
Under review as a conference paper at ICLR 2020

MULTI-AGENT HIERARCHICAL REINFORCEMENT
LEARNING FOR HUMANOID NAVIGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-agent reinforcement learning is a particularly challenging problem. Current
methods have made progress on cooperative and competitive environments with
particle-based agents. Not enough progress has been made on solutions that could
operate in the real world with interaction, dynamics, and humanoid navigation
strategies. In this work, we make a significant step in multi-agent models on sim-
ulated humanoid navigation by combining Multi-Agent Reinforcement Learning
with Hierarchical Reinforcement Learning. We build on top of foundational prior
work in learning low-level physical controllers for locomotion and add a layer to
learn decentralized policies for multi-agent goal-directed collision avoidance sys-
tems. Surprisingly, our results show that with this combination of methods com-
mon RL techniques can be used for finding heterogeneous policies. A video of our
results on a multi-agent pursuit environment can be seen here1.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) is a very difficult problem space. Reinforcement
learning methods rely heavily upon stationary environments wherein a learned policy can be im-
proved by maximizing reward based on observations. With MARL, where agents learn in the shared
environment, leads to agents making learning updates using data based on the previous dynamics
of the environment. This is further complicated when the agents are not simple in their actions or
representations. For example, physically enabled humanoid agents must learn balance control, navi-
gation, and goal completion strategies. Yet if one goal of AI is to have agents that can operate in the
real world they will need to reason over physical interaction amoung other agents.

Deep Reinforcement Learning (DRL) has been successful at solving complex planning tasks. Given
a sizeable computational budget DRL has displayed superhuman performance on many games (Mnih
et al., 2015; Silver et al., 2017). However, less progress has been made on the MARL problem
space, possibly due to the non-stationary optimization of multiple changing policies which is not
easily overcome by collecting more data (OpenAI, 2018). If the goal is to create agents that can
operate in a dynamic multi-agent world, more stable methods with novel forms of communication
are needed. The trend to make progress on MARL has been to simplify the optimization problem.
For example, converting the multi-agent problem into a single agent centralized model results in
large gains in performance but can increase the number of network parameters (Lowe et al., 2017).
By using recurrent policies, significant compute, and constraints on the amount the policy is allowed
to change, it is possible to beat the best humans at the multi-agent game of Dota (OpenAI, 2018).
While these methods have shown promiss they have not yet displayed success in complex multi-
agent environments. It has been possible to produce competitive behaviour using asymmetric self-
play but this work is limited to few agents (Bansal et al., 2017). The driving question then is, how
can we simplify the MARL optimization problem while maintaining the heterogeneous nature of
multi-agent problems?

In this work, we propose the deep integration of MARL with Hierarchical Reinforcement Learn-
ing (HRL) to produce heterogeneous humanoid agents that can both navigate and interact in dy-
namic simulation. Specifically, we propose a method to reduce the difficulty in the MARL policy
optimization problem. While previous methods have focused on re-framing the problem as a type

1https://sites.google.com/view/mahrl

1

https://sites.google.com/view/mahrl

Under review as a conference paper at ICLR 2020

of single-agent RL problem, our method preserves the important features of heterogeneous agent
behaviour without adding more network parameters (Lowe et al., 2017). This use of HRL has many
advantages over current methods. We use shared parameter methods but only for task-agnostic por-
tions of the policy. Given the shared sub-policy, the optimization is simplified and allows us to learn
complex multi-agent policies with significantly less data. This method represents, to the best of our
knowledge, the first method for model-free multi-agent physical character control for locomotion
and navigation.

2 RELATED WORK

Simulated robot and physical character control is a rich area of research with many solutions and
approaches. Neural models focused on training neural networks by receiving joint or body sen-
sor feedback as input and producing appropriate joint angles as output (Geng et al., 2006; Kun &
Miller III, 1996; Miller III, 1994). A biped character’s movement controller set can also be man-
ually composed using simple control strategies and feedback learning (Yin et al., 2007; Faloutsos
et al., 2001). HRL has been proposed as a solution to handling many of the issues with current RL
techniques that have trouble with long horizons and week signal. Many frameworks have been pro-
posed for HRL but none seem to be the obvious choice for any particular problem (Sutton et al.,
1999; Dayan & Hinton, 1993; Dietterich, 1999). One difficulty in HRL design is finding a reason-
able communication representation to condition the lower level on. Some methods pretrain the lower
level on a random distribution (Heess et al., 2016; Peng et al., 2017) and other learn a more con-
structive latent encoding (Nair et al., 2018; Eysenbach et al., 2019; Gupta et al., 2018). There is
also the present challenge of learning multiple level of the hierarchy concurrently (Vezhnevets et al.,
2017; Nachum et al., 2018; Levy et al., 2017). We use a goal based approach that uses footstep space
representation that is randomly sampled to learn a task-agnostic lower level of control.

2.1 MULTI-AGENT DEEP REINFORCEMENT LEARNING

There are many types of multi-agent learning problems including cooperative, competitive, and with
or without communication (Bu et al., 2008; Tan, 1993; Panait & Luke, 2005). Recent work converts
the MARL problem to a single agent setting by using a single Q-function across all agents (Lowe
et al., 2017). Additional work focuses on the problem of learning communication methods between
agents (Foerster et al., 2016). While progress is being made, MARL is notoriously difficult due to
the non-stationary optimization issue, even in the cooperative case (Claus & Boutilier, 1998). In this
work, we apply a partial parameter sharing method assuming all agents are partly homogeneous at
a tast-agnostic level and optimize similar goals (Gupta et al., 2017).

