
Under review as a conference paper at ICLR 2020

TOWARDS MODULAR ALGORITHM INDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a modular neural network architecture MAIN that learns algorithms
given a set of input-output examples. MAIN consists of a neural controller that in-
teracts with a variable-length input tape and learns to compose modules together
with their corresponding argument choices. Unlike previous approaches, MAIN
uses a general domain-agnostic mechanism for selection of modules and their ar-
guments. It uses a general input tape layout together with a parallel history tape
to indicate most recently used locations. Finally, it uses a memoryless controller
with a length-invariant self-attention based input tape encoding to allow for ran-
dom access to tape locations. The MAIN architecture is trained end-to-end using
reinforcement learning from a set of input-output examples. We evaluate MAIN on
five algorithmic tasks and show that it can learn policies that generalizes perfectly
to inputs of much longer lengths than the ones used for training.

1 INTRODUCTION

Many applications in artificial intelligence require the ability to learn and perform tasks that have
algorithmic structure, such as learning a sequence of precise actions together with conditional de-
cisions and branching. Therefore, an important research problem is learning to induce algorithms
from input-output examples. A particular focus of research attention has been on neural algorithm
induction, which are neural architectures for representing algorithms by including unbounded inter-
mediate state and mechanisms for learning control flow. The neural Turing machine (Graves et al.,
2014) and its successor the Differentiable Neural Computer (Graves et al., 2016) augment a re-
current network with an external memory using differentiable read/write mechanisms, and are able
to learn simple algorithmic tasks such as array copying and sorting. Neural Random-Access Ma-
chines (NRAM) (Kurach et al., 2016) learn algorithms by generating a fuzzy circuit comprising of
pre-defined modules together with modules for dereferencing and storing values in a fixed memory.

Existing architectures do not fully leverage a key fact that algorithmic tasks can be solved by flexibly
combining the results of smaller, reusable procedures, which we call modules. A modular architec-
ture aims to represent in a learning system these aspects of programming languages intended for
human developers: (i) procedural abstractions that perform computations to produce outputs given
some inputs and that can be reused in the algorithm multiple times; (ii) control flow constructs such
as branching and loops to compose and combine intermediate results. Although there has been a
recent movement toward modular neural architectures for supervised tasks (Andreas et al., 2016;
Kirsch et al., 2018; Rosenbaum et al., 2018; Valkov et al., 2018; Chang et al., 2018), the design
space of modular networks has not been fully explored for algorithm induction.

Towards this end, we present a new architecture MAIN (short for Modular Algorithm Induction
Network) for neural algorithm induction. Our architecture consists of a neural controller that inter-
acts with a variable-length read/write tape where inputs, outputs, and intermediate values are stored.
Each module is a small computational procedure that reads from and writes to a small fixed number
of tape cells (a given fixed set of modules are specified in advance). At each time step, the controller
selects a module to use together with the tape location of the module’s input arguments and the write
location of the module output. This architecture is trained end-to-end using reinforcement learning.

A comparison of architectural design choices in MAIN with those in recent neural program induction
approaches NTM (Graves et al., 2014), LSA (Zaremba et al., 2016), NRAM (Kurach et al., 2016),
NGPU (Kaiser & Sutskever, 2016), CRL (Chang et al., 2018), and DNC (Graves et al., 2016) is
presented in Table 1. Unlike previous architectures, MAIN allows for learning to compose modules

1



Under review as a conference paper at ICLR 2020

NTM LSA NRAM NGPU CRL DNC MAIN

Modules 7 7 3 7 3 7 3
- General module selection 7 3 3
- General argument selection 3 7 3
Read/write history 7 3 7 7 7 3 3
Random access 3 7 3 7 3 3 3
Memoryless controller 7 7 3 3 7 7 3
Encoder type Attn FF FF CNN RNN Attn CNN + Attn

Table 1: Comparison of design choices used in MAIN to recent algorithm induction approaches.

together with the corresponding argument values for the chosen modules using a general domain-
agnostic mechanism for module and argument choices. It uses a generic linear tape layout together
with a parallel history tape of landmark symbols that indicate the most recently read and written
cells. Finally, the architecture allows for random access of the memory cells and uses a memoryless
controller with a length-invariant self-attention based encoding of input tape contents.

