
Under review as a conference paper at ICLR 2020

UNSUPERVISED DOMAIN ADAPTATION WITH
IMPUTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Motivated by practical applications, we consider unsupervised domain adaptation
for classification problems, in the presence of missing data in the target domain.
More precisely, we focus on the case where there is a domain shift between source
and target domains, while some components of the target data are systematically
absent. We propose a way to impute non-stochastic missing data for a classi-
fication task by leveraging supervision from a complete source domain through
domain adaptation. We introduce a single model performing joint domain adap-
tation, imputation and classification which is shown to perform well under var-
ious representative divergence families (H-divergence, Optimal Transport). We
perform experiments on two families of datasets: a classical digit classification
benchmark commonly used in domain adaptation papers and real world digital
advertising datasets, on which we evaluate our model’s classification performance
in an unsupervised setting. We analyze its behavior showing the benefit of explic-
itly imputing non-stochastic missing data jointly with domain adaptation.

1 INTRODUCTION

When dealing with machine learning applications in the real world, data usually come with several
imperfections that make classical algorithms hardly deployable. One of these issues is that data
are often incomplete. Typically, while capturing data coming from different locations with several
sensors per location, a sensor may randomly fail or even may be just missing at a given location.
Such a situation can also occur in multi-modal medical imaging where one of the modalities fails
or is not available; for example the positron emission tomography (PET) modality which reveals
metabolic information for clinical tests requires ingesting a radioactive tracer which poses health
risks and is often missing (Cai et al., 2018). Similarly, in computational advertising applications,
information is missing for users who do not have a prior history on a merchant’s website while their
global clicking behavior across websites may be known. Another common issue is that data used for
training and deployment may differ in their generation process: data may be collected on different
devices, background noise or compression schemes may affect differently training or deployment
data, leading to a shift in data distribution. This has given rise to the important literature of Domain
Adaptation (Pan & Yang, 2010; Kouw & Loog, 2019). These two issues are usually independently
addressed by developing models handling only the missing data or the domain adaptation problem.

In this paper, motivated by practical advertising applications, we consider unsupervised domain
adaptation (i.e. labels are not available in the target domain) for classification when (1) part of
input data is missing in the target domain thus requiring some form of imputation, (2) there is no
possible supervision in the target domain for imputation thus requiring indirect supervision from
the source domain, and (3) there exists a domain shift between the source and target distributions
requiring domain adaptation. More precisely we consider this adaptation-imputation setting for non-
stochastic missing data, i.e. when the same features are missing for all target samples. This contrasts
with many imputation problems which take benefit of stochasticity in missing features.

We propose a model that handles unsupervised domain shift and missing data assuming non-
stochastic missing data in the target domain. The model learns to perform imputation for the target
domain while aligning the distributions of the source and target domains in a latent space, thus going
beyond the simple juxtaposition of a data imputation module followed by a domain-invariant feature
representation learning module. Imputation makes use of an indirect supervision from the complete

1

Under review as a conference paper at ICLR 2020

source domain. This key property allows us to handle non-stochastic missing data, while satisfying
the constraints related to adaptation and to the classification objective. The imputation process plays
several roles in our global architecture as it provides us with information about the missing data for
the target domain while contributing to the domain-invariant loss and the reconstruction loss. Ex-
tensive empirical evidence on handwritten digits and Click-Through-Rate prediction (CTR) domain
adaptation problems illustrate the benefit of the proposed model.

The original contributions are the following:

• We introduce a new problem : joint unsupervised domain adaptation and imputation for classifi-
cation motivated by practical applications;

• We propose a new model for handling the problem end-to-end. It learns to generate relevant
missing information while aligning source and target distributions in a latent space and to classify
source instances;

• We evaluate the model not only on academic benchmarks but also on challenging real world
advertising data.

2 PROBLEM DEFINITION

Let us denote respectively (xS , yS) ∈ Rn × R and (xT , yT) ∈ Rn × R, data from the source and
target domains where x− is an input, y− the associated label and n is the dimension of the input
space. “−” holds for either source S or target T . The joint distribution on each domain is denoted
respectively pS(X,Y) and pT (X,Y). We consider that x− has two components, x− = (x−1

, x−2
).

