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ABSTRACT

Human conversations naturally evolve around related entities and connected con-
cepts, while may also shift from topic to topic. This paper presents ConceptFlow,
which leverages commonsense knowledge graphs to explicitly model such conver-
sation flows for better conversation response generation. ConceptFlow grounds
the conversation inputs to the latent concept space and represents the potential
conversation flow as a concept flow along the commonsense relations. The con-
cept is guided by a graph attention mechanism that models the possibility of the
conversation evolving towards different concepts. The conversation response is
then decoded using the encodings of both utterance texts and concept flows, inte-
grating the learned conversation structure in the concept space. Our experiments
on Reddit conversations demonstrate the advantage of ConceptFlow over previ-
ous commonsense aware dialog models and fine-tuned GPT-2 models, while using
much fewer parameters but with explicit modeling of conversation structures.

1 INTRODUCTION

The rapid advancements of language modeling and natural language generation (NLG) techniques
have enabled fully data-driven conversation models, which take user inputs (utterances) and directly
generate natural language responses (Shang et al., 2015; Vinyals & Le, 2015; Li et al., 2016). On the
other hand, the current generation models may still degenerate dull and repetitive contents (Holtz-
man et al., 2019; Welleck et al., 2019), which, in conversation assistants, lead to irrelevant, off-topic,
and non-useful responses that would damage user experiences (Tang et al., 2019; Zhang et al., 2018;
Gao et al., 2019).

A promising way to address this degeneration challenge is to model conversations with the help
of knowledge, for example, open-domain knowledge graph (Ghazvininejad et al., 2018), common-
sense knowledge base (Zhou et al., 2018a), or background documents (Zhou et al., 2018b). Recent
research leverages these prior knowledge by grounding the conversation utterances to the external
knowledge and integrating them as additional semantic representations; then response can be gener-
ated by conditioning on both the text inputs and the grounded semantics (Ghazvininejad et al., 2018;
Zhou et al., 2018a;b).

Integrating external knowledge as a semantic representation of the utterance and an additional input
to the conversation model effectively improves the quality of generated responses (Ghazvininejad
et al., 2018; Logan et al., 2019; Zhou et al., 2018a). On the other hand, human conversations do
not stay still on the same set of grounded semantics; instead, our dialog dynamically flows in the
semantic space: we shift our discussions from one concept to another, chat about a group of related
entities, and may switch dialog topics entirely (Fang et al., 2018). Limiting the usages of knowl-
edge only to the grounded ones, effective as they are, does not leverage semantics’ full potential in
modeling human conversations.

This work presents ConceptFlow, (Conversation generation with Concept Flow), which leverages
the commonsense knowledge graph to model the conversation flow in the latent concept space.
Given a conversation utterance, ConceptFlow starts from the grounded knowledge, which in our case
are the commonsense concepts appearing in the utterance, and extends to multi-hop concepts along
the commonsense relations. Then the conversation flow is modeled in the extended concept graph
using a new fine-grained graph attention mechanism, which learns to encode the concepts using
central or outer graph. Mimicking the development conversation topic flow, the graph attentions
guild the concept flow by attending on different directions in the concept flow.
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The encoded latent concept �ow is integrated to the response generation with standard conditional
language models: during decoding, each token, word or concept, is sampled from ConceptFlow's
context vector, which combines the encodings of the utterance texts and the latent concept �ow. This
enables ConceptFlow to explicitly model the conversation structure when generating responses.

Our experiments on a Reddit conversation dataset (Zhou et al., 2018a) and a commonsense knowl-
edge graph, ConceptNet (Speer & Havasi, 2012), demonstrate the advantage of ConceptFlow.
In both automatic and human evaluation, ConceptFlow performs signi�cantly better than various
seq2seq based generation models (Sutskever et al., 2014), as well as previous methods that also
leverage commonsense knowledge graph but as static memories (Zhou et al., 2018a; Ghazvinine-
jad et al., 2018; Zhu et al., 2017). Notably, ConceptFlow also outperforms two �ne-tuned GPT-2
systems (Radford et al., 2019), despite using much fewer parameters—Effective modeling of con-
versation structure can reduce the need of large parameter space.

We also provide extensive analyses and case studies to investigate the advantage of modeling con-
versation �ow in the latent concept graph. Our analyses show that many of Reddit discussions are
naturally aligned with the paths in the commonsense knowledge graph; expanding the latent concept
graph multiple hops away from the initial grounded concepts signi�cantly improves the coverage on
the ground truth response. Our ablation study further con�rms the effectiveness of our graph at-
tention mechanism in selecting useful latent concepts and concepts appearing in golden responses,
which help generate more relevant, informative, and less repetitive responses.

