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ABSTRACT

While generative adversarial networks (GAN) have been widely adopted in vari-
ous topics, in this paper we generalize the standard GAN to a new perspective by
treating realness as a random variable that can be estimated from multiple angles.
In this generalized framework, referred to as RealnessGAN, the discriminator out-
puts a distribution as the measure of realness. While RealnessGAN shares similar
theoretical guarantees with the standard GAN, it provides more insights on adver-
sarial learning. More importantly, compared to multiple baselines, RealnessGAN
provides stronger guidance for the generator, achieving improvements on both
synthetic and real-world datasets. Moreover, it enables the basic DCGAN (Rad-
ford et al., 2015) architecture to generate realistic images at 1024*1024 resolution
when trained from scratch.

1 INTRODUCTION

The development of generative adversarial network (GAN) (Goodfellow et al., 2014; Radford et al.,
2015; Arjovsky et al., 2017) is one of the most important topics in computer vision since its first
appearance in (Goodfellow et al., 2014). It learns a discriminator along with the target generator in
an adversarial manner, where the discriminator distinguishes generated samples from real ones. Due
to its flexibility when dealing with high dimensional data, GAN has obtained remarkable progresses
on realistic image generation (Brock et al., 2019).

In the standard formulation (Goodfellow et al., 2014), the realness of an input sample is estimated
by the discriminator using a single scalar. However, take images for instance, we naturally perceive
images from more than one angles and deduce whether it is life-like based on multiple criteria. As
shown in Fig. 1, when a portrait is given, one might focus on its facial structure, skin tint, hair texture
and even details like iris and teeth if allowed, each of which indicates a different degree of realness.
Based on this observation, the single scalar could be viewed as an abstract or a summarization
of multiple measures, which together reflect the overall realisticity of an image. Such a concise
measurement may convey insufficient information to guide the generator, potentially leading to well-
known issues such as mode-collapse and gradient vanishing.

In this paper, we propose to generalize the standard framework (Goodfellow et al., 2014) by treating
realness as a distribution rather than a single scalar, which we refer to as RealnessGAN. The learn-
ing process of RealnessGAN abide by the standard setting, but in a distributional form. While the
standard GAN can be viewed as a special case of RealnessGAN, RealnessGAN as well guarantees
converging to a Nash-equilibrium where the generator and the discriminator reaches optimalities.

(a) (b)

Figure 1: The perception of realness depends on various aspects. (a) Human-perceived flawless. (b) Po-
tentially reduced realness due to: inharmonious facial structure/components, unnatural background, abnormal
style combination and texture distortion.
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Moreover, by expanding the scalar realness score into a distributional one, the discriminator D nat-
urally provides stronger guidance to the generator G where G needs to match not only the overall
realness (as in the standard GAN), but the underlying realness distribution as well. Consequently,
RealnessGAN facilitateG to better approximate the real data manifold while generating decent sam-
ples. As shown in the experiments, based on a rather simple DCGAN architecture, RealnessGAN
could successfully learn from scratch to generate realistic images at 1024*1024 resolution.

2 REALNESSGAN

2.1 GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial network jointly learns a generatorG and a discriminatorD, whereG attempts
to generate samples that are indistinguishable from the real ones, andD classifies generated and real
samples. In the original work of (Goodfellow et al., 2014), the learning process of D and G follows
a minimax game with value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (1)

= Ex∼pdata [log(D(x)− 0)] + Ex∼pg [log(1−D(x))], (2)

where the generator’s distribution pg over data x is defined by a prior pz(z) on input latent variables
and G. As proved by Goodfellow et al. (2014), under such a learning objective, the optimal D
satisfies D∗G(x) = pdata(x)

pdata(x)+pg(x)
for a fixed G. Fixing D at its optimal, the optimal G satisfies pg =

pdata. The theoretical guarantees provide strong supports for GAN’s success in many applications
(Radford et al., 2015; Yu et al., 2017; Zhu et al., 2017), and inspired multiple variants (Arjovsky
et al., 2017; Mao et al., 2017; Zhao et al., 2017; Berthelot et al., 2017) to improve the original
design. Nevertheless, a single scalar is constantly adopted as the measure to distinguish generated
samples from real ones, while the concept of realness is essentially a random variable covering
multiple factors, such as texture and overall configuration in the case of images. In this work, we
intend to follow this observation, enforcing the discriminator D to learn a realness distribution.