The problem we address is Unsupervised Domain Adaptation (UDA) with missing features in the
target domain. More precisely, we make the following hypotheses. Missingness: We assume that
features are the same across domains and that source features xS = (xS1

, xS2
) are always available

while in the target domain only xT1
is available and xT2

is systematically missing. For advertising
applications for example, x would characterize the user browsing behaviour on merchant sites; x−1

characterizes global user features aggregated over his navigation history, which are known for all
users; x−2

characterizes user history on a target merchant site. Source domain would consist of
all users who already visited this merchant site and target domain of users who never visited this
site. UDA: we assume that source labels yS are available whereas target labels yT are unknown.
Covariate shift: we assume covariate shift as in most UDA papers e.g. Ben-David et al. (2010);
Ganin & Lempitsky (2015).

3 ADAPTATION-IMPUTATION MODEL

As in many generative approaches to UDA, the objective is to project source and target data onto a
common latent space in which data distributions from the two domains match, and to learn a clas-
sifier on the source data that performs well on the target domain. The novelty of our approach is
to offer a solution to deal with datasets in which some information, xT2

, is systematically missing
in the target domain. Our model, denoted Adaptation-Imputation, performs three opera-
tions jointly: imputation of missing information for the target data, alignment of the distributions
of source and target, and classification of source instances. The three operations are performed in a
joint embedding space and all the model’s components are trained together. The term imputation is
used here in a broad sense: our goal is not to recover the whole missing xT2 , but to recover informa-
tion from xT2 that will be useful for adaptation and for the target data classification objective. This
is achieved via a generative model, which for a given datum in the target domain and conditionally
on the available information xT1 , attempts to generate the required missing information. Because
xT2

is systematically missing for target data, there is no possible supervision in the target domain;
instead we use distant supervision from the source data while transferring to the target domain. We
consider two variants of the same model based on different divergence measures between source and
target distributions: the Wasserstein distance and theH-divergence approximated through adversar-
ial training. For simplicity we describe in the main text the adversarial version ADV and defer the
Optimal Transport OT description to Appendix B. We report the results obtained with both models
in Section 4.

2

Under review as a conference paper at ICLR 2020

3.1 TRAINING

Our model is composed of three different modules responsible for adaptation, imputation and clas-
sification, that share parameters and are trained in parallel. For simplicity, we describe each compo-
nent in turn, but it should be reminded that they all interact and that their parameters are all optimized
according to the three objectives mentioned above. The interaction is discussed after the individual
module descriptions. The model’s components are illustrated in Figure 1 (a).

Adaptation The latent space representations of source and target domains are denoted with a tilde
notation: x̃S = (x̃S1

, x̃S2
) and x̃T = (x̃T1

, x̃T2
). Referring to Figure 1 (a), x̃−1

= g1(x−1
), (x̃−1

denotes either x̃S1
or x̃T1

) is the mapping of the observed component x−1
onto the latent space

and x̃−2
= h ◦ g1(x−1

) is the second component’s latent representation generated from x−1
. This

generation mechanism will be described later. Adaptation aligns the distributions (x̃S1
, x̃S2

) and
(x̃T1 , x̃T2) in the latent space. For the ADV model, alignment is performed via a classical adversarial
loss operating on the latent representations:

L1 = Ex∼pS(X) logD1(x̃S) + Ex∼pT (X) log(1−D1(x̃T)) (1)

where D1(x̃) represents the probability that x̃ comes from the source rather than the target.