There are two key design choices in MAIN that we found crucial for good performance. The first is
in the representation of the previous history of the computation. Like previous work (Graves et al.,
2016), we find that providing history to the model is an important source of information. We intro-
duce a simple but effective discrete representation, introducing a parallel history tape of landmark
symbols that indicate the most recently read and written cells. This helps the model to learn com-
mon patterns of control flow, such as maps and reduce operations over the tape. The second choice
is in the encoder architecture of the abstracted tape view with the controller. We find that using an
attention-based encoder performs much better than a recurrent network based encoding within the
controller, which has been employed by previous architectures for neural algorithm induction.

We evaluate our architecture MAIN on five algorithmic tasks including array copying, reversing,
increment, filter-even, and multi-digit add. MAIN can learn these tasks in an end-to-end manner
using input-output examples and is also able to generalize to longer input lengths. We observe
that both parallel tape history and length-invariant input tape encoding based on self-attention are
necessary for the architecture to learn these tasks. Moreover, for tasks such as filter-even and multi-
digit add that require the controller to perform some computations, we observe that abstracting the
tape contents to only certain landmark positions can help it learn the corresponding algorithms.

2 RELATED WORK

Learning to Compose and Modular Networks: Compositional Recursive Learner (CRL) (Chang
et al., 2018) is a framework for learning algorithmic procedures for composing representation trans-
formations, where both the transformations and their compositions are simultaneously learnt from
a sparse supervision. The controller that learns to compose transformation is trained using rein-
forcement learning, whereas the transformations themselves are trained using supervised learning.
The CRL architecture supports two forms of transformations: reducers and translators. Because of
specialized transformations, CRL imposes a restriction on always selecting either full tape or three
consecutive input tokens as arguments (that result in 1 resulting token) for the transformations. In
contrast, our architecture allows the controller to select arbitrary locations on the input tape to select
as module arguments and also the write locations for their outputs.

There has also been some recent related work on learning Modular Networks (Kirsch et al., 2018)
and Routing Networks (Rosenbaum et al., 2018). In routing networks, a router learns to select a
sequence of function blocks to compose given an input, and is trained using reinforcement learning.
Kirsch et al. (2018) use a probabilistic model to represent the module choice as a latent variable and
use Expectation Maximization (EM) to learn the module parameters and the decomposition choice
in an end-to-end manner by maximizing a variational lower bound of the likelihood. Both of these
approaches learn modular composition of functions with the aim of reusability and better gener-
alization across multiple tasks. Our architecture, in contrast, is designed for learning algorithms
where the modules are pre-specified but the task of the controller agent is to learn to compose those
modules to achieve desired input-output behavior.

2



Under review as a conference paper at ICLR 2020

Neural Program Induction and Synthesis: Several neural architectures have been proposed re-
cently to learn algorithmic tasks. Neural Turing Machine (NTM) (Graves et al., 2014) extends an
LSTM controller with an external memory together with differentiable read-write mechanism. Dif-
ferentiable Neural Computer (DNC) (Graves et al., 2016), a successor to NTM, added capabilities
of freeing up unused memory for processing long sequences and a temporal link matrix for better
tracking the write order. Zaremba et al. (2016) propose an architecture with an RNN controller that
learns to navigate a structured input grid by selecting move actions and outputs tokens on an output
grid. Unlike our architecture, which separates control from compute, these architectures require the
controller to learn both the control structure as well as the desired computations.

Neural RAM (NRAM) (Kurach et al., 2016) uses a neural controller that learns to produce a fuzzy
circuit consisting of a fixed number of modules. The controller learns to wire the modules with
inputs coming from a fixed set of registers or intermediate outputs, and also learns to write output
back to registers and memory tape. There are three key differences between Neural RAM and
our architecture. First, NRAM uses a fixed sequence of 14 modules (with an option to repeat the
whole sequence multiple times). In contrast, our controller learns to select appropriate module at
each time step. Second, since registers and memory tape in NRAM architecture store distributions
over integers, the modules also need to be differentiable to compute output over such inputs. Our
architecture, on the other hand, does not require the modules to be differentiable and also writes
discrete values on the input tape. Finally, our architecture uses a parallel history tape of recent read
and write positions for accessing the input tape unlike pointer dereferencing in NRAM.