2.2 A DISTRIBUTIONAL VIEW ON REALNESS

We start by substituting the scalar output of a discriminator D with a distribution prealness, so that for
an input sample x, D(x) = {prealness(x, u);u ∈ Ω}, where Ω is the set of supports of prealness. As
in equation 1, V (G,D) computes the distances between D(x) and two anchor scalars 0 and 1, in
the case of RealnessGAN, V (G,D) thus measures the Kullback-Leibler (KL) divergence between
D(x) and two anchor distributions A0 and A1, which are also defined on Ω. Subsequently, the
minimax game between a generator G and a distributional discriminator D becomes

max
G

min
D

V (G,D) = Ex∼pdata [DKL(A1‖D(x))] + Ex∼pg [DKL(A0‖D(x))]. (3)

An immediate observation is that if we let prealness be a discrete distribution with two supports
{u0, u1}, and set A0(u0) = A1(u1) = 1 and A0(u1) = A1(u0) = 0, the updated objective in
equation 3 can be explicitly converted to the original objective in equation 1, suggesting Realness-
GAN is a generalized version of the original GAN.

Following this observation, we then extend the standard theoretical analysis to the case of Realness-
GAN. Similar to Goodfellow et al. (2014), our analysis concerns the space of probability density
functions, where D and G are assumed to have infinite capacity. We start from finding the optimal
realness discriminator D for any given generator G.

Theorem 1. When G is fixed, for any support u and input sample x, the optimal discriminator D
satisfies

D?
G(x, u) =

A1(u)pdata(x) +A0(u)pg(x)

pdata(x) + pg(x)
. (4)
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Proof. The objective of D, given a fixed G, is to minimize V (G,D), which is equivalent to:

min
D
−
∫
x

∫
u

(pdata(x)A1(u) + pg(x)A0(u)) logD(x, u)dudx, (5)

=

∫
x

(pdata(x) + pg(x))DKL(
A1pdata(x) +A0pg(x)

pdata(x) + pg(x)
‖D(x))dx+ C, (6)

where C is a term irrelevant to D. For any x ∈ Supp(pdata) ∪ Supp(pg), when the KL divergence
achieves its minimum, D obtains its optimal, which concludes the proof.

A full proof is available in the appendix. Next, we move on to the conditions for G to reach its
optimal when D = D?

G.
Theorem 2. When D = D?

G, and there exists a support u ∈ Ω such that A1(u) 6= A0(u), the
maximum of V (G,D?

G) is achieved if and only if pg = pdata.

Proof. When pg = pdata, D?
G(x, u) = A1(u)+A0(u)

2 , we have:

V ?(G,D?
G) =

∫
u

A1(u) log
2A1(u)

A1(u) +A0(u)
+A0(u) log

2A0(u)

A1(u) +A0(u)
du. (7)

Subtracting V ?(G,D?
G) from V (G,D?

G) gives:

V ′(G,D?
G) = V (G,D?

G)− V ?(G,D?
G)

=

∫
x

∫
u

(pdata(x)A1(u) + pg(x)A0(u)) log
(pdata(x) + pg(x))(A1(u) +A0(u))

2(pdata(x)A1(u) + pg(x)A0(u))
dudx,

(8)

= −2

∫
x

∫
u

pdata(x)A1(u) + pg(x)A0(u)

2
log

pdata(x)A1(u)+pg(x)A0(u)
2

(pdata(x)+pg(x))(A1(u)+A0(u))
4

dudx,

(9)

= −2DKL(
pdataA1 + pgA0

2
‖ (pdata + pg)(A1 +A0)

4
). (10)

Since V ?(G,D?
G) is a constant with respect to G, maximizing V (G,D?

