Unlike SA, GA out-performs NAG-ASGD as N increases due to successful staleness mitigation.
DANA-GA remains close to the baseline and better than any other method asN increases. DANA-GA
reaches 72.18% final test accuracy when using 128 workers, which is the most asynchronous workers
shown to converge on ImageNet as far as we know.

6.3 NLP EXPERIMENTS

NLP tasks are usually trained using Adam (Kingma & Ba, 2015). To test SA and GA we implemented
a version of Adam-SA and Adam-GA given by Algorithm 10 and 11, respectively (Appendix C.1).
Transformer-XL (Dai et al., 2019) is a state-of-the-art model for NLP tasks; however, its sensitivity
to gradient staleness is catastrophic (Aji & Heafield, 2019). Table 2 shows that GA successfully
mitigates the gradient staleness and achieves near-baseline perplexity while SA results in a higher
perplexity by almost two orders of magnitude. In this scenario, SA completely fails to mitigate the
gradient staleness, proving the superiority of GA. (See hyperparameters in Appendix C.4).

7 CONCLUSIONS

The goal of this work is to mitigate gradient staleness, one of the main challenges of ASGD. We
argue that penalizing stale gradients linearly to the delay, as done in the widely used SA method,
flounders due to over and under-penalization. We defined the Gap to measure gradient staleness
and proposed GA, a novel asynchronous distributed technique that mitigates the gradient staleness
by penalizing stale gradients linearly to the Gap. We showed that GA surpasses SA across all
frameworks, especially in NLP problems or when the number of workers is large. This presents GA
as a superior alternative for staleness penalizing. We further introduced DANA-GA and demonstrated
that DANA-GA mitigates gradient staleness better than any of the other methods we compared.
Despite prior belief, DANA-GA’s superb performance enables the use of momentum in asynchronous
environments with many workers; it presents a desirable alternative for parallel training with multiple
workers, especially on non-dedicated environments such as cloud computing. In future work, we plan
to examine what makes GA perform so well in NLP tasks.
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A SOURCE CODE

The source code of DANA-Gap-Aware is provided via:
DOWNLOAD LINK

B PROOFS

Proof for Theorem 1

Proof. From the Lipschitzisan gradient assumption equation 2, we have

f(θk+1)− f(θk) ≤

≤〈∇f(θk), θk+1 − θk〉+
L

2
‖θk+1 − θk‖2 =

=−

〈
∇f(θk), ηk

(
1

Gk

)
·
B∑
b=1

∇F (θk−τk ; ξk−τk,b)

〉
+
η2kL

2G2
k

∥∥∥∥∥
B∑
b=1

∇F (θk−τk ; ξk−τk,b)

∥∥∥∥∥
2

=− Bηk
Gk

〈
∇f(θk),

1

B

B∑
b=1

∇F (θk−τk ; ξk−τk,b)

〉
+
η2kL

2G2
k

∥∥∥∥∥
B∑
b=1

∇F (θk−τk ; ξk−τk,b)

∥∥∥∥∥
2

(14)

Taking expectation with respect to ξk,∗ on both sides of equation 14, we have

Eξk,∗ [f(θk+1)]− f(θk) ≤− Bηk
Gk

〈
∇f(θk),

1

B

B∑
b=1

∇f(θk−τk)

〉

+
η2kL

2G2
k

Eξk,∗

∥∥∥∥∥
B∑
b=1

∇F (θk−τk ; ξk−τk,b)

∥∥∥∥∥
2
 (15)

where we use the unbiased stochastic gradient assumption (equation 4).

From the fact that:

〈a, b〉 =
1

2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
we have

Eξk,∗ [f(θk+1)]− f(θk)

≤− Bηk
2Gk

‖∇f(θk)‖2 +

∥∥∥∥∥ 1

B

B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2

−

∥∥∥∥∥∇f(θk)− 1

B

B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2

︸ ︷︷ ︸
T1


+
η2kL

2G2
k

Eξk,∗

∥∥∥∥∥
B∑
b=1

∇F (θk−τk ; ξk−τk,b)

∥∥∥∥∥
2


︸ ︷︷ ︸
T2

(16)
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Next we estimate the upper bound of T1 and T2. For T2 we have

T2 =Eξk,∗

∥∥∥∥∥
B∑
b=1

∇F (θk−τk ; ξk−τk,b)

∥∥∥∥∥
2


=Eξk,∗

∥∥∥∥∥
(

B∑
b=1

(∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk)) +

B∑
b=1

∇f(θk−τk)

)∥∥∥∥∥
2


=Eξk,∗

[∥∥∥∥∥
B∑
b=1

(∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk))

∥∥∥∥∥
2

+

∥∥∥∥∥
B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2

+ 2

〈
B∑
b=1

(∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk)) ,

B∑
b=1

∇f(θk−τk)

〉]

=Eξk,∗

∥∥∥∥∥
B∑
b=1

(∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk))

∥∥∥∥∥
2

+

∥∥∥∥∥
B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2


=Eξk,∗

∥∥∥∥∥
B∑
b=1

(∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk))

∥∥∥∥∥
2

+

∥∥∥∥∥
B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2


=Eξk,∗

[
B∑
b=1

‖(∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk))‖2

+ 2
∑

1≤b<b′≤B

〈∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk),∇F (θk−τk ; ξk−τk,b′)−∇f(θk−τk)〉

+

∥∥∥∥∥
B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2 ]

≤Eξk,∗

[
B∑
b=1

(
‖(∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk))‖2

)
+

∥∥∥∥∥
B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2 ]