2 METHODOLOGY

This section presents ourConversation generation with latent Concept Flow (ConceptFlow). As
shown in Figure 1, the ConceptFlow models the conversation �ow along commonsense relations
between concepts to generate meaningful responses.

2.1 PRELIMINARY ON GROUNDED CONVERSATION MODELS

Given a user utteranceX = f x1; :::; xm g with m words, conversation generation models often use
an encoder-decoder architecture to generate a responseY = f y1; :::; yn g.

Typically, theencoderrepresents the user utteranceX as a representation setH = f ~h1; :::;~hm g.
This is often done with a Gated Recurrent Unit (GRU):

~hi = GRU(~hi � 1; ~xi ); (1)

where the~xi is the embedding of wordx i .

Thedecodergeneratest-th response word according to the previoust � 1 generated wordsy<t =
f y1; :::; yt � 1g and the user utteranceX :

P(Y jX ) =
nY

t =1

P(yt jy<t ; X ): (2)

Thet-th tokenyt is generated according to thet-stepdecodercontext representation~st :

~st = GRU(~st � 1; [~ct � 1 � ~yt � 1]); (3)

where~ct � 1 is the context embedding oft � 1-th time,~yt � 1 is thet � 1-th generated word embedding
and~st � 1 is the decoder output representation oft � 1-th time.

2.2 CONVERSATION GENERATION WITH LATENT CONCEPTFLOW

This part introduces the �ow concept candidate construction, the latent concept �ow encoding, and
the conditional conversation decoder to generate response.

2.2.1 CONSTRUCTINGFLOW CONCEPTCANDIDATES

ConceptFlow constructs a latent concept graphG for knowledge grounded conversation generation.
The latent concept graphG starts from the grounded concepts (zero-hop conceptsG0), which ap-
pear in the conversation utterance and grounded by entity linking. Besides the grounded concepts,
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Figure 1: The Architecture of ConceptFlow. The latent concept �ow is annotated with red arrows.

ConceptFlow grows zero-hop conceptsG0 with one-hop conceptsG1 and two-hop conceptsG2. G0

andG1 form the central concept graphGcentral, which is closely related to the current conversation
topic. G1 andG2 construct an outer concept graphGouter, which models outer conversation �ow.

Latent concept �ow consists of related concepts that can help understand the conversation. Next, we
model conversation �ow from zero-hop concepts, to one-hop concepts and then to two-hop concepts.

2.2.2 ENCODING LATENT CONCEPTFLOW

This part describes the latent concept �ow encoding of central �ow concepts and outer �ow concepts.

Central Flow Encoding. The central �ow concept models the concept �ow from zero-hop concepts
to one-hop concepts using the interactions between zero-hops and one-hops. A multi-layer Graph
Neural Network (GNN) (Sun et al., 2018) is used to encode concepte 2 Gcentral in central concept
graph. Thel-th layer representation~el

i of conceptei is calculated by a single-layer feed-forward
network (FFN) over three states:

~el
i = FFN

0

@~el � 1
i � ~pl � 1 �

X

r

X

ej

f ej � >e i
r

�
~el � 1

j

�
1

A ; (4)

where� is the concatenate operator.~el � 1
j represents the conceptej 's representation of(l � 1)-th

layer.~pl � 1 represents user utterance representation of(l � 1)-th layer.

Thel-th layer user utterance representation is updated with the grounded conceptsG0:

~pl � 1 = FFN(
X

ei 2 G0

~el � 1
i ): (5)

Thef ej � >e i
r (~el � 1

j ) aggregates the concept semantics of the relationr speci�c neighbor conceptej .
It uses attention weight� ej

r to control concept �ow fromei :

f ej � >e i
r (~el � 1

j ) = � ej
r � FFN(~r � ~el � 1

j ); (6)

where� is the concatenate operator and~r is the relation embedding ofr . The attention weight� ej
r

is computed over all conceptei 's neighbor concepts according to the relation weight score and the
Page Rank score (Sun et al., 2018):

� ej
r = softmax(~r � ~pl � 1) � PageRank(el � 1

j ); (7)
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where PageRank(el � 1
j ) is the page rank score to control propagation of embeddings along paths

starting fromei (Sun et al., 2018) and~pl � 1 is the(l � 1)-th layer user utterance representation.

The 0-th layer concept representation~e0 for concepte is initialized with the pre-trained concept
embedding~eand the0-th layer user utterance representation~p0 is initialized with them-th hidden
statehm from the user utterance representation setH . The result GNN encodings establishes the
central concept �ow between zero-hop and one-hop concepts using attentions.