G) is equivalent to maximiz-
ing V ′(G,D?

G). The optimal V ′(G,D?
G) is achieved if and only if the KL divergence reaches its

minimum, where:

pdataA1 + pgA0

2
=

(pdata + pg)(A1 +A0)

4
, (11)

(pdata − pg)(A1 −A0) = 0, (12)

for any valid x and u. Hence, as long as there exists a valid u that A1(u) 6= A0(u), we have
pdata = pg for any valid x.

2.3 DISCUSSION

The theoretical analysis gives us more insights on RealnessGAN.

Number of supports: according to equation 12, each u ∈ Ω with A0(u) 6= A1(u) may work as a
constraint, pushing pg towards pdata. In the case of discrete distributions, along with the increment
of the number of supports, the constraints imposed onG accordingly become more rigorous and can
cost G more effort to learn. This is due to the fact that using more supports suggests the shape of
the realness distribution is more fine-grained for G to match. In experiment, we verified that it is
beneficial to update G an increasing number of times before D’s update as the number of supports
grows.

Effectiveness of anchors: view equation 12 as a cost function to minimize, when pdata 6= pg , for
some u ∈ Ω, the larger the difference betweenA1(u) andA0(u) is, the stronger the constraint on G
becomes. Intuitively, RealnessGAN can be more efficiently trained if we choose A0 and A1 to be
adequately different.
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Objective of G: according to equation 3, the best way to fool D is to increase the KL divergence
between D(x) and the anchor distribution A0 of fake samples, rather than decreasing the KL diver-
gence betweenD(x) and the anchor distributionA1 of real samples. It’s worth noting that these two
objectives are equivalent in the original work (Goodfellow et al., 2014). An intuitive explanation is
that, in the distributional view of realness, real samples do not necessarily share the same realness
distribution. It is possible that each of them corresponds to a distinct one. While A1 only serves as
an anchor, thus it is ineffective to drag all generated samples towards the same target.

Flexibility of RealnessGAN: as a generalization of the standard framework, it is straightforward to
integrate RealnessGAN with different GAN architectures, such as progressive GANs (Karras et al.,
2018; 2019) and conditional GANs (Zhu et al., 2017; Ledig et al., 2017). Moreover, one may also
combine the perspective of RealnessGAN with other reformulations of the standard GAN, such as
replacing the KL divergence in equation 3 with the Earth Mover’s Distance.

2.4 IMPLEMENTATION

In our implementation, the realness distribution prealness is characterized as a discrete distribution
over N supports Ω = {u0, u1, ..., uN−1}. Given an input sample x, the discriminator D returns N
probabilities on these supports, following:

prealness(x, ui) =
eψi(x)∑
j e
ψj(x)

, (13)

where ψ = (ψ0,ψ1, ...,ψN−1) are the parameters of D. Similarly, A1 and A0 are discrete distri-
butions defined on Ω.

Although the ideal objective for G is maximizing the KL divergence between D(x) of generated
samples and A0, directly using this objective in practice is not sufficient, as the discriminator D is
not always at its optimal, especially in the early stage.1 Inspired by the Relativistic GAN (Jolicoeur-
Martineau, 2019), we thus add an additional constraint to minimize the relative KL divergence
between D(x) of generated samples and random real samples, resulting in the actual objective:

min
G

Ex∼pdata,z∼pz(z)[DKL(D(x)‖D(G(z))]− Ez∼pz(z)[DKL(A0‖D(G(z))]. (14)

Feature resampling. In practice, especially in the context of images, we are learning from a limited
number of discrete samples coming from a continuous data manifold. We may encounter issues
caused by insufficient data coverage during the training process. Inspired by conditioning augmen-
tation mentioned in (Zhang et al., 2016), we introduce a resampling technique performed on the
realness output to augment data variance. Given a mini-batch {x0, ...,xM−1} of size M , a Gaus-
sian distributionN (µi, σi) is fitted on {ψi(x0),ψi(x1), ...,ψi(xM−1)}, which are logits computed
by D on i-th support. We then resample M new logits {ψ′i(x0), ...,ψ′i(xM−1);ψ′i ∼ N (µi, σi)}
for i-th support and use them succeedingly.