Imputation Imputation amounts at generating an encoding x̃T2 , in the latent space, for the missing
information in the target data, conditioned on the available information xT1

. Our objective here is to
generate missing information which is relevant for the classification objective. Since we never have
access to any target component xT2

, we learn to perform imputation based on the source data. More
precisely, we learn to generate x̃S2

from xS1
through the generator h, x̃S2

= h◦g1(xS1
), as depicted

in Figure 1. We want h to generate the missing information x̃S2
associated to the observed xS1

. For
that we perform two operations in parallel. First, we align the distribution of x̃S2

with the distribution
of x̂S2

= g2(xS2
), that is a direct mapping of xS2

onto the shared latent space, using an adversarial
loss described below. The intuition is that both g1 and g2 are simple mappings operating respectively
on xS1 and xS2 while h acts as a generator conditioned on xS1 for generating x̃S2 . Moreover, we not
only impose this distribution alignment, but would also like x̃S2 to represent missing information
relative to xS2 and associated to a specific xS1 . For that, we use a reconstruction term in parallel to
the above alignment, in our case a MSE distance between x̃S2 and x̂S2 . This MSE term guarantees
that the imputed x̃S2

truly represents information present in xS2
. Similar ideas combine distribution

matching and MSE conditioning and have been used e.g. in Isola et al. (2016a); Pathak et al. (2016).
The learned mappings are used to perform imputation on the target data x̃T2

= h ◦ g1(xT1
).

The imputation loss has thus two components. The first is the adversarial term LADV responsible
for aligning x̃S2 and x̂S2 , LADV = Ex2∼pS(X2) logD2(x̂S2)+Ex1∼pS(X1) log(1−D2(x̃S2)). The
second is the reconstruction term LMSE = Ex∼pS(X) ‖x̃S2 − x̂S2‖

2
2. The total imputation loss is

then:
(2)L2 = λADV × LADV + λMSE × LMSE

where λADV , λMSE are hyperparameters. The two processes of imputation and adaptation influ-
ence each other. Both are also influenced by the classification process described below. Its effect
on imputation is to force the generated x̃S2

to contain information about xS2
relevant for the clas-

sification task. This information is transferred via adaptation to the target domain when generating
x̃T2 .

Classification The last component of the model is a classifier f , trained on the source domain
mapping x̃S for the classification task as classically done for UDA. The corresponding loss is:

L3 = Ex∼pS(X)LDisc(f(x̃S), yS) (3)
where LDisc is typically a cross-entropy loss.

Overall loss The overall loss function L will be the weighted sum of the adaptation, imputation
and classification losses:

L = λ1 × L1 + λ2 × L2 + λ3 × L3 (4)
where λ1, λ2, λ3 are hyperparameters and the final optimization problem is:

min
g1,g2,h,f

max
D1,D2

L (5)

3

Under review as a conference paper at ICLR 2020

Interaction between the model’s components Both mappings g1, g2 and generator h appear in
the three terms of the loss function in Equation 4, meaning that they should learn to perform the
three tasks simultaneously. g1 learns to map the xS1

and xT1
components onto the latent space, the

mappings being denoted respectively x̃S1
and x̃T1

. h learns to generate missing information x̃T2

from x̃T1
. The formed x̃− is generated such that it fulfills the classification objective. g2 on its side

should fulfill the imputation objective while preserving part of the information present in xS2
. Note

that our model makes use of a unique mapping g1 for both source and target domains. Separate
mappings could have been used for the two domains, but the proposed solution was found to be
more robust and to reduce the number of parameters during learning.

(a)

(b)

Figure 1: Adaptation-Imputation model: (a) training, (b) inference.

Implementation Let us now detail the implementation of this model. For adversarial training,
discriminators D1 (adaptation) and D2 (imputation) will be implemented by binary classifiers. D1

is trained to distinguish between source x̃S and target x̃T mappings while D2 is trained to separate
imputed x̃S2 , generated from xS1 , from x̂S2 a direct embedding of xS2 . We use the gradient reversal
trick in Ganin & Lempitsky (2015) for implementing the min-max condition and define two gradient
reversal networks on D1 and D2. We use an adaptive update of the scale of the gradients in D1 and
D2 and optimize L1, L2 and L3 jointly as synthesized in Algorithm 1 in the Appendix.

3.2 INFERENCE

At inference, given xT1
, we generate x̃T = (x̃T1

, x̃T2
) with x̃T1

= g1(xT1
) an embedding of xT1

and a generated x̃T2
, encoding part of the missing information xT2

in xT , as illustrated in Figure 1
(b). We use for the latter the following mapping: x̃T2

= h ◦ g1(xT1
) where g1 is as above and h is

the generative mapping conditioned on x̃T1 . Finally x̃T is used as input to the classifier f .