We summarize the characteristics of these architectures, comparing them to our work in Table 1. To
understand the rows of this table, “Modules” means whether computation is performed by compos-
able modules. “General module selection” means the modules can be selected in any order at any
point in the computation (NRAM enforces a fixed ordering). “General argument selection” means
module arguments can come from anywhere in memory without restriction (CRL enforces inputs
be locally adjacent). “Read/write history” means that history of previous read and write locations
is provided as context to the controller. “Random access” means the architecture can look up arbi-
trary memory contents and agregate information across memory regions, rather than be restricted by
relative head movements (LSA). “Memoryless controller” means the architecture does not require
the controller to have hidden memory over time, i.e. the controller is not recurrent, and only uses
external memory for context. Finally, the “Encoder type” indicates how memory is consumed by
the controller, feed-forward (FF), convolutional (CNN), recurrent (RNN), or attention-based (Attn).

There is also a growing interest in using neural models to generate symbolic programs as output.
RobustFill (Devlin et al., 2017) trains an attention based encoder-decoder model that generates a
program given a set of input-output examples. Deepcoder (Balog et al., 2017) learns a probability
distribution over a set of functions in a DSL to guide an enumerative search. Chen et al. (2019)
also use an encoder-decoder based approach to synthesize Karel programs (Bunel et al., 2018),
but in addition also execute the partially decoded program to guide the decoder. In contrast, our
architecture uses a more general mechanism to read and write on the variable length input tape, and
uses reinforcement learning to learn to compose the desired modules for each individual task.

3 ARCHITECTURE

M0 M1 M2 M3

Figure 1: Module interaction
with memory

We describe MAIN, an architecture which can express arbitrary
modular Turing machines. Our architecture has three parts: the
memory which stores the state of the computation, the modules
which update the tape, and the controller which chooses a module
Mi to execute at each stage of the computation as illustrated in
Figures 3. Once Mi is selected out of the module set (4 modules
depicted), and the read/write locations on the tape are chosen, the
module sees only the read inputs, and modifies the tape only at the
write position. Each module is a user provided function (which
could in principle also be learned). In our experiments we picked
modules of two arguments and one output, but our architecture is
agnostic to the number of read/write heads as shown in Figure 1.

3



Under review as a conference paper at ICLR 2020

Initial Tape
7 2 $ · · ·4

Middle of computation

R1,2

7 2 $ 4 2 ·4
W1

(a) Copy Task

Initial tape
1 2 3 + 9 8 7 $ · · · ·&

Middle of computation
1 2

R1

3 + 9 8 7 $ · · 1 0&
R2 W1

(b) Multi-digit Add Task

Figure 2: Example initial and intermediate tapes for (a) Copy and (b) Multi-digit add task.

The memory is a finite tape of discrete tokens/symbols. Formally, let s0, s1, . . . , sT be memory
states at each computation step t = 0, . . . , T . Each st is itself an array of tokens, indexed as
st[0], . . . , st[L − 1]. At the start of the computation, s0 is initialized with the program input, and
necessary empty space to perform intermediate computation and write the output. The memory
length L is dynamically set based on the size of the given input, so every neural architecture com-
ponent that depends on L needs to be length invariant.

The memory contains landmark tokens, which are are task-specific tokens, e.g. ‘$’, ‘+’, ‘&’, that
provide positional information. For example, these tokens indicate where the input starts, where the
output should be written, etc. In our experiments we found that the controller would often overwrite
the landmark tokens during training. As a workaround, we provide the positions of landmark tokens
as immutable metadata. These are the lambdas λ(1), λ(2), . . . inside σt shown above. Additionally,
we place Start-Of-Tape and End-Of-Tape landmarks at the first and last tape positions.