The randomness introduced by resampling benefits the training of RealnessGAN in two aspects.
First of all, it augments data by probing instances around the limited training samples, leading to
more robust models. Secondly, the resampling approach implicitly demand instances of ψi(x) to
be homologous throughout the mini-batch, such that each support reflects realness from a consistent
angle across samples. We empirically found the learning curve of RealnessGAN is more stable if
feature resampling is utilized, especially in the latter stage, where models are prone to overfit.

3 RELATED WORK

Generative adversarial network (GAN) was first proposed in (Goodfellow et al., 2014), which jointly
learns a discriminatorD and a generatorG in an adversarial manner. Due to its outstanding learning
ability, GANs have been adopted in various generative tasks (Radford et al., 2015; Yu et al., 2017;
Zhu et al., 2017), among which Deep Convolutional GAN (DCGAN) (Radford et al., 2015) has
shown promising results in image generation.

1See Appendix A for a study on this.

4



Under review as a conference paper at ICLR 2020

Although remarkable progress has been made. GAN is known to suffer from gradient diminish-
ing and mode collapse. Variants of GAN have been proposed targeting these issues. Specifically,
Wasserstein GAN (WGAN) Arjovsky et al. (2017) replaces JS-divergence with Earth-Mover’s Dis-
tance, and Least-Square GAN (LSGAN) (Mao et al., 2017) transforms the objective ofG to Pearson
divergence. Energy-based GAN (EBGAN) (Zhao et al., 2017) and Boundary Equilibrium GAN (BE-
GAN) (Berthelot et al., 2017) employ a pre-trained auto-encoder as the discriminator, learning to
distinguish between real and generated samples via reconstruction. Besides adjusting the objective
of GAN, alternative approaches include more sophisticated architectures and training paradigms.
Generally, ProgressiveGAN (Karras et al., 2018) and StyleGAN (Karras et al., 2019) propose a pro-
gressive paradigm, which starts from a shallow model focusing on low resolution level, and gradu-
ally grows into a deeper model to incorporate more details as resolution grows. On the other hand,
COCO-GAN (Lin et al., 2019) tackle high resolution image generation in a divide-and-conquer
strategy. It learns to produce decent patches at corresponding sub-regions, and splices the patches to
produce a higher resolution image.

It’s worth noting that many works on generative adversarial networks have discussed ‘distributions’
(Goodfellow et al., 2014; Radford et al., 2015; Arjovsky et al., 2017), which usually refers to the
underlying distribution of samples. Some of the existing works aim to improve the original objec-
tive using different metrics to measure the divergence between the learned distribution pg and the
real distribution pdata. Nevertheless, a single scalar is constantly adopted to represent the concept of
realness. In this paper, we propose a complementary modification that models realness as a random
variable follows the distribution prealness. In the future work, we may study the combination of real-
ness discriminator and other GAN variants to enhance the effectiveness and stability of adversarial
learning.

4 EXPERIMENTS

In this section we study RealnessGAN from multiple aspects. Specifically, 1) we firstly focus on
RealnessGAN’s mode coverage ability on a synthetic dataset. 2) Then we evaluate RealnessGAN on
CIFAR10 (32*32) (Krizhevsky, 2009) and CelebA (256*256) (Liu et al., 2015) datasets qualitatively
and quantitatively. 3) Finally we explore RealnessGAN on high-resolution image generation task,
which is known to be challenging for unconditional non-progressive architectures. Surprisingly, on
the FFHQ dataset (Karras et al., 2019), RealnessGAN managed to generate images at the 1024*1024
resolution based on a non-progressive architecture. We compare RealnessGAN to other popular
objectives in generative adversarial learning, including the standard GAN (Std-GAN) (Radford et al.,
2015), WGAN-GP (Arjovsky et al., 2017), HingeGAN (Zhao et al., 2017) and LSGAN (Mao et al.,
2017).