≤Bσ2 +

∥∥∥∥∥
B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2

(17)

where the fifth equality is due to

Eξk,∗

〈
B∑
b=1

(∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk)) ,

B∑
b=1

∇f(θk−τk)

〉

=

〈
B∑
b=1

Eξk,∗ (∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk)) ,

B∑
b=1

∇f(θk−τk)

〉
=0
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and the last inequality is due to the bounded variance assumption equation 5 and due to:

Eξk,∗

 ∑
1≤b<b′≤B

〈∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk),∇F (θk−τk ; ξk−τk,b′)−∇f(θk−τk)〉


=Eξk,∗

 ∑
1≤b<b′≤B

Ek−τk,b′ [〈∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk),∇F (θk−τk ; ξk−τk,b′)−∇f(θk−τk〉]


=Eξk,∗

 ∑
1≤b<b′≤B

〈∇F (θk−τk ; ξk−τk,b)−∇f(θk−τk),Ek−τk,b′ [∇F (θk−τk ; ξk−τk,b′)−∇f(θk−τk)]〉


=0. (18)

We next turn to T1:

T1 =

∥∥∥∥∥∇f(θk)− 1

B

B∑
b=1

∇f (θk−τk)

∥∥∥∥∥
2

= ‖∇f(θk)−∇f (θk−τk)‖2

≤L2‖θk − θk−τk‖2

where the last inequality is from the Lipschitzian gradient assumption (equation 2). It follows that

T1 ≤L2 ‖θk − θk−τk‖
2

=L2

∥∥∥∥∥∥
k−1∑

j=k−τk

(θj+1 − θj)

∥∥∥∥∥∥
2

=L2

∥∥∥∥∥∥
k−1∑

j=k−τk

ηj

(
1

Gj

)
·
B∑
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∇F
(
θj−τj ; ξj−τj ,b

)∥∥∥∥∥∥
2

=L2

∥∥∥∥∥∥
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ηj

(
1

Gj

)
·
B∑
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[
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)
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(
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+
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ηj

(
1

Gj
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·
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∇f
(
θj−τj

)∥∥∥∥∥∥
2

≤2L2


∥∥∥∥∥∥
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ηj

(
1

Gj

)
·
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[
∇F

(
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)
−∇f

(
θj−τj

)]∥∥∥∥∥∥
2

︸ ︷︷ ︸
T3

+

∥∥∥∥∥∥
k−1∑
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ηj

(
1

Gj
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·
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(
θj−τj
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(19)
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where the last inequality uses the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 for any real vectors a and b.
Taking the expectation in terms of {ξj−τj ,∗|j ∈ {k − τk, ..., k − 1}} for T3, we have

Eξj−τj,∗|j∈{k−τk,...,k−1}(T3)

=Eξj−τj,∗|j∈{k−τk,...,k−1}


∥∥∥∥∥∥

k−1∑
j=k−τk

ηj

(
1

Gj

)
·
B∑
b=1

(
∇F (θj−τj ; ξj−τj ,b)−∇f(θj−τj )

)∥∥∥∥∥∥
2


=Eξj−τj,∗|j∈{k−τk,...,k−1}

 k−1∑
j=k−τk

η2j
G2
j

∥∥∥∥∥
B∑
b=1

(
∇F (θj−τj ; ξj−τj ,b)−∇f(θj−τj )

)∥∥∥∥∥
2


+ 2Eξj−τj,∗|j∈{k−τk,...,k−1}

[ ∑
k−1≥j′′>j′≥k−τk

ηj′ηj′′

G′jG
′′
j

〈
B∑
b=1

(
∇F (θj′′−τj′′ ; ξj′′−τj′′ ,b)−∇f(θj′′−τj′′ )

)
,

B∑
b=1

(
∇F (θj′−τj′ ; ξj′−τj′ ,b)−∇f(θj′−τj′ )

)〉]

=Eξj−τj,∗|j∈{k−τk,...,k−1}

 k−1∑
j=k−τk

η2j
G2
j

∥∥∥∥∥
B∑
b=1

(
∇F (θj−τj ; ξj−τj ,b)−∇f(θj−τj )

)∥∥∥∥∥
2


=Eξj−τj,∗|j∈{k−τk,...,k−1}

 k−1∑
j=k−τk

η2j
G2
j

B∑
b=1

∥∥(∇F (θj−τj ; ξj−τj ,b)−∇f(θj−τj )
)∥∥2

≤Eξj−τj,∗|j∈{k−τk,...,k−1}

 k−1∑
j=k−τk

Bη2j
G2
j

∥∥(∇F (θj−τj ; ξj−τj ,b)−∇f(θj−τj )
)∥∥2

≤B
k−1∑

j=k−τk

η2j
G2
j

σ2 (20)

where the second to last equality is due to the last lines in equation 17 and the third equality is due to

Eξj ,k−1≥j≥k−τk

[ ∑
k+τk−1≥j′′>j′≥k

ηj′ηj′′

G′jG
′′
j

〈
B∑
b=1

(
∇F (θj′′−τj′′ ; ξj′′−τj′′ ,b)−∇f(θj′′−τj′′ )

)
,

B∑
b=1

(
∇F (θj′−τj′ ; ξj′−τj′ ,b)−∇f(θj′−τj′ )

)〉]

=Eξj ,k−1≥j≥k−τk

[ ∑
k−1≥j′′>j′≥k−τk

ηj′ηj′′

G′jG
′′
j

〈
B∑
b=1

Ej′′,∗
[
∇F (θj′′−τj′′ ; ξj′′−τj′′ ,b)−∇f(θj′′−τj′′ )