There exists few environments specifically created for MARL evaluation (Zheng et al., 2018; Suarez
et al., 2019). The focus of these environments is often a type of strategy learning and coopera-
tion (Tian et al., 2017; Vinyals et al., 2017). MARL is a growing area of research and as such will
need increasingly complex environments to evaluate algorithms. In this work, we are interested in
the overlapping problems of control and perception. To this end, we have created the first simulation
of its type that affords multiple physics-based control tasks with variable numbers of agents. Recent
work has begun to combine MARL and HRL but is limited to simple environments, uses additional
methods to stabilize the optimization, and includes communication (Tang et al., 2018; Han et al.,
2019).

Our work represents a new paradigm in learning within the multi-agent navigation domain–beyond
simple navigation control strategies. We show compelling AI that learns navigation and gameplay
strategies with fully articulated physical characters. This is achieved through a novel learning strat-
egy that produces high value policies for a complicated control problem.

3 POLICY REPRESENTATION AND LEARNING

In this section, we outline key details of the general Reinforcement Learning (RL) framework. RL
is formulated on the Markov Dynamic Process (MDP) framework: at every time step t, the world
(including the agent) exists in a state st ∈ S, wherein the agent is able to perform actions at ∈ A,
sampled from a policy π(st, at) which results in a new state st+1 ∈ S according to the transition

2

Under review as a conference paper at ICLR 2020

probability function T (st+1|at, st). Performing action at in state st produces a reward rt from the
environment; the expected future discounted reward from executing a policy π is:

J(π) = Er0,...,rT

[
T∑
t=0

γtrt

]
(1)

where T is the maximum time horizon, and γ is the discount factor, indicating the planning horizon
length. The agent’s goal is to optimize its policy, π(·|θπ), by maximizing J(π). The policies in the
work are trained using the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017).
The value function is trained using TD(λ).

3.1 HIERARCHICAL REINFORCEMENT LEARNING

In HRL the original MDP is split into two different MDPs that should be easier to solve seperately.
In practice, this is accomplished by learning two different policies. The lower level policy is trained
first and is often conditioned on a latent variable or goal g. The lower level policy πlo(a|s, g) is
constructed in a way to give it temporally correlated behaviour depending on the g. After the lower
level policy is trained it is used to help solve the original MDP using a seperate policy πhi(g|s). This
policy learns to provide goals to the lower policy to maxmize rewards.

4 MULTI-AGENT REINFORCEMENT LEARNING

The extension to the MDP framework for MARL is a partially observable Markov game (Littman,
1994). A Markov game has a collection of N agents, each with its own set of actions A0, . . . , AN
andO0, . . . , ON that are partial observations of the full state space S. Each agent i has its own policy
π(a|oi, θi) that models the probability of selecting an action. The environment transition function is
a function of the full state and each agent’s actions T (S′|S,A0, . . . , AN). Each agent i receives a
reward ri for taking a particular action given a partial observation oi and its objective is to maximize
this reward over time

∑T
t=0 γ

trti , where γ is the discount factor and T is the time horizon. The
policy gradient can be computed for each agent as

∇θiJ(π(·|θi)) =
∫
Oi

dθi(oi)

∫
Ai

∇θi log(π(ai|oi, θi))Aπ(oi, ai) dai doi (2)

where dθ =
∫
S

∑T
t=0 γ

tp0(o0)(o0 → o | t, π0) do0 is the discounted state distribution, p0(o) repre-
sents the initial state distribution, and p0(o0)(o0 → o | t, π0) models the likelihood of reaching state
s by starting at state o0 and following the policy π(a, o|θπ) for T steps (Silver et al., 2014). Here
Aπ(o, a) represents the advantage function estimator GAE(λ) in (Schulman et al., 2016).

The challenge in MARL is that each agent learns separately and this often results in a non-stationary
learning problem. Each agent is learning how to estimate the dynamics and advantage of an en-
vironment that is affected by other evolving agents. Data collected and used for learning becomes
inaccurate after any other agent’s training update. We propose a method for reducing the inaccura-
cies between updates by using HRL.

4.1 MULTI-AGENT HIERARCHICAL REINFORCEMENT LEARNING

We construct a multi-agent learning structure that takes advantage of hierarchical design, or Multi-
Agent Hierarchical Reinforcement Learning (MAHRL). Each agent has its own higher level policy
(Multi-Agent Navigation Controller (NC)) π(g|o, θhii) and a shared lower level policy (Locomotion
Controller (LC)) π(a|o, g, θlo). This method allows us to introduce more structure into the difficlut
multi-agent optimization problem. We will use the notation π(ai|oi, θhii , θlo) to denote the policy
induced by the pair of policies. While current research shows that it is challenging but possible to
train a two-level hierarchy concurrently (Nachum et al., 2018; ?), we instead pretrain the lower level
policy and leave it fixed and shared across all agents. This reduces the MARL problem from learning
the details of locomotion via joint torques for each agent to learning goal-based footstep plans for
each agent.