For experiments on synthetic dataset, we use a generator with four fully-connected hidden layers,
each of which has 400 units, followed by batch normalization and ReLU activation. The discrimina-
tor has three fully-connected hidden layers, with 200 units each layer. LinearMaxout with 5 maxout
pieces are adopted and no batch normalization is used in the discriminator. The latent input z is a
32-dimensional vector sampled from a Gaussian distribution N (0, I). All models are trained using
Adam (Kingma & Ba, 2015) for 500 iterations.

On real-world datasets, the network architecture is identical to the DCGAN architecture in Radford
et al. (2015), with the prior pz(z) a 128-dimensional Gaussian distribution N (0, I). Models are
trained using Adam (Kingma & Ba, 2015) for 520k iterations. To guarantee training stability, we
adopt settings that are proved to be effective for baseline methods. Batch normalization (Ioffe &

Figure 2: Left: real data sampled from the mixture of 9 Gaussian distributions. Right: samples generated by
Std-GAN, WGAN-GP, LSGAN, HingeGAN and RealnessGAN.
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Table 1: Minimum (min), maximum (max), mean and standard deviation (SD) of FID and SWD on CelebA
and CIFAR10, calculated at 20k, 30k, ... iterations. The best indicators in baseline methods are underlined.

Method FID ↓ SWD (×103) ↓
Min Max Mean SD Min Max Mean SD

CelebA

DCGAN 27.02 70.43 34.85 9.40 14.81 68.06 30.58 15.39
WGAN-GP 70.28 104.60 81.15 8.27 17.85 30.56 22.09 2.93

LSGAN 30.76 57.97 34.99 5.15 16.72 23.99 20.39 2.25
HingeGAN 25.57 75.03 33.89 10.61 14.91 54.30 28.86 10.34

RealnessGAN 23.51 81.3 30.82 7.61 12.72 31.39 17.11 3.59

CIFAR10

DCGAN 38.56 88.68 47.46 15.96 28.76 57.71 37.55 7.02
WGAN-GP 41.86 79.25 46.96 5.57 28.17 36.04 30.98 1.78

LSGAN 42.01 75.06 48.41 7.72 31.99 40.46 34.75 2.34
HingeGAN 42.40 117.49 57.30 20.69 32.18 61.74 41.85 7.31

RealnessGAN 38.92 79.03 47.08 8.96 23.05 51.53 31.36 7.52

Szegedy, 2015) is used in G, and spectral normalization (Miyato et al., 2018) is used in D. For
WGAN-GP we use lr = 1e − 4, β1 = 0.5, β2 = 0.9, updating D for 5 times per G’s update
(Gulrajani et al., 2017); for the remaining models, we use lr = 2e − 4, β1 = 0.5, β2 = 0.999,
updating D for one time per G’s update (Radford et al., 2015). Fréchet Inception Distance (FID)
(Heusel et al., 2017) and Sliced Wasserstein Distance (SWD) (Karras et al., 2018) are reported as
the evaluation metrics.

4.1 SYNTHETIC DATASET

Since pdata is usually intractable on real datasets, we use a toy dataset to compare the learned dis-
tribution pg and the data distribution pdata. The toy dataset consists of 100, 000 2D points sampled
from a mixture of 9 isotropic Gaussian distributions whose means are arranged in a 3 by 3 grid, with
variances equal to 0.05. As shown in Fig.2, the data distribution pdata contains 9 welly separated
modes, making it a difficult task despite its low-dimensional nature.