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETTING

Datasets Experiments are performed on two types of datasets. The first one is a classical digits
classification benchmark used in many domain adaptation studies which we will refer to as digits

4

Under review as a conference paper at ICLR 2020

and transformed to fit our missing data setting. The second one corresponds to advertising datasets.
The task here is binary classification: one wants to predict Click-Through-Rate (CTR) or Conversion
Rate (CR) given user behavior. This is one of the problem that has initially motivated our adaptation-
imputation framework. We use two such datasets: ads-kaggle is a public kaggle dataset1, while
ads-real has been gathered internally and corresponds to real advertising traffic. Further details
on datasets and preprocessing are presented in Sections 4.2, 4.3 and in Appendix C.

Baselines We report results for the following models:

• Full models: Source-Full is trained without adaptation on the full xS and tested on full xT
when the latter is available (digits); Adaptation-Full adds adaptation to this model.

• Missing models: Source-Missing and Adaptation-Missing do the same but consid-
ering full xS while xT is incomplete: xT = (xT1

, 0), i.e. xT2
is set to 0.

• Partial models: Source-Partial and Adaptation-Partial is a variant of the above
setting where only the first components x−1

for source and target are considered for adaptation
and classification while the second ones x−2

are simply ignored.

• Imputation models: Adaptation-Imputation corresponds to our model.

• Naive model: Naive is used for ads-kaggle to provide a reference loss value for this dataset.
It predicts for all examples the mean CTR value as computed using source training data only.

Adaptation-Full is an upper bound of the performance of Adaptation-Imputation
since it uses full information while xT2 is not available in practice. Adaptation-Missing
and Adaptation-Partial can be considered as lower bounds for our model since they only
perform adaptation and no imputation.

Parameters and architecture of the neural networks used for the different models and experiments
are presented in Appendix D. Hyperparameters are chosen using the Deep Embedded Validation
estimator introduced in You et al. (2019) combined with heuristics and typical UDA values. Further
details are given in Appendix D.2.1.

We present the results for digits and ads respectively in Sections 4.2, 4.3. Section 4.4 presents
ablation studies. Reported results are mean value and standard deviation over five different initial-
izations; best results are indicated in bold.

4.2 DIGITS

Description For digits, we consider the unsupervised adaptation between two datasets among
MNIST (LeCun et al. (1998)), USPS (Hull (1994)), SVHN (Netzer et al. (2011)) and MNIST-M
(Ganin & Lempitsky (2015)). The direction MNIST → SVHN is not considered as the task is
difficult even for traditional UDA (Ganin & Lempitsky, 2015). All tasks are 10-class classification
problems. From the complete image datasets, we build datasets with missing input values.

Half digit missing In a first series of experiments, we removed one half of each image, the
horizontal bottom part. We report classification accuracy in Table 1 for the different adaptation
problems and models (ADV and OT). Removing half of the image leads to a strong performance
decrease for Source-Partial and Source-Missing with respect to the upper bounds pro-
vided by Source-Full, respectively between 10 and 20 points of accuracy, and between 15 and
45 points. This is partially recovered when training with adaptation (Adaptation- Partial,
Adaptation-Missing, for both ADV or OT). But the gap is still important with respect to the
upper bound, i.e. Adaptation-Full. In all cases, Adaptation-Imputation clearly in-
creases the performance; between 10 and 25 points of accuracy over Adaptation-Missing and
2 to 20 points over Adaptation-Partial. This is a very significant improvement which vali-
dates the importance of the imputation component. In Section 4.4 we show that the simultaneous use
of imputation and adaptation is required for reaching this level of performance. Imputation or adap-
tation alone are well behind the jointly trained instance of the model. However, it does not reach the
upper bound performance of Adaptation-Full where the difference lies between 10 and 25 ac-
curacy points. Moreorever, Adaptation-Imputation beats the non-adapted Source-Full