The use of HRL is key to the method. When the challenge in MARL is dealing with what can be
large changes in the distribution of states visited by the agent the use of a temporally correlated

3

Under review as a conference paper at ICLR 2020

Locomotion
Controller

(LC)

π(a|s)

v(s)

Dense
256 & 128

ConvNet
3 layers

Navigation AI Controller (NC)
NC States

NC Actions = LC States

Figure 1: An overview of the MAHRL approach. From left to right: the NC state includes the relative goal
position and distance, an egocentric velocity field capturing the relative velocity of obstacles and other agents,
and the physical character link positions and tangent states; for each agent this state is input to a multi layer
CNN, including two dense hidden layers, and outputs actions–the value function uses a similar network. These
high-level actions are in the form of two-step plans dictating future foot placements; these footstep plans are
consumed by the LC as g, which produces the angle-axis targets for per-joint PD controllers.

structure significantly reduces the non-stationarity. Not only is each agent sharing a portion of its
network parameters with each other agent, this portion has been carefully constructed to provide
structured exploration for the task–greatly reducing the number of network parameters that need to
be learned and transforming the action space. We extend the analysis of this work by combining the
PPO algorithm in a MARL partial parameter sharing setting. Details of the algorithm can be found
in the supplementary material. This modification controls the way dθi(oi) can change for each agent
making it easier for each agent to estimate other agents potential changes in behaviour.

5 LEARNING HIERARCHICAL MULTI-AGENT NAVIGATION CONTROL

To solve the hierarchical learning problem, we train in a bottom-up fashion sharing the LC policy
among heterogenous NC policies. To do this, the levels of the hierarchy communicate through shared
actions and state in a feedback loop that is built to reflect biological biomechanical locomotion
system in humans. The NC’s objective is to provide footstep placement goals aH = gL for the LC
as seen in the right hand side of Figure 1. These footstep goals are produced as two-step plans. Each
step is parameterized with its root relative placement, angle on the ground, centre of mass heading
vector, and a time signature. The NC is queried for a new footstep action every 0.5 s. The NC decides
what action to take based on the egocentric velocity field E in front of the agent, its pose schar and
the NC goal gH , C = {E, schar, gH}, seen in the left box of Figure 1.

5.1 STATE SPACE

In several studies, it has been shown that optic flow, an inherently egocentric phenomenon of map-
ping velocities to regions of vision, is key to sighted locomotion (Bruggeman et al., 2007; Warren Jr
et al., 2001). Additionally, the field of vision directly impacts walking ability and locomotion sta-
bility (Jansen et al., 2011). Taken together, vision’s role in locomotion forms an egocentric velocity
field where perceived distance and movement play different roles in locomotion control (Turano
et al., 2005). This evidence has been used previously to define multi-agent navigation models, both
by constructing a discretized egocentric field (Kapadia et al., 2009) and by learning the discretization
of an egocentric field (Long et al., 2017).

The NC uses as input an egocentric velocity field relative to the agent’s location and rotation. This
egocentric velocity field E is 32 × 32 over a space of 5x5 m, starting 0.5 m behind the agent and
extending 4.5 m in front, shown in Figure 1(a). The velocity field consist of two image channels in
the x and y direction of a square area directly in front of the agent, where each sample is calculated
as the velocity relative to the agent (Bruggeman et al., 2007; Warren Jr et al., 2001). The current pose
of the agent is included next, followed by the NC goal. The NC goal gH} consists of two values, the
agent relative direction and distance to the current spatial goal location. Both the egocentric velocity
field sampling and the goal location state features can be seen in the left box of Figure 1.

4

Under review as a conference paper at ICLR 2020

5.2 REWARD

Navigation combines the desire to move towards goals, while avoiding collisions with other objects,
in an energy efficient way. The methods purpose is to implicitly learn low effort local turning be-
haviour while avoiding collisions without the need to explicitly describe its operation. To elicit this
behaviour, a combination of reward signals are used. Primarily, a dense reward is used to encourage
the agent to walk in the direction of its current goal.

rHd = exp(−(min(0, (utar ∗ vcom)− vcom))2) (3)

where vcom is the agent’s velocity and uTtar is a normalized vector in the direction of the goal. For
this work, a desired speed of vcom = 1.0m/s is used.

A directional reward is not enough to encourage the agent to proactively reach its goal. To reinforce
the importance of goal reaching behaviour, a large reward rgoal for reaching the goal is added–being
within

√
2 m. In this work, the value rgoal = 20 is used and comes from horizon = 1/(1− γ) and

the maximum reward the agent can otherwise receive is max(rd) = 1, a reward that will be more
important than travelling to the goal should be at least horizon ∗ max(rd). This reward greatly
increases the goal reaching behaviour. However, it can have the unintended effect of making the
agent seek its goal aggressively, by trampling other agents. To reduce this behaviour, a repulsive
cost was added when the agent is within

√
3 m other agents

rHa(a) =
∑

a′∈{A−a}

−(rs + (l − dist(a, a′)) (4)

where A is the set of agents in the simulation, and dist(a, a′) computes the Euclidean distance
between the Centre of Mass (COM) of agents a and a′. We empirically found rs = 2.5 and l =
3.0 work well for defining a distance dependent penalty in this case. This is intended to roughly
approximate the power law of pedestrian interactions (Karamouzas et al., 2014). A similar repulsive
cost is applied between the agent a and obstacles OB in the scene rHb(a) =

∑
ob∈OB −2.5 for

each obstacle within 1 m of a. The high reward for reaching the goal makes the agent very single-
minded. The obstacle penalty is introduced to prevent the agents from using obstacles as affordances
to regain balance.