]
,

B∑
b=1

(
∇F (θj′−τj′ ; ξj′−τj′ ,b)−∇f(θj′−τj′ )

)〉]
=0.
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Taking the expectation in terms of ξj−τj ,∗ for T4, we have

Eξj−τj,∗|j∈{k−τk,...,k−1}[T4]

=Eξj−τj,∗|j∈{k−τk,...,k−1}


∥∥∥∥∥∥

k−1∑
j=k−τk

ηj

(
1

Gj

)
·
B∑
b=1

∇f
(
θj−τj

)∥∥∥∥∥∥
2


=Eξj−τj,∗|j∈{k−τk,...,k−1}


∥∥∥∥∥∥

k−1∑
j=k−τk

Bηj
Gj
· ∇f

(
θj−τj

)∥∥∥∥∥∥
2


≤T
k−1∑

j=k−τk

B2η2j
G2
j

Eξj−τj,∗|j∈{k−τk,...,k−1}
[∥∥∇f(θj−τj )

∥∥2] (21)

where the last inequality uses the fact that ‖
∑N
i=1 ai‖2 ≤ N

∑N
i=1 ‖ai‖2 for any real vectors ai and

the bounded age assumption equation 6.

We take full expectation on both sides of equation 19 and substitute E[T3] and E[T4] by their upper
bounds, equation 20 and equation 21 respectively:

E[T1] ≤ 2L2

B k−1∑
j=k−τk

η2j
G2
j

σ2 + T

k−1∑
j=k−τk

B2η2j
G2
j

E
[∥∥∇f(θj−τj )

∥∥2] (22)

Substituting E[T1] and E[T2] with their upper bounds equation 22 and equation 17 respectively, and
taking full expectation on both sides in equation 16, we obtain

E[f(θk+1)]− f(θk)

≤− Bηk
2Gk

E[‖∇f(θk)‖2] + E

∥∥∥∥∥ 1

B

B∑
b=1

∇f(θk−τk)

∥∥∥∥∥
2


+
BηkL

2

Gk

B k−1∑
j=k−τk

η2j
G2
j

σ2 + T
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j=k−τk

B2η2j
G2
j

E
[∥∥∇f(θj−τj )

∥∥2]
+
η2kL

2G2
k

Bσ2 + E

∥∥∥∥∥
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Summarizing the inequality equation 23 from k = 1 to k = K, meaning until the K-th update of the
master, we have

E[f(θK+1)]− f(θ1)

≤− B

2

K∑
k=1

ηk
Gk

E
[
‖∇f(θk)‖2

]
+
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where the second to last inequality is due to equation 7 and the last inequality is due to equation 6.
Note that θ∗ is the global optimization point. By doing a few simple algebraic operations on
equation 24 we have:

1∑K
k=1

ηk
Gk

K∑
k=1

ηk
Gk

E(‖∇f(θk)‖2) ≤
2(f(θ1)− f(θ∗)) +

∑K
k=1

(
Bη2kL

G2
k

+ 2B2ηkL
2

Gk

∑k+T−1
j=k−τk

η2j
G2
j

)
σ2

B
∑K
k=1

ηk
Gk

(25)

This completes the proof.

Proof for Corollary 1

Proof. Combining equation 9 and equation 10, we get

K ≥ 4BL(T + 1)2(f(θ1)− f(θ∗))

σ2

1

4B2L2(T + 1)2
≥ (f(θ1)− f(θ∗)

BLKσ2

1

4B2L2(T + 1)2
≥ η2

η ≤ 1

2BL(T + 1)
(26)

If follows from equation 26 that

BηL+ 2B2L2T 2η2 ≤ 1

2T + 2
+

T 2

2(T + 1)2
≤ 1

2
+

1

2
= 1
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The last inequality holds since naturally T ≥ 0. This implies that condition equation 7 in Theorem 1
is satisfied globally. Then we can safely apply equation 8 in Theorem 1:

1

K

K∑
i=1

E(‖∇f(θi)‖2) ≤
2(f(θ1)− f(θ∗)) +K

(
Bη2L+ 2B2L2Tη3

)
σ2

BKη

=
2(f(θ1)− f(θ∗))

BKη
+ Lσ2η (1 + 2BLTη)

≤2(f(θ1)− f(θ∗))

BKη
+ 2Lσ2η

=2

√
(f(θ1)− f(θ∗))Lσ2

BK
+ 2

√
(f(θ1)− f(θ∗))Lσ2

BK

=4

√
(f(θ1)− f(θ∗))Lσ2

BK

where the third inequality is due to equation 26 and the second to last equality uses equation 9. This
completes the proof.

Proof for equation in Section 4.1

Proof.

θk+2 = θk+1 −
ηk+1

τk+1
· vk+2

= θk+1 −
ηk+1

τk+1
· (γvk+1 + gk+1)

= θk+1 −
ηk+1

τk+1
· (γ(γvk + gk) + gk+1)

= θk+1 −
ηk+1

τk+1
· (γ2vk + γgk + gk+1)

(27)

C EXPERIMENTAL SETUP

C.1 ALGORITHMS

Algorithms 5 to 11 only change the master’s algorithm; the complementary worker algorithm is the
same as ASGD (Algorithm 1). The master’s scheme is a simple FIFO. We consider parameter server
optimizations beyond the scope of this paper.

The calculation of the C coefficient is described in Appendix C.6.