Outer Flow Encoding. The outer �ow models the concept �ow from one-hop concepts to two-hop
concepts. Given a conceptei from the one-hop conceptsG1, all neighbor conceptsek 2 G2 are
weighted to form the sub�owgei 's representation~gei :

~gei =
X

ek

� ek � [~ei � ~ek ]; (8)

where� is the concatenate operator. The~ei and~ek are embeddings forei andek , respectively. The
attention score� ek is calculated to weight and aggregate concept triple(ei ; r; ek ) to get~gei :

� ek = softmax((wr � ~r)> � tanh(wh � ~ei + wt � ~ek )) ; (9)

wherer is the relation between the conceptei and its neighbor conceptek . Thewr , wh andwt are
learnable parameters. The outer concept �ow models more diverse developments of the conversation
and guides the �ow with the subgraph encoding to more possible directions.

2.2.3 DECODING FROMLATENT CONCEPTFLOW

This part presents how to generate the responseY using the latent concept �ow.

Context Representation with ConceptFlow.Thet-th time output representation~st of decoderis
calculated by updating thet � 1-th step output representation~st � 1 with context representations:

~st = GRU(~st � 1; [~ct � 1 � ~yt � 1]); (10)

where~yt � 1 is thet � 1-th step generated tokenyt � 1 's embedding. The context representation~ct � 1 is
the concatenation of the text-based representation~c text

t � 1 and the concept-based context representation
~c concept

t � 1 :
~ct � 1 = FFN([~c text

t � 1 � ~c concept
t � 1 ]): (11)

~c text
t � 1 reads the user utterance representationsH with the attention scoreaj

t � 1 (Bahdanau et al., 2014):

~c text
t � 1 =

mX

i =1

aj
t � 1 � ~hj : (12)

where the attentionaj
t � 1 weights over user utterance representations:

aj
t � 1 = softmax(~st � 1 � ~hj ): (13)

The concept-based representation~c concept
t � 1 is a combination of central concept �ow encodings and

outer �ow encodings:

~c concept
t � 1 =

X

ei 2 G central

bei
t � 1 � ~ei �

X

g2 Gouter

zg
t � 1 � ~g; (14)

where the attentionbei
t � 1 weights over central concept representations:

bei
t � 1 = softmax(~st � 1 � ~ei ): (15)

The attentionzg
t � 1 weights over outer �ow representations:

zg
t � 1 = softmax(~st � 1 � ~g): (16)

Generating Words and Concepts.The conversation generator utilizes thet-th time output repre-
sentation~st to decodet-th words in response from the word vocabulary and the concept vocabulary:

yt �

8
<

:

softmax(~st � ~w); � � = 0
softmax(~st � ~ei ); � � = 1
softmax(~st � ~ek ); � � = 2 ;

(17)
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where~w is the word embedding for wordw, ~ei is the central concept representation for conceptei
and~ek is the two-hop conceptek 's embedding.

The generation probability of wordw is calculated over word vocabulary. The generation proba-
bility of concept is separated into two parts: central conceptei 's probability overG0;1 and outer
concept overG2. The� � is a gate used to control the token generation from these three probability
distributions:

� � = argmax� 2f 0;1;2g(FFN� (~st )) ; (18)

to choose words (� � = 0 ), central concepts (� � = 1 ) and outer concepts (� � = 2 ) when generating
the response.

Then we minimize the cross entropy lossL and optimize all parameters end-to-end:

L = CrossEntropy(y�
t ; yt ); (19)

where they�
t is the ground truth tokens for words or concepts.

3 EXPERIMENT SETTINGS

Dataset. All experiments use the Commonsense Conversation Dataset (Zhou et al., 2018a), which
collects single-round dialogs from the Reddit site. This dataset contains 3,384,185 training pairs,
10,000 validation pairs and 20,000 test pairs. ConceptNet is used for our commonsense graph. It
contains 120,850 triples, 21,471 concepts and 44 relations. For each example in the Commonsense
Conversation Dataset, the average number of central concepts and two-hop concepts are 98.6 and
782.2, respectively.

Metrics. A wide range of evaluation metrics are included from three evaluating aspects: relevance,
diversity and novelty. PPL (Serban et al., 2016), Bleu (Papineni et al., 2002), Nist (Doddington,
2002), ROUGE (Lin, 2004) and Meteor (Lavie & Agarwal, 2007) are used for relevance and repet-
itiveness; Dist-1, Dist-2 and Ent-4 are used for diversity, which is same with the previous work (Li
et al., 2015; Zhang et al., 2018). Zhou et al. (2018a)'s concept PPL favors concept grounded models
and is reported in Appendix A.1. The Precision, Recall and F1 Score to generate golden concepts
(those appear in the ground truth response) are used to evaluate the quality of learned latent concept
�ow.