Many RL simulation environments use a flag to indicate the episode or simulation end. This indicates
that either the agent has reach its time limit or the agent has entered into an unrecoverable area of
the state space, such as a fall. With multiple agents, the likelihood of a fall is high. It is not clear
what to do when there are multiple agents being simulated. Terminating early, when one agent has
fallen, is sub-optimal for other agents doing well, and waiting for every agent to fall wastes compute
resources while most agents are collecting unhelpful data. We chose to reset the simulation when
more than half the agents have fallen. However, fallen agents continue to act and need to be heavily
penalized, so they receive a fixed reward of −5–lower than any other reward.

The NC’s final reward function is a combination of the task rewards and behavioural costs:

rH(a) =

{
−5 if fallen
rHd + rHa(a) + rHb(a) otherwise.

(5)

5.3 SIMULATION ENVIRONMENT & TRAINING

We construct a collection of physics-based simulation tasks to evaluate the method on. At initializa-
tion, each agent is randomly rotated, and the initial velocities of the agent’s links are determined by
a selected motion capture clip using finite differences and rotated to align with the agent’s reference
frame. Goal locations are randomly generated in locations that are at least 1 m away from any obsta-
cle. Each agent is randomly placed in the scene such that it does not intersect with any other agent or
obstacle. The number and density of agents in the simulation vary depending on the task. For train-
ing, we found that starting with 3 agents in the environment is a good trade-off between computation
cost and the generalization ability of the resulting learned policy. Environment specifics are given
in Table 1. We consider the simulation and training environment to be, to the best of our knowledge,
another novel contribution. While some simulators exist that support physics-based simulation for
robots (Brockman et al., 2016; Tassa et al., 2018), few support more than one agent, with at most
2. Other libraries focus on supporting different kinds of MARL configurations for particle-based

5

Under review as a conference paper at ICLR 2020

Name agent count obstacle count size agent direction obs location
waypoint 1 [0, 10] 10× 10 m random random
oncoming [2, 10] [0, 2] 8× 8 m towards circle centre +N (0, 0.15) circle centre

mall [3, 5] [0, 10] 10× 10 m random random
bottleneck [3, 5] 4 10× 20 m right +N (0, 0.15) around

Table 1: Scenarios and their main parameters.

MARHL

PPO
MADDPG

(a) Baseline Comparison

MAHRL

(b) Humanoid3d on Mall

agent 0
pursuer 0
pursuer 1

(c) Pursuit

Figure 2: Comparative study of the learning curves of (a) PPO and MAHRL and (b) each agent in the 5 agent
mall environment. Comparative study of the learning curves of each agent using MAHRL in the 3 agent pursuit
enviroment.

agents (Lowe et al., 2017). Our proposed approach represents the first physics-based simulation of
its kind that supports MARL.

The NC uses convolutional layers followed by dense layers. The particular network used is as fol-
lows: 16 convolutional filters of size 6× 6 and stride 2× 2, 16 convolutional filters of size 3× 3 and
stride 1× 1, the structure is flattened and the character and goal features schar, gH are concatenated,
a dense layer of 256 units and a dense layer of 128 units are used at the end. The network uses
Rectified Linear Unit (ReLU) activations throughout except for after the last layer which uses a tanh
activation that outputs values between [−1, 1]. All network inputs are standardized with respect to
all states observed so far. The rewards are scaled by a running variance. That is, the variance is com-
puted from a running computation during training that is updated after every data collection step.
The batch size used for PPO is 256 with a smaller batch size of 64 for the value function. The policy
learning-rate and value function learning-rate are 0.000 and 0.001 respectively. The value function
is updated four times for every policy update. The NC also uses the Adam stochastic gradient opti-
mization method (Kingma & Ba, 2014) to train the Artificial Neural Network (ANN) parameters.

6 RESULTS

In this section, we demonstrate the efficacy of the proposed method. We separate our evaluation
into two sections. First, we examine the performance of the model in terms of training and learned
policies. Second, we examine the performance of our arpproach in terms of computation cost and
generalizability with respect to the number of agents in the environment.

6.1 LEARNING

We evaluate MAHRL in complex multi-agent environments by first examining the performance of
the reward function over training episodes. We show that MAHRL performs much better than the
basic PPO algorithm without any hierarchical structure in the 5-agent mall in Figure 2(a). After a
lengthy training session the basic PPO is not able to even produce a standing behaviour. We find that
MAHRL performs well and is able to learn navigation behaviour after a short amount of training. We
find that the hierarchical design provides a significant improvement in this case. We also compare
MADDPG and find that it does better than PPO but strugles to produce good behaviour. We beleive
this is related to the large Q-network that needs to be created for MADDPG. In Figure 2(b) we show
the learning curves training MAHRL with a full humanoid model. Even with this increased control
complexity out method is able to learn succesful navigation strategies shown in Figure 5. Each
agent in the scenario quickly develops strong navigation behaviours that become more conservative

6

Under review as a conference paper at ICLR 2020

Figure 4: Rasterized images from the pursuit environment, where the pursuer agents learn to work together to
corner and tackle the navigating agent (middle agent). A video for this example can be found here.

Figure 5: Rasterized images from the mall environment with humanoid agents navigating and avoiding each
other while seeking goals. A video for this example can be found here.

over time as agents value avoiding collisions. This can result in agents taking longer paths in the
environment.

(a) ego field x (b) ego field y

By extracting the gradients on the input features for the value
function in the learned model we can examine some artifacts
of what is learned. Recall, that for input we include in the state
of the NC a simple model of an egocentric perceptual field–a
square region in front of the agent. We show that our mod-
els learns two important aspects of navigation with respect to
this field. The magnitude of the velocity field gradients in our
learned model reveal that the learning process has developed
an egocentric velocity field attenuated with distance. This can be seen in Figure 3a. Interestingly,
this field is biased toward the rightward direction (down in the figures). This bias supports reciprocal
collision avoidance in counter flows.