1http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

5

Under review as a conference paper at ICLR 2020

baseline on several datasets. Both the ADV and OT versions exhibit the same general behavior. In
the reported results in Table 1, ADV performance is higher than OT. This is because performance is
highly dependent on the NN architectures and we tuned our NNs for ADV. OT models may reach
performance similar to ADV but we find that it requires models with an order of magnitude more
parameters. To keep the comparison fair, we thus used the same NN models for both ADV and OT.
Imputation models achieve their highest performance when the adaptation task between domains is
complex (MNIST→MNIST-M, SVHN→MNIST) illustrating the importance of imputation when
transfer is difficult. In all experiments, the performance of --Partial model where ”-” refers
to Source or Adaptation, are usually higher than the --Missing model. Our understand-
ing is that setting missing components to zero tends to increase distance between source and target
distributions, compared to just ignoring them, making the classification and adaptation problems
harder.

Table 1: Classification accuracy performance in % on digits for the two training criteria on the
target domain test set. Standard deviation is in %.

MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→MNIST-M
Method ADV OT ADV OT ADV OT ADV OT

Source-Full 71.5±2.7 74.2±2.7 58.1±1.1 28.3±1.4
Adaptation-Full 88.3±2.4 92.6±1.7 95.0±0.4 93.9±0.6 77.6±3.5 76.1±1.4 77.2±4.9 46.9±3.9
Source-Missing 25.7±3.7 39.2±2.6 31.5±2. 14.4±1.1

Adaptation-Missing 48.4±4.8 60.9±6.3 67.5±2.2 65.3±5.2 47.1±5.7 37.5±6.2 34.7±2.5 20.2±2.5
Source-Partial 52.9±9.7 54.3±1.6 44.6±1.9 19.1±2.6

Adaptation-Partial 71.5±3.2 64.0±5.0 80.0±1.4 72.0±1.8 45.5±1.9 47.9±1.8 29.4±1.6 26.8±4.4
Adaptation-Imputation 75.2±1.5 66.8±1.3 81.5±0.8 72.5±2.7 54.1±1.4 49.2±1.5 58.5±1.6 29.2±1.4

Figure 2: Missing patch size study

Missing patch size In a second group of
experiments on digits, we analyze the
evolution of the performance of the models
with respect to the size of the missing in-
formation in the target domain. For that,
we vary the size of the missing patch re-
moving a percentage of the image p with
p ∈ {30%, 40%, 50%, 60%, 70%} on SVHN
→ MNIST for ADV models, keeping the
same hyperparameters as the ones used for
p = 50%. We report the mean val-
ues over five runs in Figure 2. We notice
that Adaptation-Imputation constantly
beats the other baselines regardless of the miss-
ing patch size. The figure exhibits borderline
cases when the size of the missing patch be-
comes very small (< 30%) or very large (>
65%). When the missing patch is too small most of the information for predicting the target la-
bel is already available thus simple models perform already well; while when it becomes too big,
too few information is available to guarantee efficient reconstructions from the non-missing patch.

4.3 ADS

Description We performed a second series of tests on two advertising datasets: ads-kaggle
and ads-real. The ads datasets correspond to binary classification problems; the task is to
predict the probability that a user exposed to an ad from a target partner (e.g. Booking) on a
given publisher (e.g. NY Times) will click (ads-kaggle) or make a purchase (ads-real)
conditioned on the user history. A row in the dataset corresponds to a display i.e. an ad opportunity
of a click or purchase for a given (user, partner) pair at a given time on a given publisher site. The
source domain is composed of users who already had interactions with the target partner. The target
domain is composed of users with no history on the specific target partner. For the two domains,
x−1

features correspond to aggregated user features on all the partners, while x−2
corresponds to

user - target partner specific interaction which is known for the source domain but unknown for the
target domain. Note that besides missingness, there is also an adaptation problem since statistics

6

Under review as a conference paper at ICLR 2020

for new users are usually different from those of known users (e.g. in terms of frequency of a
partner’s website visits). In real datasets, traffic in the source domain is usually abundant while
scarce in the target domain. Statistics for each dataset are provided in Table 5 in the Appendix;
exact preprocessing used is provided in Appendix C.