To evaluate pg , we draw 10, 000 samples and measure their quality and diversity. As suggested
in (Dumoulin et al., 2016), we regard a sample as of high quality if it is within 4σ from the µ
of its nearest Gaussian. When a Gaussian is assigned with more than 100 high quality samples,
we consider this mode of pdata is recovered in pg . Fig.2 visualizes the sampled points of different
methods, where LSGAN and HingeGAN suffer from significant mode collapse, recovering only a
single mode. Points sampled by WGAN-GP are overly disperse, and only 0.03% of them are of high
quality. While Std-GAN recovers 4 modes in pdata with 32.4% high quality samples, 7 modes are
recovered by RealnessGAN with 60.2% high quality samples. The average σs of these high quality
samples in Std-GAN and RealnessGAN are respectively 0.083 and 0.043. The results suggest that
treating realness as a random variable rather than a single scalar leads to a more strict discriminator
that criticizes generated samples from various aspects, which provides more informative guidance.
Consequently, pg learned by RealnessGAN is more diverse and compact.

We further study the effect of adjusting the number of supports in the realness distribution prealness
on this dataset. To start with, we fix kG and kD to be 1, which are the number of updates for G
and D in one iteration, and adjust the number of supports used in prealness,A0 and A1. As shown
in the first row of Fig.3, it can be observed that in general G recovers less modes as the number of
supports grows, which is a direct result of D becoming increasingly powerful and imposing more
constraints on G. When D is too powerful for G, we could increase kG to allow G to catch up
with current D. The second row of Fig.3 shows the converged cases when kG have been adjusted
to suitable settings, which suggests the effectiveness of RealnessGAN when G is given sufficient
learning space. The ratio of high quality samples rHQ and the number of recovered modes nmode
in these cases are plotted in Fig.3. The two curves imply that besides kG, rHQ and nmode are all
positively related to the number of supports, validating that measuring realness from more aspects
leads to a better generator.
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Figure 3: We show in the first row, the results of RealnessGAN when fixing kG = kD = 1 and increasing
the number of supports. And the results of RealnessGAN by increasing kG to proper numbers are shown in
the second row. For the settings in the second row, we also compute the ratio of high quality samples and the
number of recovered modes, resulting in two curves at the bottom.
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Figure 4: Training curves of different methods in terms of FID and SWD on both CelebA and CIFAR10,
where the raise of curves in the later stage indicate mode collapse. Best viewed in color.

4.2 REAL-WORLD DATASETS

As GAN has shown promising results when modeling complex data such as natural images, we
evaluate RealnessGAN on real-world datasets, namely CelebA,CIFAR10 and FFHQ, which respec-
tively contains images at the 32*32, 256*256 and 1024*1024 resolutions. The training curves of
baseline methods and RealnessGAN on CelebA and CIFAR10 are showed in Fig.4. The qualitative
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Figure 5: Images sampled from RealnessGAN, respectively trained on CelebA (top left), CIFAR10 (top right),
and FFHQ (bottom).

results measured in FID and SWD are listed in Tab.1. We report the minimum, the maximum, the
mean and the standard deviation computed along the training process. On both datasets, compared
to baselines, RealnessGAN obtains better scores in both metrics. Meantime, the learning process of
RealnessGAN is smoother and steadier (see SD in Tab.1 and curves in Fig.4). Samples of generated
images on both datasets are included in Fig.5.

On FFHQ, we push the resolution of generated images to 1024*1024, which is known to be chal-
lenging especially for a non-progressive architecture. As shown in Fig.5, despite build on a relatively
simple DCGAN architecture, RealnessGAN is able to produce realistic samples from scratch at such
a high resolution.

The implementation of RealnessGAN offers several choices that also worth studying. On synthetic
dataset, we explored the relationship between the number of supports and G’s update frequency. On
CelebA dataset, apart from evaluating RealnessGAN as a whole, we also studied the effectiveness of
feature resampling and the affect of using different settings ofA0 andA1. Specifically, Fig.6 shows
the training curves of RealnessGAN with and without feature resampling. It can be noticed that
feature resampling significantly stabilizes the training process especially in the latter stage. Tab.4.2
reports the results of exploiting different anchor distributions by varying the KL divergence between
A0 and A1. FID score indicates that, as the KL divergence between A0 and A1 increases, Real-
nessGAN tends to perform better, which verifies our discussion in Sec.2.3 that a larger difference
between anchor distributions gives rise to stronger constraints on G.