To further evaluate MAHRL, it is applied to a pursuit environment. In this environment there is one
agent (agent 0) with the same navigation goal as in previous environments. As well, 2 additional
agents (pursuer 0,1) that have the goal of reaching agent 0. This is accomplished by setting a high-
level goal gH for the pursuers to the location of agent 0. In Figure 2(c), the three agents all begin
to increase their average reward via their navigation objective, as learning progresses the pursuing
agents outperform agent 0 and as they get better agent 0 has an increasingly difficult time reaching
its own navigation targets. An example of this behaviour is shown in Figure 4.

To evaluate the NC qualitatively we show that agents learn to navigate arbitrary environments while
avoiding collisions with both obstacles and other agents. First, we show a rasterized version of an
example episode from the pursuit environment in Figure 4 where agents learn to corner and tackle.
Then, we show that agents can successfully and continuously navigate complicated environments of

7

https://sites.google.com/view/mahrl
https://sites.google.com/view/mahrl

Under review as a conference paper at ICLR 2020

(a) 5 Agent Mall (b) BottleNeck

Figure 6: (a) Agents reaching series of targets in arbitrary environments (images in raster order). (b) Egress
scenarios with a group of (left) 5 and (right) 21 agents. The density of the second group results in a physics-
based bumping, pushing, and trampling.

Agent Count

Ti
m

e
in

 M
in

ut
es

0

10

20

30

40

4 6 8 10 12 14

bottleneck mall bottleneck_multi-task bottleneck_multi-task

Simulation Time vs agent count

Agent Count
Av

er
ag

e
Re

w
ar

d

-10

-8

-6

-4

-2

0

2

4 6 8 10 12 14

mall bottleneck bottleneck_multi-task bottleneck_multi-task

Average Reward vs Agent Count

(a) (b)

Figure 7: The performance of the method from two quantitative perspectives, (a) the computational perfor-
mance with respect to agent count and (b) the generalization performance with respect to average reward value.

forced interactions as seen in Figure 6a (Kapadia et al., 2011). Finally, robust clogging and trampling
is shown in both low and high density bottleneck egress scenarios respectively Figure 6b.

6.2 COMPUTATION AND GENERALIZATION

The deep integration of physical character control and distributed multi-agent navigation comes
with a cost directly dependent on the number of active agents. In this section, we show two results
in the same experiment, the computational costs of increasing the number of agents and the model
generalization to more difficult scenarios. For two scenarios, mall and bottleneck, the number of
agents is increased, and we record the average reward and computation time from the simulation.
The agent-computation curve in Figure 7(a) indicates a linear trend in computational cost. While
at agents counts in the 20s the simulation is not real-time, the most computational expensive part
is not the learning system but the physics simulation. Computationally efficient articulated body
simulation is an active area of research (Erez et al., 2015). For accurate and stable simulation we use
a physics time-step of 0.0005 s.

To evaluate the learned policies ability to generalize with group size, we vary the number of agents
for select tasks after a homogenious policy has been trained. The longer the policy can maintain a
high average reward the better the generalization. In addition, the average reward for two different
types of policy training styles are compared. The first method trains on a single task at a time,
the second method uses multi-task learning in hopes that a more generalizable task-independent
structure is aquired. The multi-task method, often preferring to optimize easier tasks, does not appear
to learn more robust policies compared to the scenario-space based method (Kapadia et al., 2011).
All generalizaiton results can be seen in Figure 7(b). However, generalization remains a known and
open issue of DRL methods (Zhang et al., 2018)

7 CONCLUSION

In this paper we present a novel method where, for the first time, multi-agent navigation and physical
character control are integrated. Multiple heterogenious interacting agents can experience physical
interactions, handle physical perturbations, and produce robust physical phenomenon like falling

8

Under review as a conference paper at ICLR 2020

and slipping. To achieve this, we developed an integrated model of MARL and HRL with partial
parameter sharing. The evaluation of this approach shows how valuable it is for addressing the
non-stationary learning problem of MARL in complex multi-agent scenarios. In particular, the het-
erogeneous pursuer scenario learns complex routing and tackling behaviours akin to state-of-the-art
competitive self-play approaches.

While our method produces promising results, the work is limited by the fixed LC partial parameter
sharing. There is room for research in the area of training the LC and NC concurrently. Still, the
proposed method benefits greatly from this stability. For the NC, we introduced a set of reward
functions to encourage human-like behaviour while navigating with other agents. These rewards
are motivated from the literature but balancing them is its own challenge. In the future, it may be
beneficial to use additional data-driven imitation terms to encourage human-like paths. Finally, great
effort was made to create an agent that is robust to the number of agents in the simulation. However,
robust generalization remains an open problem.

REFERENCES

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent
complexity via multi-agent competition. arXiv preprint arXiv:1710.03748, 2017. URL http:
//arxiv.org/abs/1710.03748.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

Hugo Bruggeman, Wendy Zosh, and William H Warren. Optic flow drives human visuo-locomotor
adaptation. Current biology, 17(23):2035–2040, 2007.

Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38(2):156–172, 2008.

Bullet. Bullet physics library, 2015. http://bulletphysics.org.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. AAAI/IAAI, 1998:746–752, 1998.

Peter Dayan and Geoffrey E Hinton. Feudal Reinforcement Learning, pp. 271278. Morgan-
Kaufmann, 1993. URL http://papers.nips.cc/paper/714-feudal-reinforcement-learning.pdf.

Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function decompo-
sition. arXiv:cs/9905014, May 1999. URL http://arxiv.org/abs/cs/9905014. arXiv: cs/9905014.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics: Compar-
ison of bullet, havok, mujoco, ode and physx. In 2015 IEEE international conference on robotics
and automation (ICRA), pp. 4397–4404. IEEE, 2015.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=SJx63jRqFm.

Petros Faloutsos, Michiel Van de Panne, and Demetri Terzopoulos. Composable controllers for
physics-based character animation. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 251–260. ACM, 2001.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 2137–2145, 2016.

Tao Geng, Bernd Porr, and Florentin Wörgötter. A reflexive neural network for dynamic biped
walking control. Neural Computation, 18(5):1156–96, 2006.

9

http://arxiv.org/abs/1710.03748
http://arxiv.org/abs/1710.03748
http://papers.nips.cc/paper/714-feudal-reinforcement-learning.pdf
http://arxiv.org/abs/cs/9905014
https://openreview.net/forum?id=SJx63jRqFm

Under review as a conference paper at ICLR 2020

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Infor-
mation Processing Systems 31, pp. 5302–5311. Curran Associates, Inc., 2018. URL http://papers.
nips.cc/paper/7776-meta-reinforcement-learning-of-structured-exploration-strategies.pdf.

Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control us-
ing deep reinforcement learning. In Gita Sukthankar and Juan A. Rodriguez-Aguilar (eds.), Au-
tonomous Agents and Multiagent Systems, pp. 66–83, Cham, 2017. Springer International Pub-
lishing. ISBN 978-3-319-71682-4.

Dongge Han, Wendelin Boehmer, Michael Wooldridge, and Alex Rogers. Multi-agent hierarchical
reinforcement learning with dynamic termination. In Proceedings of the 18th International Con-
ference on Autonomous Agents and MultiAgent Systems, pp. 2006–2008. International Foundation
for Autonomous Agents and Multiagent Systems, 2019.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Sander EM Jansen, Alexander Toet, and Peter J Werkhoven. Human locomotion through a multiple
obstacle environment: strategy changes as a result of visual field limitation. Experimental brain
research, 212(3):449–456, 2011.

Mubbasir Kapadia, Shawn Singh, William Hewlett, and Petros Faloutsos. Egocentric affordance
fields in pedestrian steering. In Proceedings of the 2009 symposium on Interactive 3D graphics
and games, pp. 215–223. ACM, 2009.

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, and Petros Faloutsos. Scenario
space: characterizing coverage, quality, and failure of steering algorithms. In Proceedings of
the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 53–62. ACM,
2011.

Ioannis Karamouzas, Brian Skinner, and Stephen J Guy. Universal power law governing pedestrian
interactions. Physical review letters, 113(23):238701, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Andrew Kun and W. Thomas Miller III. Adaptive dynamic balance of a biped robot using neural
networks. In Proceedings of the IEEE International Conference on Robotics and Automation,
volume pages, pp. 240–245. IEEE, 1996.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv:1712.00948 [cs], Dec 2017. URL http://arxiv.org/abs/1712.00948. arXiv:
1712.00948.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Pinxin Long, Wenxi Liu, and Jia Pan. Deep-learned collision avoidance policy for distributed mul-
tiagent navigation. IEEE Robotics and Automation Letters, 2(2):656–663, 2017.

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 30, pp. 6379–6390. Curran Associates, Inc., 2017.

W. Thomas Miller III. Real-time neural network control of a biped walking robot. Control Systems,
IEEE, 14(1):41–48, 1994.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

10

http://papers.nips.cc/paper/7776-meta-reinforcement-learning-of-structured-exploration-strategies.pdf
http://papers.nips.cc/paper/7776-meta-reinforcement-learning-of-structured-exploration-strategies.pdf
http://arxiv.org/abs/1712.00948

Under review as a conference paper at ICLR 2020

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. arXiv:1805.08296 [cs, stat], May 2018. URL http://arxiv.org/abs/1805.08296.
arXiv: 1805.08296.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. arXiv:1807.04742 [cs, stat], Jul 2018. URL http:
//arxiv.org/abs/1807.04742. arXiv: 1807.04742.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11(3):387–434, 2005.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics
(TOG), 36(4):41, 2017.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. ArXiv e-prints, July 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations (ICLR 2016), 2016.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proc. ICML, 2014.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, and et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354359, Oct 2017. ISSN 1476-4687. doi:
10.1038/nature24270.

Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural MMO: A massively multiagent
game environment for training and evaluating intelligent agents. CoRR, abs/1903.00784, 2019.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181211, Aug
1999. ISSN 0004-3702. doi: 10.1016/S0004-3702(99)00052-1.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hangtian Jia, Chunxu
Ren, Yan Zheng, Changjie Fan, and Li Wang. Hierarchical deep multiagent reinforcement learn-
ing. arXiv preprint arXiv:1809.09332, 2018.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, T. Lillicrap, and M. Riedmiller. DeepMind Control Suite. ArXiv e-prints, January
2018.

Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin Wu, and C. Lawrence Zitnick. Elf: An ex-
tensive, lightweight and flexible research platform for real-time strategy games. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 30, pp. 2659–2669. Curran Associates, Inc., 2017.