Results For this group of experiments, we report the results only for ADV models since the trend
has been observed to be similar on digits for both ADV and OT. For ads datasets, missing features
do not exist, so we do not report the --Full models’ results on these datasets. The classes being
imbalanced, accuracy is not relevant here so we report another performance measure, cross-entropy
(CE) between the predicted values and the true labels on the target domain which is considered as
the most reliable metric to estimate revenue. Note that given the test set size of ads-kaggle, an
improvement of 0.001 in logloss is considered as practically significant (Wang et al., 2017). For the
ads problem and for large user bases, a small improvement in prediction accuracy can lead to a large
increase in a company’s revenue. For all experiments, we report in Table 2 CE on target test for
ads-kaggle and ads-real.

Table 2: CE on ads-kaggle and ads-real

Dataset ads-kaggle ads-real

Naive 0.403 X
Source-Missing 0.545±0.019 0.663±0.011
Source-Partial 0.406±0.00046 0.622±0.0048

Adaptation-Missing 0.397±0.0057 0.660±0.025
Adaptation-Partial 0.403±0.0030 0.634±0.0082

Adaptation-Imputation 0.389±0.014 0.583±0.013

A first observation is that
Adaptation-Imputation is signif-
icantly better than the baselines on both
datasets (Table 2). For ads-kaggle
it improves by 2.3% the best adaptation
model (Adaptation-Missing) while for
ads-real the improvement reaches 6.3%
over the best second which happens to be
Source-Partial. A second observation
is that for any model, adaptation consistently
improves over the same model without adaptation. The only exception is the --Partial setting
in ads-real. A third observation is that the missing component indeed contains relevant infor-
mation: CE performance on source data (not reported in Table 2) shows that Source-Missing
which exploits the x−2

component is consistently higher than Source-Partial which does
not exploit this component, leading to relative gains of the former over the latter of 5.6% on
ads-kaggle and 8.2% on ads-real. Adaptation-Imputation is able to generate and to
exploit this information.

4.4 ABLATION ANALYSIS

We analyze now the role and importance of the different components of our model, and compare
with the results from Tables 1 and 2. We perform experimentation on the public datasets, digits
and ads-kaggle and report results in Table 3 and Figure 3.

Importance of adaptation We compare the performance of the model with and without the adap-
tation term L1 in Equation 4. When removing adaptation, inference is performed as before, by
feeding x̃T = (x̃T1

, x̃T2
) to the classifer f . This means that we only rely on the imputation and

classification losses to learn the parameters of the model. Results appear on the top of Table 3. For
all datasets, the adaptation component considerably increases the performance, from 10 to 30 points
for digits and by a significant 0.009 CE value on ads-kaggle.

Imputation mechanism Imputation, cf. Equation 2, combines adversarial training (ADV) and
conditioning on the input datum via the MSE loss (MSE). The objective is to learn from xS1 x̃S1 =
g1(xS1) and to generate missing information in xS2 , x̃S2 = h(x̃S1). ADV aligns the distributions of
x̃S2 and x̂S2 while MSE can be thought as performing some form of regression. For a given partial
information xS1

, there are possibly several potential xS2
and thus x̃S2

. ADV allows to focus on a
specific mode of x̂S2

, while MSE will favour a mean value of the distribution. Results on Table
3, second group of rows, show that for digits, combining the two influences (MSE and ADV)
leads to improved results compared to using separately each loss. MSE alone already provides good
performance, while using only ADV is clearly below. For this classification task, identifying the most
relevant mode improves the performance over simple regression (LMSE). Note that reconstruction
is an ill posed problem since the task is inherently ambiguous - different digits may be reconstructed
from one half of an image. We performed tests with a stochastic input component in order to recover

7

Under review as a conference paper at ICLR 2020

different modes, but the performance was broadly similar. Achieving diversity with Conditional
GANs remains an open research topic (Yang et al., 2019).