Table 2: Minimum (min), maximum (max),
mean and standard deviation (SD) of FID on
CelebA using different anchor distributions, cal-
culated at 20k, 30k, ... iterations.

DKL(A1‖A0) Min Max Mean SD
1.66 31.01 96.11 40.75 11.83
5.11 26.22 87.98 36.11 9.83
7.81 25.98 85.51 36.30 10.04

11.05 23.51 81.30 30.82 7.61
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Figure 6: Training FID curves of RealnessGAN
with and without feature re-sampling.

5 CONCLUSION

In this paper, we extend the view of realness in generative adversarial networks under a distributional
perspective. In our proposed extension, RealnessGAN, we represent the concept of realness as a
realness distribution rather than a single scalar. so that the corresponding discriminator estimates
realness from multiple angles, providing more informative guidance to the generator. We prove
RealnessGAN has theoretical guarantees on the optimality of the generator and the discriminator.
On both synthetic and real-world datasets, RealnessGAN also demonstrates the ability of effectively
and steadily capturing the underlying data distribution.
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A OBJECTIVE OF G

As mentioned in Sec.2.3, the ideal objective of G is maxG Ex∼pg
[DKL(A0‖D(x))]. On CelebA

we have applied this objective to learn RealnessGAN. Our first attempt results in the left sample
of Fig.7, where RealnessGAN fails to learn a good generator. After significantly increasing the
KL divergence between A0 and A1, the generator of RealnessGAN is able to produce meaningful
images, such as the one in the right of Fig.7. These results indicate a large KL divergence between
two anchor distributions may lead to a strong discriminator D, which further provides informative
guidance for G despite the use of an overly loose objective.

Figure 7: Sample images generated by RealnessGAN trained with the objective:
minG−Ez∼pz(z)[DKL(A0‖D(G(z))]. Left: samples when DKL(A1‖A0) = 11.05. Right:
samples when DKL(A1‖A0) = 33.88.

B FULL PROOF ON THEOREM 1

Proof. Given a fixed G, the objective of D is:

min
D

V (G,D) = Ex∼pdata [DKL(A1‖D(x))] + Ex∼pg [DKL(A0‖D(x))], (15)

=

∫
x

(
pdata(x)

∫
u

A1(u) log
A1(u)

D(x, u)
du+ pg(x)

∫
u

A0(u) log
A0(u)

D(x, u)
du

)
dx,

(16)

= −
∫
x

(pdata(x)h(A1) + pg(x)h(A0)) dx

−
∫
x

∫
u

(pdata(x)A1(u) + pg(x)A0(u)) logD(x, u)dudx, (17)

where h(A1) and h(A0) are their entropies, and the first term in equation 17 is irrelevant to D,
marked as C1. The objective thus is equivalent to:

min
D

V (G,D) = −
∫
x

∫
u

(pdata(x)A1(u) + pg(x)A0(u)) logD(x, u)dudx+ C1, (18)

= −
∫
x

(pdata(x) + pg(x))

∫
u

pdata(x)A1(u) + pg(x)A0(u)

pdata(x) + pg(x)
logD(x, u)dudx+ C1,

(19)
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where px(u) =
pdata(x)A1(u)+pg(x)A0(u)

pdata(x)+pg(x)
is a distribution defined on Ωu. Consequently, let C2 =

pdata(x) + pg(x), we have

min
D

V (G,D) = C1 +

∫
x

C2

(
−
∫
u

px(u) logD(x, u)du+ h(px)− h(px)

)
dx, (20)

= C1 +

∫
x

C2DKL(px‖D(x))dx+

∫
x

C2h(px)dx. (21)

From equation 21 we can see, for any x ∈ Supp(pdata)∪Supp(pg), whenDKL(px‖D(x)) achieves
its minimum, D obtains its optimal D?. And at that time, we have D?(x) = px, which concludes
the proof.

C FFHQ SAMPLES

Figure 8: Additional 1024*1024 images produced by RealnessGAN trained on FFHQ.
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