We note that in Algorithms 8 and 11 the term θi is identical to θk−τk from the definition of τk in
Section 4.

Algorithm 5 Staleness-Aware-Gradient: master

Initialize an iteration array: iter = [0] ∗N
For k = 1...K do:

Receive gradient gik from worker i
Calculate worker i’s current delay τk ← k − iter[i]
Update momentum vk+1 ← γvk +

gik
τk

Update master’s weights θk+1 ← θk − ηk · vk+1

Send θk+1 to worker i
Save current iteration iter[i]← k
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Algorithm 6 DANA: master

For k = 1...K do:
Receive gradient gik from worker i
Update worker’s momentum vi ← γvi + gik
Update master’s weights θk+1 ← θk − ηkvi
Send estimate θ̂ = θk+1 − ηkγ

∑N
j=1 v

j to worker i

Algorithm 7 DANA-Staleness-Aware: master

Initialize an iteration array for the workers: iter = [0] ∗N
For k = 1...K do:

Receive gradient gik from worker i
Calculate worker i’s current delay τk ← k − iter[i]
Update worker’s momentum vi ← γvi +

gik
τk

Update master’s weights θk+1 ← θk − ηkvi
Send estimate θ̂ = θk+1 − ηkγ

∑N
j=1 v

j to worker i
Save current iteration iter[i]← k

Algorithm 8 DANA-Gap-Aware: master

Initialize the given weights for each worker: θi = θ0
For k = 1...K do:

Receive gradient gik from worker i
Calculate Gap: Gk = |θk−θi|

C + 1d

Update worker’s momentum vi ← γvi +
(

1
Gk

)
� gik

Update master’s weights θk+1 ← θk − ηvi
Save and send estimate θi ← θk+1 − ηγ

∑N
j=1 v

j to worker i

The Adam-based algorithm requires a slightly more intelligent integration to the gradient staleness
penalizing methods (such as GA and SA). Penalizing the gradient before calculating the first and
second moments doesn’t affect the update vector since the first and second moments cancel each
other out. Therefore, we suggest applying the penalty only on the first moment, thus decreasing
the update step’s size by the desired amount. Since DANA’s integration into the Adam algorithm is
convoluted and not straight forward, we chose not to implement the combination in this paper.

Algorithm 9 Adam: master

Require: η1 . . . ηK : step lengths
Require: β1, β2 ∈ [0, 1): exponential decay rates for the moment estimates
Initialize: m0 ← 0, v0 ← 0
For k = 1...K do:

Receive gradient gik from worker i
Update biased first moment estimate mk ← β1mk−1 + (1− β1)gik
Update biased second moment estimate vk ← β2vk−1 + (1− β2)(gik)2

Compute bias-corrected first order moment estimate m̂k ← mk
1−βk1

Compute bias-corrected second order moment estimate v̂k ← vk
1−βk2

Update master’s weights θk+1 ← θk − ηk·m̂k√
v̂k+ε

Send θk+1 to worker i

18
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Algorithm 10 Adam-Staleness-Aware: master

Require: η1 . . . ηK : step lengths
Require: β1, β2 ∈ [0, 1): exponential decay rates for the moment estimates
Initialize: m0 ← 0, v0 ← 0
Initialize: iter = [0] ∗N : an iteration array for the workers
For k = 1...K do:

Receive gradient gik from worker i
Calculate worker i’s current delay τk ← k − iter[i]
Update biased first moment estimate mk ← β1mk−1 + (1− β1)

gik
τk

Update biased second moment estimate vk ← β2vk−1 + (1− β2)(gik)2

Compute bias-corrected first order moment estimate m̂k ← mk
1−βk1

Compute bias-corrected second order moment estimate v̂k ← vk
1−βk2

Update master’s weights θk+1 ← θk − ηk·m̂k√
v̂k+ε

Send θk+1 to worker i
Save current iteration iter[i]← k

Algorithm 11 Adam-Gap-Aware: master

Require: η1 . . . ηK : step lengths
Require: β1, β2 ∈ [0, 1): exponential decay rates for the moment estimates
Initialize: m0 ← 0, v0 ← 0
Initialize: θi = θ0: parameters for every worker
For k = 1...K do:

Receive gradient gik from worker i

Calculate Gap: Gk = |θk−θi|
C + 1d

Update biased first moment estimate mk ← β1mk−1 +
(

1−β1

Gk

)
� gik

Update biased second moment estimate vk ← β2vk−1 + (1− β2)(gik)2

Compute bias-corrected first order moment estimate m̂k ← mk
1−βk1

Compute bias-corrected second order moment estimate v̂k ← vk
1−βk2

Update master’s weights θk+1 ← θk − ηk·m̂k√
v̂k+ε

Send θk+1 to worker i
Save worker i’s given parameters θi ← θk+1

C.2 DATASETS & MODELS

CIFAR The CIFAR-10 (Hinton, 2007) dataset comprises 60K RGB images partitioned into 50K
training images and 10K test images. Each image contains 32x32 RGB pixels and belongs to 1 of 10
equal-sized classes. CIFAR-100 is similar but has 100 classes. Link.

ImageNet The ImageNet dataset (Russakovsky et al., 2015), known as ILSVRC2012, consists
of RGB images, each labeled as one of 1000 classes. The images are partitioned into 1.28 million
training images and 50K validation images; each image is randomly cropped and re-sized to 224x224
(1-crop validation). Link.