The initial tape s0 contains the input and additional space for scratch work. At the end, the output
of computation will be read from designated regions of the tape, called target locations, which are
initialized with the empty token ‘.’. Note that the architecture is free to overwrite any position
during the course of computation, including important input tokens. When scoring the final tape sT ,
we only look at designated target positions, designated by the ‘.’ token. The initial tape configura-
tions for Copy and Multi-digit Add Tasks is shown in Figure 2. The tape configuration in addition
to the input tape also consists of landmark positions as well as the read/write heads history.

The modules M = {m1, . . . ,mk} are functions that read a narrow portion of the memory, and
compute new values that are stored in memory. Each module mi is a function of R arguments, and
outputs a vector of size W , i.e. number of read/write heads corresponds to the number of inputs and
outputs of the modules. During the computation, each input and output of the modules will be a
single cell on the memory tape. Some example modules are the maximum module which returns the
maximum of two inputs, and the sum module which returns the sum of two inputs mod base B.

The controller is a policy over actions that specifies a module-tape interaction. The con-
troller cannot directly modify memory. Instead it selects a module and the locations on the
tape the module will read from and write to. Specifically, the controller defines a distribution
π(H(r,1), . . . ,H(r,R), H(w,1), . . . ,H(w,W ),M | ct), where H(...) are random variables over tape
positions (support is {0, . . . , L − 1}); one for each head. The variables H(r,1), . . . ,H(r,R) select
read-head locations, and H(w,1), . . . ,H(w,W ) select write-head locations. The random variable M
is one of the modules. Finally ct is the context, which contains the current state of memory and
information about the computation history. We will define this in more detail shortly.

The controller defines an end-to-end computation as follows. At each step t of the computation,
let the current state of the memory by st. To choose the next module and the locations of the read
and write heads, we sample from the controller. This produces a module choice mt, and locations
h
(r,1)
t , . . . , h

(r,R)
t for the read heads, and h(w,1)

t , . . . , h
(w,W )
t for the write heads. Because the con-

troller is free to choose any tape location for each read and write head independently, the memory is
random access. The tape is updated by calling the module mt, with the tape contents under the read
heads as input, and then writing to the position specified by the write heads. More formally,

st+1[h
(w,j)
t ] := m(st[h

(r,1)
t ], . . . , st[h

(r,R)
t ])[j] ∀ j ∈ {1, . . . ,W}

st+1[i] := st[i] ∀ i /∈ {h(w,1)
t , . . . , h

(w,W )
t } .

4



Under review as a conference paper at ICLR 2020

The selected write indices are updated with module’s output, and other tape elements are unchanged.

The context ct is the input to the controller, which represents both the current tape contents st and
an action history that represents information about the previous computation. The action history
consists of two parts:

• Fixed-size part: Contains the module choice and head locations chosen at the previous time step.
– Module choice: mt−1

– Tape values underneath heads: st[h
(r,1)
t−1 ], . . . , st[h

(r,R)
t−1 ], st[h

(w,1)
t−1 ], . . . , st[h

(w,W )
t−1 ].

• Variable-size part: One-hot encoding of {h(...)t−1}, the read and write head locations at the previous
step of the computation.

The tape values underneath the heads are technically redundant information, because the controller
can use st combined with the head locations from the variable-sized part to lookup the corresponding
tape values. However, we found that the controller had a hard time doing this in our experiments,
and providing the head values as auxiliary input to the controller proved helpful.

Formally, the context is a tuple ct = (ξt, σt), where ξt is a fixed sized encoding (does not depend
on the tape length L), and σt is a variable sized encoding (depends on the tape length L). First, ξt
describes the current tape values underneath the tape heads chosen at the previous time step:

ξt = 〈st[h(r,1)t−1 ], . . . , st[h
(r,R)
t−1 ], st[h

(w,1)
t−1 ], . . . , st[h

(w,W )
t−1 ],mt−1〉 .

where mt−1 is the previous module choice. Second, the variable sized encoding σ is a matrix
concatenation that provides complete information about st:

σt =



1V {st[0]} 1V {st[1]} . . . 1V {st[L− 1]}

1L{λ(1)}
1L{λ(2)}

...