Figure 3: Weighting on ads-kaggle

For the ads-kaggle dataset, the perfor-
mance of MSE and MSE + ADV are similar.
This is analyzed deeper in an additional se-
ries of experiments with several weighted com-
binations of MSE and ADV. Results are pro-
vided in Table 3 third group of rows, for both
digits and ads-kaggle and are plotted
for ads-kaggle in Figure 3. For digits,
this confirms that the equal weights selected for
our experiments are indeed generally a good
choice reducing the burden of hyperparame-
ter selection, while for ads-kaggle perfor-
mance could be slightly improved with other
weightings. One can see on Figure 3 that ADV
induces a high variance in the results (left part
of x-axis) while MSE stabilizes the performance
(right part of x-axis). The former allows for bet-
ter maximum performance but with high variance: performance ranges from 0.35 to 0.7 on the target
domain. A small contribution from MSE (here λMSE = 0.005) stabilizes the results.

Table 3: Accuracy on digits and CE on ads-kaggle for ADV Adaptation-Imputation

Dataset digits ads-kaggle

Adaptation direction MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→MNIST-M Known→ New
L2 + L3 64.2±1.8 51.3±2.5 44.5±1.4 24.1±2.6 0.410±0.0020

L1 + L2 + L3 75.2±1.5 81.5±0.8 54.0±1.4 58.5±1.6 0.401±0.0014
LMSE 71.9±3.7 81.4±1.2 52.5±3.7 56.5±2.8 0.400±0.0014
LADV 28.6±3.2 39.4±5.2 28.8±3.8 30.0±3.7 0.469±0.13

LADV + LMSE 75.2±1.5 81.5±0.8 54.0±1.4 58.5±1.6 0.401±0.0014
0.1× LADV + LMSE 73.4±2.7 81.3±0.8 53.0±2.0 56.2±2.6 0.401±0.0021
LADV + 0.001× LMSE 37.3±2.5 31.2±3.8 45.0±2.6 50.0±3.4 0.440±0.11
LADV + 0.005× LMSE 47.8±3.7 49.6±5.8 46.0±2.6 50.6±2.2 0.388±0.015
LADV + 0.01× LMSE 53.6±2.4 57.0±3.6 43.4±1.1 51.0±2.5 0.397±0.0046
LADV + 0.1× LMSE 68.2±4.2 50.3±6.8 54.0±2.1 51.5±3.6 0.402±0.0046
LADV + LMSE 75.2±1.5 81.5±0.8 54.0±1.4 58.5±1.6 0.401±0.0014

5 RELATED WORK

We review below typical related work for domain adaptation and data imputation.

5.1 UNSUPERVISED DOMAIN ADAPTATION (UDA)

A number of shallow learning methods approach Domain Adaptation by weighting individual obser-
vations during training. These methods focus either on data importance-weighting (Cortes & Mohri,
2014; Zadrozny, 2014) or on class importance-weighting (Z. Lipton & Smola, 2018). Recent deep
learning methods try to align the distributions of the two domains, for example by embedding them
in a joint latent space. There are two main directions for learning joint embeddings. One is based on
adversarial training, making use of GAN extensions. The other one directly exploits explicit distance
measures between distributions such as Wasserstein or Maximum Mean Discrepancy (MMD). For
the former, the seminal work of Ganin & Lempitsky (2015) learns to map source and target domains
onto a common embedding space, by optimizing a double objective: on the one hand they minimize
an approximation of the H-divergence between the source and target embeddings via adversarial
training, on the other hand they learn to classify the source data embeddings. This influential work
has been followed by several extensions and variants. ADDA (Tzeng et al., 2017) advocates the
use of two different mappings for the source and the target domains based on the argument that this
is more suitable when the marginals are different in the two domains. Liu & Tuzel (2016) trains
coupled generative adversarial network (CoGAN) for learning a joint distribution of multi-domain
images, that can be used for UDA. Bousmalis et al. (2017) use a generator to map the source to the

8

Under review as a conference paper at ICLR 2020

target domain while training the classifier on the learned representations using source labels. CDAN
(Long et al., 2017) improves the domain discriminator by conditioning it on classifier predictions.