WikiText-103 The WikiText language modeling dataset is a collection of over 100 million tokens
extracted from the set of verified Good and Featured articles on Wikipedia. Compared to the
preprocessed version of Penn Treebank (PTB), WikiText-103 is over 110 times larger. The WikiText
dataset also features a far larger vocabulary and retains the original case, punctuation, and numbers
(Merity et al., 2016). Link.
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Transformer-XL The WikiText-103 dataset is trained on the Transformer-XL model (Dai et al.,
2019). The hyperparameters are the ones suggested in the original paper (also see Appendix C.4) and
the implementation is taken from their repository. Link.

C.3 GAMMA DISTRIBUTION

Ali et al. (2000) suggest a method called CVB to simulate the run-time of a distributive network of
computers. The method is based on several definitions:

Definition 2. Task execution time variables:

• µtask - mean time of tasks
• Vtask - variance of tasks
• µmach - mean computation power of machines
• Vmach - variance of computation power of machines
• αtask = 1

V 2
task

• αmach = 1
V 2
mach

G(α, β) is a random number generated using a gamma distribution, where α is the shape and β is the
scale.

For our case, all tasks are similar and run on a batch size of B. Therefore, the algorithm for deciding
the execution-time of every task on a certain machine is reduced to one of the following:

Algorithm 12 Task execution time - homogeneous machines

βtask = µtask
αtask

q = G(αtask, βtask)
βmach = q

αmach
for i from 0 to K − 1:
time = G(αmach, βmach)

Algorithm 13 Task execution time - heterogeneous machines

βmach = µmach
αmach

for j from 0 to M :
p[j] = G(αmach, βmach)

βtask[j] = p[j]
αtask

for i from 0 to K − 1:
time = G(αtask, βtask[curr])

where K is the total amount of tasks of all the machines combined (the total number of batch
iterations), M is the total number of machines (workers), and curr is the machine currently about to
run.

We note that Algorithms 12 and 13 naturally give rise to stragglers. In the homogeneous algorithm,
all workers have the same mean execution time but some tasks can still be very slow; this generally
means that in every epoch a different machine will be the slowest. In the heterogeneous algorithm,
every machine has a different mean execution time throughout the training. We further note that p[j]
is the mean execution time of machine j on the average task.

In our experiments, we simulated execution times using the following parameters as suggested by Ali
et al. (2000): µtask = µmach = B ·V 2

mach, where B is the batch size, yielding a mean execution time
of µ simulated time units, which is proportionate to B. In the homogeneous setting Vmach = 0.1,
whereas in the heterogeneous setting Vmach = 0.6. For both settings, Vtask = 0.1.

Figure 3 illustrates the differences between the homogeneous and heterogeneous gamma-distribution.
Both environments have the same mean (128) but the probability of having an iteration that is at
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Figure 3: Gamma-distribution in homogeneous and heterogeneous environments. The x-axis is the
simulated time units the iteration takes while the y-axis is the probability. Both environments have
the same mean (128 time units). The red area represents the probability to have an iteration which
takes more than 1.25x longer than the mean iteration time.

least 1.25x longer than the mean (which means 160 or more) is significantly higher in the heteroge-
neous environment (27.9% in heterogeneous environment as opposed to 1% in the homogeneous
environment).

C.4 HYPERPARAMETERS

Since one of our intentions was to verify that penalizing the gradients linearly to the Gap is the factor
that leads to a better final test error and convergence rate, we used the same hyperparameters across
all algorithms tested. These hyperparameters are the original hyperparameters of the respective neural
network architecture, which are tuned for a single worker.

CIFAR-10 ResNet-20

• Initial Learning Rate η: 0.1
• Momentum Coefficient γ: 0.9 with NAG
• Dampening: 0 (no dampening)
• Batch Size B: 128
• Weight Decay: 0.0005
• Learning Rate Decay: 0.1
• Learning Rate Decay Schedule: Epochs 80 and 120
• Total Epochs: 160

We note that Hinton (2007) originally suggested 0.0001 as the Weight Decay hyperparameter for this
framework. However, when we tuned the Weight Decay on a single worker we found that 0.0005
results in the best final test accuracy (92.43% as opposed to 91.63%).

CIFAR-10/100 Wide ResNet 16-4

• Initial Learning Rate η: 0.1
• Momentum Coefficient γ: 0.9 with NAG
• Dampening: 0 (no dampening)
• Batch Size B: 128
• Weight Decay: 0.0005
• Learning Rate Decay: 0.2
• Learning Rate Decay Schedule: Epochs 60, 120 and 160
• Total Epochs: 200

ImageNet ResNet-50

• Initial Learning Rate η: 0.1
• Momentum Coefficient γ: 0.9 with NAG
• Dampening: 0 (no dampening)
• Batch Size B: 256
• Weight Decay: 0.0001
• Learning Rate Decay: 0.1
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• Learning Rate Decay Schedule: Epochs 30 and 60
• Total Epochs: 90

WikiText-103 Transformer-XL

• Initial Learning Rate η: 0.00025
• Dropout: 0.1
• Dampening: 0 (no dampening)
• Batch Size B: 64
• First Moment Coefficient β1: 0.9
• Second Moment Coefficient β2: 0.999
• ε: 10−8

• Learning Rate Decay: Cosine from 0.00025 to 0
• Gradient Clipping: 0.25
• Total Iteration Steps: K = 200000

Learning Rate Warm-Up In the early stages of training, the network changes rapidly, causing
error spikes. For all algorithms, we follow the gradual warm-up approach (Goyal et al., 2017) to
overcome this problem: we divide the initial learning rate by the number of workers N and ramp it
up linearly until it reaches its original value after 5 epochs. We also use momentum correction (Goyal
et al., 2017) in all algorithms to stabilize training when the learning rate changes.