1L{h(r,1)t−1 }
...

1L{h(w,1)
t−1 }
...



.

We can think of σt as a stack of binary channels, each a row-vector of lengthL. The one-hot function
1D{d} produces a vector of length D which is filled with 0s, and 1 at position d. Each 1V {st[`]}
is a one-hot vector of token st[`]. Their horizontal concatenation produces a channel for each token
(indicates its presence or absense). The 1L{λ(i)} and 1L{h(...)t−1} channels indicate the positions of
landmarks and heads respectively (λ(i) are fixed throughout the episode and not indexed by t). Note
that at t = 0 no actions have been taken, so the previous-action encodings are all 0s.

Now we describe the controller architecture. Given the context ct, the controller begins with a
sequence encoder for the variable length encoding σt. We pass σt through two 1D convolutional
layers (along the L dimension) with filter width 3 and stride 1. This is the only aspect of our encoder
that provides awareness of the local ordering of cells on the tape.

After that, we explore two different seq2fixed encoders:

• RNN encoder: BiLSTM produces fixed length embedding (concat of embedding for each direc-
tion) which is fed into the controller.

• Attention encoder: A context-independent query set is learned (fixed during evaluation). Queries
are fed into attention over the tape, and the resulting weighted sum over tape values is a fixed
length embedding that is fed into the controller.

5



Under review as a conference paper at ICLR 2020

π

H (w,1)

H (r,1)

H (r,2)

1 2 3 4

Encoder

Prev Module 
Index

M

        Full tape attention
  based encoder plus
      head values

represents the 
sampled value 
from distribution

mt

modules

Figure 3: Controller interaction with memory and module. Controller consumes memory state
from the previous timestep t using an encoder, and outputs a module Mi from {M1, . . . ,Mk}, and
attention weights over memory positions that determine the read and write positions for that module.

Next, we pass the resulting fixed-sized embedding for σt along with ξt into a feed forward network
which outputs attention queries for the read/write head actions, and logits for the module selec-
tion action. Logits for the read/write head actions are produced with dot-product attention over σt
(independent attention head for each read/write head).

Learning the Controller. We frame our setup in the reinforcement learning paradigm, where the
controller is the agent, and other components (memory and modules) are part of the environment.
From the perspective of algorithm induction, only the program input and target outputs are external,
while everything in MAIN is part of the black box that performs the computation. The controller
is trained end-to-end on all its actions with Impala (Espeholt et al., 2018), a distributed variant
of REINFORCE. Simultaneously learning to halt with RL, while learning what computation to
perform, proved to be unstable in our experiments. We removed the additional complication of
learning when to halt by providing a halting oracle. The oracle is given the correct output, and
immediately ends the episode if the answer is in memory. The oracle is used in evaluation as well.

4 EXPERIMENTS

We now present an empirical evaluation of our architecture MAIN in order to establish that (i) it
can learn to perform algorithmic tasks, (ii) attention is important for length generalization, and (iii)
separating control flow and data flow through limited view helps in learning.

Tasks: We consider five algorithmic tasks with six pre-defined modules. All but the Multi-Digit
Addition task are given the same module pool. We found that Multi-Digit Addition was more
difficult to learn, and to reduce the action space we cut down the module pool to only ones needed to
perform the computation. For simplicity, we make all the modules have the same number of inputs
and outputs. Specifically in our experiments there are two read-heads and one write head. Modules
which naturally read less than 2 inputs ignore their additional inputs. We consider the following six
modules: Identity, Increment, Max, Sum, SumInc, and Reset. The semantics of the modules is
presented in Appendix A.1. We consider the following tasks.

• Copy: Given an array of base 10 digits in the memory tape and a pointer to the destination, the
task is to copy all elements from the array to the destination (e.g. see Figure 2(a)). We provide
landmarks to start of the input and start of the output location. For an input array of length n, the
output would be also of length n, and so the total memory tape size would be 2n+ 1, including 1
separation token. Modules: Reset, Identity, Increment, Max, Sum

• Reverse: Same tape size as Copy task, with the goal of writing the input digits in reverse order.
• Increment: Same tape size as Copy task, with the goal of writing the result of adding 1 to each

digit of the input array (modulo base) to the destination.