Baselines.Six baselines are compared in our experiments. Seq2Seq (Sutskever et al., 2014) is the
basic encoder-decoder for the language generation task. MemNet (Ghazvininejad et al., 2018) and
CopyNet (Zhu et al., 2017) utilize extra knowledge in two different ways: maintain a memory to
store and read concepts; copy concepts for the response generation. Both MemNet and CopyNet
provide solutions to store and incorporate knowledge for conversation generation. The Common-
sense Knowledge Aware Conversation Generation Model (CCM) (Zhou et al., 2018a) leverages a
graph attention mechanism to model local graphs, which further considers the graph structure for the
improvement. The three models above use grounded graph as still knowledge and do not explicitly
model conversation �ow.

GPT-2 (Radford et al., 2019), the pre-trained model that achieves the state-of-the-art in lots of lan-
guage generation tasks, is also compared in experiment. We �ne-tune the 124M GPT-2 in two ways:
concatenate all conversations together and train like a language model (GPT-2 (lang)); extend the
GPT-2 model with encode-decoder architecture and supervised with response data (GPT-2 (conv)).

Implement Details. The zero-hop concepts are initialized by matching the keywords in post to
concepts in ConceptNet, the same with CCM (Zhou et al., 2018a). Then zero-hop concepts are
extended to their neighbors to form central concept graph. The outer concept �ow usually contains
lots of noise because of the large number of two-hop concepts. To select more related concepts
for the conversation generation to reduce the computation cost, ConceptFlow �rst randomly selects
10% training data to train an initial version. Then we use the initial version's learned graph attention
to select the top-100 two-hop concepts on all the rest data, and then conduct standard train, develop,
and test process with the pruned graph. More details of this concept selection step can be found in
Appendix C. TransE (Bordes et al., 2013) embedding and Glove (Pennington et al., 2014) embedding
are used to initialize the representation of concepts and words, respectively. Adam optimizer with
learning rate of 0.0001 is used to train the model.
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Table 1: Relevance Between Generated and Golden Responses. The PPL results� of GPT-2 is not
directly comparable because of the different vocabulary. More results can be found in Appendix A.1.

Model Bleu-4 Nist-4 Rouge-1 Rouge-2 Rouge-L Meteor PPL
Seq2Seq 0.0098 1.1069 0.1441 0.0189 0.1146 0.0611 48.79
MemNet 0.0112 1.1977 0.1523 0.0215 0.1213 0.0632 47.38
CopyNet 0.0106 1.0788 0.1472 0.0211 0.1153 0.0610 43.28
CCM 0.0084 0.9095 0.1538 0.0211 0.1245 0.0630 42.91
GPT-2 (lang) 0.0162 1.0844 0.1321 0.0117 0.1046 0.0637 29.08�

GPT-2 (conv) 0.0124 1.1763 0.1514 0.0222 0.1212 0.0629 24.55�

ConceptFlow 0.0246 1.8329 0.2280 0.0469 0.1888 0.0942 29.90

Table 2: Diversity and Novelty of Generated Response. Diversity is calculated within generated
responses; Novelty is compared to the input post. More results are in Appendix A.1.

Diversity(" ) Novelty w.r.t. Input(#)
Model Dist-1 Dist-2 Ent-4 Bleu-4 Nist-4 Rouge-2 Rouge-L Meteor
Seq2Seq 0.0123 0.0525 7.665 0.0129 1.3339 0.0262 0.1328 0.0702
MemNet 0.0211 0.0931 8.418 0.0408 2.0348 0.0621 0.1785 0.0914
CopyNet 0.0223 0.0988 8.422 0.0341 1.8088 0.0548 0.1653 0.0873
CCM 0.0146 0.0643 7.847 0.0218 1.3127 0.0424 0.1581 0.0813
GPT-2 (lang) 0.0325 0.2461 11.65 0.0292 1.7461 0.0359 0.1436 0.0877
GPT-2 (conv) 0.0266 0.1218 8.546 0.0789 2.5493 0.0938 0.2093 0.1080
ConceptFlow 0.0223 0.1228 10.27 0.0126 1.4749 0.0258 0.1386 0.0761

4 EVALUATION

This section presents the quality of generated responses from the ConceptFlow, the ablation study
for the roles of different modules, and case studies to evaluate the ConceptFlow.