C.5 WEIGHT DECAY

When GA is used with Weight Decay, the gradients contain a weight decay element which also needs
to be divided by the Gap as a part of the gradient.

C.6 C COEFFICIENT

In Definition 1, we explained that we use a coefficient C to measure the gap. In Section 5.3, using
the parameter-wise method, C is calculated per-parameter. To calculate C per-parameter, we used a
weighted-average in a manner similar to the technique used in Adam (Kingma & Ba, 2015). The
mechanism is described in Algorithm 14.

Algorithm 14 C Coefficient Calculation

Require: ηmax (usually ηmax = η1)
Require: β1 ∈ [0, 1): exponential decay rates for the moment estimates
Initialize: C ← 0d, m0 ← 0
For k = 1...K do:

Receive gradient gik from worker i
Calculate update step vk+1 ← γvk + gik
Update biased second moment estimate mk ← β1mk−1 + (1− β1)v2k+1
Compute bias-corrected second order moment estimate m̂k ← mk

1−βk1
Calculate Coefficient C ← ηmax

(√
m̂k + ε

)

Where is the parameter-wise method, all operations are executed per-parameter. Throughout our
experiments we used β1 = 0.999 and ε = 10−8 as suggested by Kingma & Ba (2015).
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C.7 TABLED RESULTS

Table 4: ResNet-20 CIFAR10 Final Test Accuracy (Baseline 92.43%)

N SA DANA-SA NAG-ASGD GA ASGD DANA DANA-GA

4 91.63±0.16 91.82±0.17 91.43±0.37 91.78±0.13 90.5±0.06 92.13±0.08 92.06±0.24

8 90.63±0.14 90.99±0.13 87.68±0.35 91.21±0.32 90.28±0.21 91.97±0.17 92.13±0.14
12 89.73±0.27 90.27±0.39 10.0±0.0 90.12±0.29 90.02±0.31 91.2±0.28 91.87±0.24
16 88.93±0.37 89.48±0.06 10.0±0.0 89.59±0.39 89.82±0.29 89.68±0.41 91.98±0.15
20 88.21±0.32 88.97±0.23 10.0±0.0 89.03±0.28 89.55±0.13 88.06±0.23 91.62±0.17
24 87.23±0.44 88.4±0.25 10.0±0.0 88.75±0.4 89.35±0.2 67.72±7.46 91.46±0.17
28 86.31±0.28 88.0±0.27 10.0±0.0 88.18±0.18 88.5±0.12 30.72±19.74 91.45±0.11
32 85.59±0.15 87.64±0.26 10.0±0.0 87.92±0.27 88.3±0.37 27.6±14.7 91.15±0.32
40 83.57±0.5 86.75±0.25 10.0±0.0 86.48±0.1 86.61±0.54 22.82±13.59 90.94±0.2
48 80.82±0.46 85.6±0.28 10.0±0.0 85.0±0.66 83.6±0.69 10.0±0.0 90.68±0.33

Table 5: WideResNet 16-4 CIFAR10 Final Test Accuracy (Baseline 95.17%)

N SA DANA-SA NAG-ASGD GA ASGD DANA DANA-GA

4 94.41±0.16 94.39±0.26 94.81±0.11 94.89±0.16 92.99±0.15 95.0±0.13 95.08±0.1
8 93.38±0.16 93.52±0.02 92.83±0.61 94.32±0.16 92.91±0.09 94.67±0.06 94.9±0.16
12 92.46±0.16 92.68±0.21 44.35±28.22 94.02±0.1 92.81±0.22 94.27±0.15 94.84±0.1
16 91.51±0.14 91.92±0.07 23.36±26.72 93.72±0.08 92.48±0.25 93.56±0.26 94.77±0.19
20 90.62±0.17 91.37±0.23 33.41±30.31 93.35±0.11 92.28±0.31 92.57±0.35 94.68±0.11
24 90.06±0.16 90.5±0.14 11.62±3.23 92.92±0.03 92.13±0.3 89.93±0.59 94.39±0.1
28 89.38±0.35 90.18±0.17 31.91±17.68 92.56±0.08 91.6±0.26 75.32±12.14 94.39±0.22
32 88.7±0.06 89.35±0.16 19.52±19.03 92.35±0.22 91.22±0.19 68.1±14.03 94.27±0.1
40 87.26±0.21 88.23±0.25 10.0±0.0 91.65±0.16 90.53±0.24 28.97±25.07 93.84±0.12
48 85.65±0.26 86.64±0.78 12.26±4.52 90.97±0.38 89.54±0.31 22.31±11.43 93.63±0.13
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Figure 4: Delay and Gap throughout the training process for different number of workers using GA
and DANA-GA. The figure shows the average (bold line) and standard deviation (band) of 5 runs
for N ∈ [4, 8, 16, 24, 32]. All sub-figures are equally scaled to easily compare between them. GA
penalizes the stale gradient much less than SA. DANA-GA penalizes the stale gradients even less
than GA thanks to its approximation.