6



Under review as a conference paper at ICLR 2020

10 20 100
Generalization Length

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Copy

10 20 100
Generalization Length

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reverse

Tool
+ Hidden
+ Recurrent
- Head

10 20 100
Generalization Length

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Increment

10 20 100
Generalization Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Filter Even

Figure 4: The average success rate and the variance of MAIN for different algorithmic tasks for
different input generalization lengths of 10, 20, and 100.

• Filter Even: Given an array of base 16 digits in the tape, the goal is to output a sequence containing
only the even-valued digits in the same order. Modules: Reset, Identity, Increment, Max, Sum

• Multi-Digit Addition: Given two arrays of base 10 digits separated by ‘+’, the goal is to output
the sum of the integers (denoted by input arrays) as a sequence of digits. Modules: Sum, SumInc

4.1 EXPERIMENTAL SETUP

We train the controller with Impala, a distributed asynchronous algorithm. We used 50 data collec-
tion workers to sample episodes from the most recent policy. There is one training worker which
queues up episodes sent by the data collectors into training batches. We train until 30M timesteps
across all episodes. We use a curriculum over task difficulty, which essentially corresponds to the
input length. For each episode, an input-output pair is sampled from the task generator given a dif-
ficulty level, and the difficulty level is sampled uniformly in range [1, C], where C is the maximum
curriculum setting. We vary C from 2 to 10 with a linear schedule starting at 1M and ending at 18M.
During training, each data collector generates new task inputs on the fly.

For evaluation, we precompute datasets of 100 test inputs for generalization with larger input lengths
10, 20, and 100 sampled from the same data generator. We run evaluation repeatedly and concur-
rently with training, and take the highest observed success rate as the final metric. For a given input,
we compute success as whether the controller controller produced exactly the desired output. We
take the average success across the 100 evaluation inputs as the success rate. Because we run each
experiment 10 times, we can estimate the variance of success rate due to random weight initializa-
tion, randomly sampling from the policy, and stochastic effects of asynchronous training. We report
average success rate (across the 10 trials) and the empirical standard deviation.

4.2 RESULTS AND ABLATIONS

Table 2 presents the experiment results of evaluating MAIN on the five algorithmic tasks with differ-
ent ablation choices for the generalization input length of 100. For each task, we report the number
of runs out of 10 that achieved 100% success on the test set of 100 evaluation inputs (each of length
100). Additionally, the average of success rates together with their variance for four of the tasks for
different input generalization lengths of 10, 20, and 100 is shown in Figure 4.

7



Under review as a conference paper at ICLR 2020

Copy Reverse Increment Filter
Even

Multi-Digit
Add

Attention Encoder 7 7 5 9 0
− No Tape Values 3 6 1 0 1
− No Action History 0 0 0 0 0
− No Action History Tape Values 7 8 7 5 0

Recurrent Encoder 0 3 0 0 0

Table 2: Ablations and variability of success. For each task, we report number of runs out of 10 that
achieve 100% success on length 100 inputs. Each row is a different setting of our architecture.

As shown in Table 2, MAIN can learn to generalize perfectly for inputs of length 100 when trained
on inputs with length up to 10 only. For the copy, reverse, increment, and filter-even tasks, MAIN can
generalize in majority of runs out of 10. The multi-digit addition task is particularly challenging in
our architectural setting. For learning this task, the controller first needs to learn to select appropriate
individual digits to be added for each timestep. In addition, it also needs to learn to use the digits
and module choices selected in the previous timestep to decide whether to add a carry or not while
computing the addition. Remarkably, MAIN was able to learn one such controller.