4.1 CONVERSATION GENERATION QUALITY ESTIMATION

Automatic Evaluation. The relevance, diversity, and novelty of generated responses with different
evaluation metrics are presented in Table 1 and Table 2.

In Table 1, all the evaluation metrics compare the relevance between the generated response and
the golden response. Our model outperforms all previous models by large margins. Responses
generated by our model are on-topic and cover more necessary information. In Table 2, Dist-1, Dist-
2, and Ent-4 measure the word diversity of generated response, whereas the rest of metrics measure
the repetitiveness comparing to the user utterance to avoid dull copying the input. Our model also
presents a convincing balance to generate novel and diverse responses. GPT-2 (lang) performs more
diversely, but ConceptFlow performs more novelty and more on-topic than both GPT-2 versions,
perhaps due to its different decoding strategy.

Human Evaluation. The human evaluation mainly focuses on two testing scenarios: appropriate-
ness and informativeness, which are important for conversation systems. Appropriateness indicates
if the response is on-topic for the given utterance. Informativeness indicates the ability to provide
new information instead of copying from the utterance (Zhou et al., 2018a). All responses of sam-
pled 100 case are selected from four best methods: CCM, GPT-2 (conv), ConceptFlow and Golden
Response. The responses are scored from 1 to 4 by �ve judges.

The model performance is listed in Table 3. The human evaluation is divided into two parts: Av-
erage Score and Best@1 ratio, where Best@1 ratio indicates the fraction of judges consider the
corresponding response as the best. ConceptFlow outperforms all baseline models on all scenarios.
This convincing result demonstrates the advantage of explicitly modeling conversation �ow with
semantics: ConceptFlow outperforms GPT-2 with one-third parameters. More details of human
evaluation are presented in Appendix D.
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Table 3: Human Evaluation on Appropriate (Appro.) and Informativeness (Infor.). The Average
Score calculates the average of human judgment score. Best@1 Ratio indicates the fraction of
judges consider the case as the best. The parameter number is also presented.

Model Parameters Average Score Best@1 Ratio
Appro. Infor. Appro. Infor.

CCM 35.6M 1.802 1.802 17.0% 15.6%
GPT-2 (conv) 124M 2.100 1.992 26.2% 23.6%
ConceptFlow 35.3M 2.690 2.192 30.4% 25.6%
Golden Response - 2.902 3.110 67.4% 81.8%

(a) Golden Concept Coverage. (b) Golden Concept Selection. (c) Response Generation.

Figure 2: Comparison of �ow concept selection methods. Base only considers the central concepts.
Random randomly selects two-hop concepts. Gold incorporates golden concepts in the response
with random negatives. Full chooses two-hop concepts with ConceptFlow's graph attention.

4.2 ABLATION STUDY

This part studies the effectiveness of the learned latent ConceptFlow. Figure 2 shows golden concept
coverage, effectiveness for golden concept selection and perplexity of response generation of four
different strategies to select latent concepts. Base only considers central concept graph. Random,
Gold, and Full add two-hop concepts in three different ways: Random selects concepts randomly,
Gold selects all golden concepts with random negatives, and Full is our method that selects by
learned graph attentions.

As shown in Figure 2(a), Random has almost the same coverage with Base, while ConceptFlow
(Full) performs better than Random by a large scale. This con�rms the concept selection in Con-
ceptFlow effectively selects more meaningful outer concepts for conversation generation. Then the
effectiveness of two-hop concept selection strategies is presented in Figure 2(b). Full outperforms
all models with Precision, Recall and F1. The ConceptFlow �lters unrelated concepts and chooses
underlying concepts to enhance the central graph understanding.

The high-quality latent concept �ow leads to ConceptFlow's advanced performances in Figure 2(c).
Interestingly, ConceptFlow even outperforms Gold in Perplexity, even Gold includes all two-hop
concepts from the golden response. This shows that the “negatives” selected by ConceptFlow, even
not directly appear in the target response, are also only topic and related, thus provide more mean-
ingful information than Gold's random negatives. More results are presented in Appendix A.2.

4.3 CASE STUDY

Figure 3 presents a case of ConceptFlow to demonstrate model effectiveness. The attention scorebei

andzg on central concepts and two-hop concepts are illustrated. The championship of zero-hop, fan
of one-hop and team of two-hop receive more attention than others and are used by ConceptFlow to
generate the response. On the other hand, some concepts, such as win and pretty, are �ltered by the
gate� . More examples are listed in Appendix B.
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