Kathleen A Turano, Dylan Yu, Lei Hao, and John C Hicks. Optic-flow and egocentric-direction
strategies in walking: Central vs peripheral visual field. Vision research, 45(25-26):3117–3132,
2005.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning.
arXiv:1703.01161 [cs], Mar 2017. URL http://arxiv.org/abs/1703.01161. arXiv: 1703.01161.

11

http://arxiv.org/abs/1805.08296
http://arxiv.org/abs/1807.04742
http://arxiv.org/abs/1807.04742
https://blog.openai.com/openai-five/
http://arxiv.org/abs/1703.01161

Under review as a conference paper at ICLR 2020

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John
Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David
Silver, Timothy P. Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence,
Anders Ekermo, Jacob Repp, and Rodney Tsing. Starcraft II: A new challenge for reinforcement
learning. CoRR, abs/1708.04782, 2017.

William H Warren Jr, Bruce A Kay, Wendy D Zosh, Andrew P Duchon, and Stephanie Sahuc. Optic
flow is used to control human walking. Nature neuroscience, 4(2):213, 2001.

KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: Simple biped locomotion
control. ACM Transactions on Graphics, 26(3):Article 105, 2007.

Petr Zaytsev, S Javad Hasaneini, and Andy Ruina. Two steps is enough: no need to plan far ahead for
walking balance. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pp. 6295–6300. IEEE, 2015.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018.

Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong Yu.
Magent: A many-agent reinforcement learning platform for artificial collective intelligence. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

8 SUPPLEMENTARY MATERIAL

8.1 LOCOMOTION CONTROLLER

The Low-Level Controller (LLC) is designed to solve the problem of coordinating joint torques over
time to mimic selected motion capture data and facilitate robust balance and locomotion. The LLC
is queried at a frequency of 30 Hz to produce joint target angles for per-joint PD controllers. The
details of this approach are outlined in the following sections.

8.2 REWARD

We found that a combination of imitation and end effector rewards leads to a robust and reactive
motion. The goal is to reward joint angle targets which result in mimicking source motions. The
combination of these competing rewards leads to a complex balancing problem of many objectives–
trading off imitation behaviour for footstep matching.

8.2.1 IMITATION

The imitation method is predicated on time indexed 0.5 s long reference motions qi(t) created from
motion capture data and augmented with footstep parameterized labels. The difference between
the agent and the desired pose to imitate is computed as the weighted difference between the time
indexed pose and the agent rLp = exp(−0.5

∑
i ||sichar−qi(t)||2). The motion database contains 7 s

of segmented motion that coarsely covers the space of possible footstep positions and the motions
necessary to realize those footsteps. The accuracy and diversity of the LLC’s motion can be increased
or made more robust with additional motion if desired, including stylized, disordered, running, and
more.

8.2.2 FOOTSTEP GOAL

The footstep goals gL = {p̂0, p̂1, θ̂root} in Figure 1(c), consist of the agent root relative distances
of the next two footsteps on the ground plane and the desired facing direction at the first step’s end.
This goal description is motivated by work that shows people may plan steering decisions two foot
placements ahead Zaytsev et al. (2015).

The LLC is designed to learn to place its feet as accurately as it can to match these step goals using
the reward rLg = exp(−0.2||sgchar − gL||2). The better the LLC learns this behaviour, the stronger

12

Under review as a conference paper at ICLR 2020

the communication channel between it and the High-Level Controller (HLC) will be. However, if the
agent matches these footstep goals too well, the smoothness of the motion will degrade. A balance
is struck between learning robust footstep placement strategies and perfect mimicry–the reference
motions and foot placements guide naturalness and should not be over-fitted.

8.2.3 END EFFECTOR

An additional reward is given to encourage the policy to match the end-effector positions in the
imitation motion rLe = exp(−0.15

∑
e ||sechar − qe(t)||2). Reward is also given for how well the

agent matches the imitated motion’s COM rLcom = exp(−0.2
∑
||scomchar − qcom(t)||2)

8.2.4 TORQUE PENALTY

To smooth the actions generated from the control policy, a reward for maximizing the above rewards
with minimal torque cost is used rLτ = exp(−0.2

∑
i τ(s

i
char)). These torques are normalized by

specified torque limits that keep the agent from displaying unrealistic strength.

8.3 TRAINING & SIMULATION ENVIRONMENT

The LLC state includes the proprioceptive-like joint information. In particular, the components of
schar consist of the COM relative distances and velocities of each links as well as the rotation and
angular velocities of each link as shown in Figure 1(d). The trained policy actions are in the form
of angle-axis targets for per-joint Proportional Derivative (PD) controllers. In this way, the action
is used to set the desired position of each joint of the agent. This can be seen in Figure 1(e). The
method is also able to learn policies for agents of different types. In Figure ?? we additionally show
the method using a full humanoid LLC character.

The agent is simulated with the physics-based rigid body simulation environment Bullet Bullet
(2015). The policy is trained in an on-policy fashion. At the beginning of each episode a goal gL is
sampled from the simulation and updated every 0.5 s. Episodes end when either a time limit T is
reached or the agent falls. Between training rounds 4096 transition tuples are collected by simulating
episodes in parallel. After enough tuples have been collected 16 minibatch updates are performed
with a batch size of 256. The value function is updated 64 with a minibatch size of 64. For the policy
and value function. The policy and value function are both modeled using a ANN with 2 hidden lay-
ers of size 512 and 256. The network uses ReLU activations through except for after the last layer
where a tanh activation that outputs values between [−1, 1] is used. The Adam stochastic gradient
optimization method is used to train the ANN parameters Kingma & Ba (2014). The learning rates
for the policy and value function are 0.000 and 0.001 respectively. Details related to the learning
algorithm can be found in the supplementary material.