Now we evaluate whether the special architectural features of MAIN are necessary for good per-
formance. First, we evaluate whether the controller needs to observe the values on the tape, by
considering an ablation (labeled “No Tape Values” in the table) which removes the top third of σt
(i.e. removes the tape values st). It may then seem like the controller cannot do anything, but it still
has access to the action history metadata and values under the previously placed read/write heads.
Notably, we found that without tape values, the controller performance goes down, except in Multi-
Digit Addition, which is the only setting in which could generalize to length 100. Since this task
requires the controller to compute whether a carry bit should be used for adding the intermediate
result for two digits, hiding the tape contents and only providing the head values constrains the space
of possible argument choices for modules and helps the controller to learn desired computation.

Next, we evaluate the usefulness of action history, by considering an ablation (labeled “No Action
History” in the table) which removes the fixed context ξt and the bottom third of σt, so that the
controller does not have information about previous actions. As expected, these architectures do not
generalize, achieving generalization accuracy of 0. The reason is that without the action history, the
controller does not have a mechanism to remember which part of the computation it is at currently,
and therefore cannot learn iterative computations, which is required by all of our tasks.

Recall that ξt contains the tape values underneath the previous read-write locations, even though the
controller could infer this from other context. Next, we evaluate whether this is helpful by removing
this in the ablation labeled “No Action History Tape Values”. On most tasks, the performance is
comparable to the full model, except on filter-even in which this ablation is slightly better.

Finally, we evaluate whether our attention-based encoder could be replaced with a simpler recurrent
controller, as has been used in previous work (Chang et al., 2018). For shorter inputs of length
10, the recurrent encoder achieves perfect average evaluation accuracy for the simpler tasks such
as copy, reverse, and increment (Figure 4). However, when evaluated on longer input lengths, its
performance degrades significantly. For filter-even and multi-digit addition tasks, the generalization
accuracy of the recurrent encoder goes to almost 0 for length 100. On the other hand, attention based
tape encoder always result in significantly higher generalization accuracies across all the tasks.

5 CONCLUSION

We presented a new neural architecture MAIN that learns algorithmic tasks from input-output ex-
amples. MAIN uses a neural controller that interacts with a variable-length input tape to learn to
compose modules. At each time step, the controller chooses which module to use together with the
corresponding tape locations for module arguments and for writing the module output back to the
tape. This architecture is trained end-to-end using reinforcement learning and we show that it can
learn several algorithms successfully that generalize perfectly to inputs of much longer length (100)
than the ones used for training (up to 10).

8



Under review as a conference paper at ICLR 2020

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pp. 39–48, 2016. doi: 10.1109/CVPR.2016.12. URL https:
//doi.org/10.1109/CVPR.2016.12.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-
aging grammar and reinforcement learning for neural program synthesis. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, 2018.

Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths. Automatically compos-
ing representation transformations as a means for generalization. CoRR, abs/1807.04640, 2018.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy I/O. In Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, pp. 990–998, 2017.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. In Jennifer
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1407–1416, Stock-
holmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.
mlr.press/v80/espeholt18a.html.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401,
2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471–476, 2016.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to decompose neural
computation. In NeurIPS, pp. 2414–2423, 2018.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection
of non-linear functions for multi-task learning. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

9

https://doi.org/10.1109/CVPR.2016.12
https://doi.org/10.1109/CVPR.2016.12
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html


Under review as a conference paper at ICLR 2020

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. Synthesis
of differentiable functional programs for lifelong learning. In Neural Information Processing
Systems, 2018.

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple algorithms
from examples. In ICML, pp. 421–429, 2016.

A APPENDIX

A.1 SEMANTICS OF MODULES

The semantics of the modules we consider are as follows.

Modules:

• Reset( , )→ ‘.’.
• Identity(x, )→ x.
• Increment(x, )→ char(int(x) + 1) if isnumeric(x) else ‘.’.
• Max(x, y)→ max(x, y).
• Sum(x, y)→ char((int(x) + int(y))%B) if isnumeric(x) and isnumeric(y) else ‘0’.
• SumInc(x, y)→ char((int(x) + int(y) + 1)%B) if isnumeric(x) and isnumeric(y) else ‘0’.

10


	Introduction
	Related Work
	Architecture
	Experiments
	Experimental Setup
	Results and Ablations

	Conclusion
	Appendix
	Semantics of Modules