Table 6: WideResNet 16-4 CIFAR100 Final Test Accuracy (Baseline 76.72%)

N SA DANA-SA NAG-ASGD GA ASGD DANA DANA-GA

4 74.74±0.3 76.69±0.19 76.27±0.2 75.64±0.08 72.42±0.31 76.21±0.22 75.75±0.11

8 73.14±0.16 75.66±0.19 74.24±0.27 74.32±0.31 72.8±0.25 76.03±0.13 75.64±0.26

12 71.66±0.23 74.73±0.38 69.29±0.56 73.86±0.3 72.34±0.28 75.72±0.27 75.41±0.2

16 70.39±0.27 73.76±0.19 67.37±0.74 72.82±0.17 71.99±0.3 75.0±0.26 75.01±0.17
20 69.51±0.23 72.3±0.33 37.98±7.21 72.34±0.2 71.63±0.18 73.41±0.4 74.75±0.22
24 68.66±0.1 70.5±0.44 9.67±4.89 71.74±0.17 71.15±0.34 71.26±0.49 74.76±0.16
28 67.48±0.3 67.67±0.3 6.35±7.41 71.22±0.34 70.58±0.36 68.7±1.25 74.41±0.45
32 65.67±0.41 63.52±0.77 12.71±7.69 70.64±0.31 69.91±0.26 66.73±1.15 74.33±0.28
40 62.31±0.34 66.06±0.23 9.56±5.1 69.75±0.4 69.25±0.48 64.29±1.1 73.61±0.26
48 58.78±0.57 64.46±0.27 4.24±3.15 68.34±0.19 67.63±0.43 27.42±10.95 73.33±0.23

C.8 DELAY VS. GAP

To better illustrate that the delay is usually bigger than the Gap, we measured both sizes throughout
the training process using different workers. The tested framework was CIFAR100 using WideResNet
16-4. We used the Gap-Aware and DANA-GA algorithms with the same hyperparameters described
in Appendix C.4.

Figure 4 shows the average Gap and Delay (τ) for every epoch throughout the training process. The
Gap (Figure 4(b)) is constantly lower than the Delay (Figure 4(c)), especially towards the end of
the training where the learning rate is small (which decreases the distance between the master’s
and worker’s parameters). This figure illustrates how penalizing according to the Delay, as in
Staleness-Aware, can easily over-penalize when the number of workers is large.

DANA uses an approximation of the master’s parameters at the time of the future update, thus
mitigating the staleness of the incoming gradients. This mitigation also reduces the Gap, as shown in
Figure 4(a), which reduces the needed penalization when using DANA-GA.

C.9 GAP VERSIONS

We tested three different Gap variations (See Section 5.3) to determine which technique has the best
performance. The variations were tested on three different frameworks:

• CIFAR10 using ResNet-20
• CIFAR10 using WideResNet 16-4
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(b) Train error. CIFAR10 ResNet-20
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(c) Test error. CIFAR100 WideResNet
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(d) Train error. CIFAR100 WideResNet

Figure 5: Final test and train error for different numbers of workers N . The figure shows the average
(bold line) and standard deviation (band) of 5 runs on the CIFAR10 dataset using the ResNet model.
The black dashed line is the SGD error using a single worker.
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(b) CIFAR10 WideResNet
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(c) CIFAR100 WideResNet

Figure 6: Final train error for different numbers of workers N . The figure shows the average (bold
line) and standard deviation (band) of 5 runs on different frameworks.

• CIFAR100 using WideResNet 16-4

Each framework was trained on N ∈ [4, 8, 16, 24, 32] asynchronous workers. Figure 5 contains the
experiments not shown in Section 5.3 and demonstrates that parameter-wise Gap-Aware usually
reaches better or similar final errors. The hyperparameters are the same ones detailed in Appendix C.4.

C.10 CIFAR TRAINING

Figure 6 shows that DANA-GA always remains very close to the zero-error region. This means
that, unlike other algorithms, DANA-GA is able to converge on the training set despite the gradient
staleness. Figure 6 further demonstrates all of the concepts discussed in Section 6.1.

C.11 CONVERGENCE RATE

Figure 7 shows that the convergence rate of GA is similar to that of SA, despite using a larger step size.
This suggests that GA does not require more steps than SA to reach its (better) minima. DANA-GA’s
convergence rate remains very close to the baseline, which suggests that it doesn’t require more steps
to converge. This means that DANA-GA reaches a test error similar to the single worker case in the
same number of steps, while enjoying asynchronous speedup.

Figure 8 demonstrates the same ideas discussed in the last paragraph on ImageNet using 64 asyn-
chronous workers. However, since in this case the number of workers is much larger, both SA and
DANA-SA perform very poorly due the the over-penalization of SA. This helps illustrate that GA is
a better staleness mitigation method than SA. DANA-GA remains very close to the baseline despite
the large number of workers used, demonstrating the superiority of DANA-GA.
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(a) CIFAR10 ResNet-20
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(b) CIFAR10 WideResNet
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(c) CIFAR100 WideResNet

Figure 7: Test error throughout the training using 16 workers. The figure shows the average (bold
line) and standard deviation (band) of 5 runs on different frameworks.
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Figure 8: Test error throughout the training using 64 workers on ImageNet. DANA-GA remains close
to the baseline. GA surpasses SA and DANA-SA.