Many previous methods have created robust controllers via imitation. These methods were not in-
tended to be used in crowds or dynamic environments with potentially random disturbances from
other interacting agents in the simulation. Given that we intend to use this agent in a physical multi-
agent simulation where the agent may bump into other agents or obstacles when trained in a crowded
setting, we apply additional methods to simulate pushes that may be encountered. That is, random
pushes between 50 − 150 N are applied every 3 − 5 s for a duration of 0.1 − 0.3 s to increase the
robustness of the controller. Similarly, the motions in the motion database start from the same facing
direction. To make the agent more robust to distributed crowd scenarios, the agent’s initial facing
direction is randomized during training.

8.4 LEARNING DETAILS

The modification to this algorithm for the MARL method is to change line 7−8 to execute an action
for each agent in the simulation in parallel.

The Inputs are standardized wrt to all states seen so far. The rewards are divided by the variance.
The variance is computed from a running computation during training that is updated after every
data collection step. The advantage is batch normed.

13

Under review as a conference paper at ICLR 2020

Algorithm 1 Goal-Based Learning Algorithm

1: Randomly initialize model parameters θπ and θv
2: while not done do
3: for i ∈ {0, . . . N} do
4: τi ← {}
5: for t ∈ {0, . . . , T} do
6: at ← π(·|st, θπ)
7: st+1, rt ← execute at in environment
8: τi,t ←< st, at, rt >
9: st ← st+1

10: end for
11: end for
12: Update value function Vπ(·) parameters θv using {τ0, . . . , τN}
13: Update policy parameters θπ using {τ0, . . . , τN}
14: end while

anneal_exploration: True
exploration_rate: 0.2

kl_threshold: 0.25

Figure 8: Hyperparameter exploration learning curves for the LC training.

Hyper Parameter Exploration Parameter exploration is a key process in acheiving the best re-
sults for DRL methods. In this work we explored different network architectures, policy variances,
annealing the variance, learning rates and activation types. The results with the best performance are
reported in the paper.

8.5 RESULTS DETAILS

8.5.1 LC HYPERPARAMETER EXPLORATION

The LC hyperparameter exploration learning curves in Figure 8 illustrate the process of finding op-
timal training parameters. It was found that annealing the policy variance over time did not increase
the learning efficiency. As well, the best settings for the policy variance and kl threshold are 0.2 and
0.25 respectively.

8.5.2 MULTI-AGENT NAVIGATION UNIT TASKS

In this section, we show several multi-agent navigation tasks and their qualitative performance us-
ing our method. These are rendered as birds-eye views of scenarios with each agents trajectory over
time rendered. Each agents goal is rendered as a red point within a red circle and the shortest linear
path to that from the agent’s current position is rendered as a red line. We show that agent’s learn to
navigate towards arbitrary goals repeatedly hitting its mark with each new goal in Figure 9. Predic-
tive reciprocal collision avoidance is important in multi-agent navigation and lends naturalness to

14

Under review as a conference paper at ICLR 2020

Figure 9: The agent moves towards and reaches goals repeatedly (top-left to bottom-right). The learned model
produces smooth goal seeking trajectories show in in blue.

(a) (b) (c)

Figure 10: Three examples demonstrating reciprocal collision avoidance. The size and position of the egocen-
tric state sampling field relative of the agent is shown in (a).

qualitative results. We show our method learns high value reipcrocal collision avoidane strategies,
and we overlay the sample points for the velocity state space to illustrate how this is acheived in
Figure 10. We show that this generalizes to the introduction of obstacles in both Figure 11 & 12.

Figure 11: Reciprocal collision avoidance with obstacles. Each agent’s initial position is the target location of
the other agent.

15

Under review as a conference paper at ICLR 2020

(a) (b) (c)

Figure 12: An agent reaching goals in arbitrary complex environments. The red circle indicates the final goal.

8.6 ADDITIONAL DISCUSSION

8.6.1 LC AGILITY

While often in the crowd simulation literature it is common to have agents that can turn on point
or or produce holonomic motions, this is unrealistic for articulated agents. Interestingly, the agent
learned stopping and in-place turning behaviour which was not contained in the imitation data the
LC was trained on, indicating the system can generate behaviours beyond its design. However, the
agents in this work do not make unrealistic sharp turns. This is in part related to the NC being able to
avoid falls, however there are many other factors: The LC motion capture data, gL selection during
LC training and that the LC was not trained with other agents. Progress in any of these areas can
improve the responsiveness of the LC and is left for future work.

While the LC is goal driven, this goal is only based on foot placement, a fully interactive agent can
have many other types of short term goals, including where to put one’s hands to manipulate items
in the environment, like doors.

16

	Introduction
	Related Work
	Multi-Agent Deep Reinforcement Learning

	Policy Representation and Learning
	Hierarchical Reinforcement Learning

	Multi-Agent Reinforcement Learning
	Multi-Agent Hierarchical Reinforcement Learning

	Learning Hierarchical Multi-Agent Navigation Control
	State Space
	Reward
	Simulation Environment & Training

	Results
	Learning
	Computation and Generalization

	Conclusion
	Supplementary Material
	Locomotion Controller
	Reward
	Imitation
	Footstep goal
	End effector
	Torque penalty

	Training & Simulation Environment
	Learning Details
	Results Details
	LC Hyperparameter Exploration
	Multi-agent Navigation Unit Tasks

	Additional Discussion
	LC Agility