C.12 TUNED ASGD

We tuned the learning rate and momentum of ASGD on the CIFAR10 dataset with the ResNet-20
model using 32 workers. Tuning was performed using a grid search over 70 perturbations:

η ∈ [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1]

γ ∈ [−0.9,−0.8,−0.5,−0.25, 0, 0.25, 0.5, 0.8, 0.9, 0.95]

As suggested by Mitliagkas et al. (2016), we also tested negative values of momentum to mitigate the
implicit momentum created by the gradient staleness. Figures 9 to 11 show the results of the above
experiments. The best final test error was given when:

• Figure 9: (η = 0.03, γ = 0.5)
• Figure 10: (η = 0.3, γ = −0.8)
• Figure 11: (η = 0.3, γ = −0.5)

This shows that the best hyperparameters can vary between frameworks. The best hyperparameters
for a specific framework can also vary across different number of workers as all the hyperparameters
found in this experiment are different from the best hyperparameters of the single worker. Tuning
for the best hyperparameters for every different number of workers for each framework significantly
increases the training time and is best avoided if possible.

DANA-GA surpasses the tuned ASGD in every framework, while DANA performs very poorly using
32 workers. This proves that gradient penalization is very beneficial to overcome gradient staleness
and specifically that GA is a very successful gradient penalization method.
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Figure 9: Test Accuracy of ASGD using 32 asynchronous workers on CIFAR10 ResNet-20 using
different learning rate and momentum coefficients. The best accuracy achieved is 88% (η = 0.03, γ =
0.5). The tuning includes negative values of momentum
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Figure 10: Test Accuracy of ASGD using 32 asynchronous workers on CIFAR10 WideResNet 16-4
using different learning rate and momentum coefficients. The best accuracy achieved is 91.57%
(η = 0.3, γ = −0.8). The tuning includes negative values of momentum

C.13 GRADIENT STALENESS NOISE

We notice that in the ImageNet experiments (Table 3) NAG-ASGD remains relatively close to the
baseline even when the number of workers is large, as opposed to the CIFAR experiments, in which
NAG-ASGD severely deteriorates as N scales up. This phenomenon suggests that there is some
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Figure 11: Test Accuracy of ASGD using 32 asynchronous workers on CIFAR10 WideResNet 16-4
using different learning rate and momentum coefficients. The best accuracy achieved is 71.07%
(η = 0.3, γ = −0.5). The tuning includes negative values of momentum

gradient staleness noise that a framework can ”tolerate” and still perform well. Following this
intuition, it is reasonable that some gradient staleness should be allowed to go ”un-penalized” to
avoid limiting the step-size needlessly. This idea explains why SA and GA demonstrated relatively
poor results in ImageNet, especially when the number of workers was relatively small. Though we
consider this analysis beyond the scope of this work, it is relevant for this paper to note that we
think that the tolerable gradient staleness noise depends on the size of the model and dataset, which
suggests that GA can be further improved by correctly analysing the tolerable gradient staleness
noise and starting the penalization accordingly. We plan to continue our research in this path as well.

D ASYNCHRONOUS SPEEDUP

Cloud computing is becoming increasingly popular as a platform to perform distributed training of
deep neural networks. Although synchronous SGD is currently the primary method (Mikami et al.,
2018; Ying et al., 2018; Yamazaki et al., 2019; Goyal et al., 2017) used to distribute the learning
process, it suffers from substantial slowdowns when run in non-dedicated environments such as the
cloud. This shortcoming is magnified in heterogeneous environments and non-dedicated networks.
ASGD addresses the SSGD drawback and enjoys linear speedup in terms of the number of workers
in both heterogeneous and homogeneous environments even in non-dedicated networks. This makes
ASGD a potentially better alternative for cloud computing.

Figure 12(a) shows the theoretically achievable speedup, based on the detailed gamma-distributed
model, for asynchronous (GA and other ASGD variants) and synchronous algorithms using homoge-
neous and heterogeneous workers. The asynchronous algorithms can achieve linear speedup while
the synchronous algorithm (SSGD) falls short as we increase the number of workers. This occurs
because SSGD must wait in each iteration until all workers complete their batch. Figure 12(b) shows
that ASGD-based algorithms (including GA, SA and DANA versions) are up to 21% faster than
SSGD in homogeneous environments. In heterogeneous environments, ASGD methods can be 6x
faster than SSGD. We note that this speedup is an underestimate, since our simulation includes only
batch execution times. It does not model the execution time of barriers, all-gather operations, and
other overheads which usually increase communication time, especially in SSGD.
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(a) Async (ASGD) and sync (SSGD) speedups.
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Figure 12: Theoretical speedups for any ASGD (such as GA, SA or DANA variants) and SSGD
algorithms when batch execution times are drawn from a gamma distribution. Each line is an average
of 20 runs with 100000 iterations per run. Communication overheads are not modeled; however,
asynchronous algorithms are more communication efficient. Accounting for the communication
overheads should expand the gap between the asynchronous and synchronous training.
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Figure 13: Final test error for different numbers of heterogeneous workers N . The figure shows
the average (bold line) and standard deviation (band) of 5 runs on different frameworks. The black
dashed line represents the average result of SGD using a single worker.

D.1 HETEROGENEOUS EXPERIMENTS

We tested the performance of GA in reference to other algorithms when the asynchronous workers
are heterogeneous. The setting was very similar to the one mentioned in Section 6, except that it this
scenario we used the gamma-distribution to model heterogeneous workers (see Appendix C.3).

Figure 13 demonstrates that GA and DANA-GA are superior to the other tested algorithms in hetero-
geneous environments as well. When comparing between Figure 13 and Figure 2 it is noticeable that
heterogeneous environments reach a higher accuracy. This is because in heterogeneous environments
some workers are very fast compared to the other ones, thus their gradients are more accurate and
arrive more frequently than the slow workers’ gradients. Since in cloud computing, the workers can
be either heterogeneous or homogeneous, we suggest using DANA-GA to maximize the results.
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