A second family of approaches proposes metric based divergences such as MMD (Long et al., 2015)
for measuring the loss between source and target representations. DeepJDOT (Damodaran & Kel-
lenberger, 2018) makes use of an optimal transport formulation to align the joint distributions in a
latent space. In addition to feature alignment they perform label distribution alignment following
Courty et al. (2017). All these works rely on the assumption of covariate shift and consider that
full input data is available for both source and target domains. Our two models (ADV and OT) can
be seen respectively as extensions of Ganin & Lempitsky (2015) and Damodaran & Kellenberger
(2018) for the missing data problem.

5.2 IMPUTATION

Data imputation is a classical problem addressed by several methods (Little & Rubin, 2002; Van Bu-
uren, 2018; Murray, 2018). The usual setting is different from ours since it considers reconstructing
the whole missing data in the input space, while we consider 1) reconstruction in a latent space and
2) partial reconstruction since we are interested in the information relevant to the classification task
only. Recent generative models like GANs (Goodfellow et al., 2014) or VAEs (Kingma & Welling,
2013; Rezende et al., 2014) have been adapted for data imputation in Yoon et al. (2018) and Mattei &
Frellsen (2019) respectively. GAIN (Yoon et al., 2018) is an extension of conditional GANs where
the generator takes as input an incomplete data and performs imputation while the discriminator is
trained to guess for each sample if each variable is original or imputed. Mattei & Frellsen (2019)
suggests a method based on deep latent variable models and importance sampling that offers tighter
likelihood bound compared to the standard VAE bound. Most approaches consider a supervised
setting where 1) paired complete and incomplete data are available and 2) missingness corresponds
to a stochastic process (e.g. a mask distribution for tabular data), 3) imputation is performed in
the original feature space. Note that this is different from our setting where there is no direct su-
pervision (supervision is only provided indirectly through the source domain) and missingness is
non-stochastic which makes the problem harder since one cannot compute statistics on different
incomplete samples. The general approach with generative models is to learn a distribution over
imputed data which is similar to the one of plain data. This comes in many different instances and
usually, generative training alone is not sufficient; additional loss terms are often used. In paired
problems, i.e. when each missing datum is associated to a plain version of the datum, these addi-
tional terms consist of a reconstruction term imposed by a MSE contraint (Isola et al., 2016b). In
unpaired problems a cycle-consistency loss is imposed as in Zhu et al. (2017). Li et al. (2019); Pajot
et al. (2019) are among the very few approaches addressing unsupervised imputation in which full
instances are never directly used. Both extend the AmbientGAN (Bora et al., 2018) framework and
consider stochastic missingness.

Our imputation problem is closer to the ones addressed in some forms of impainting or for multi-
modality missing data. The former problem is addressed e.g. in Pathak et al. (2016) who proposes
an encoder-decoder model trained according to a joint reconstruction and adversarial loss. The
latter is addressed in Cai et al. (2018) who considers the case of multi-modality when one or more
modalities are systematically absent, but they do not consider adaptation. They propose to learn to
reconstruct the missing modality distribution conditionally to the observed one. Both approaches are
fully supervised. Ding et al. (2014) is the only paper we are aware of that considers imputation as
we do. Their approach is based on low rank constraints and dictionary learning to guide the transfer
between domains. We do not use this method as a baseline due to the complexity and running time
of this method which relies on singular value decompositions and dictionnary learning.

6 CONCLUSION

We have proposed a new model to solve unsupervised adaptation problems in the presence of non-
stochastic noise in the target domain, by using distant supervision from a complete source domain
through domain adaptation and imputing missing values on the target domain in a latent space. This
method uses only labelled source instances and leads to important gains on classical adaptation
benchmarks over baseline models for two representative families of divergences (optimal transport,
adversarial training). We have demonstrated on real world advertising datasets that these meth-

9

Under review as a conference paper at ICLR 2020

ods can be used for problems with missing features in advertising. Potential follow-ups include:
extending this method to a semi or fully supervised setting on the target domain; considering simul-
taneously domain and target shift which frequently occurs in real world problems while still being
an open problem; introducing increased diversity in the generation process.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine Learning, 79(1):151–175,
May 2010. ISSN 1573-0565. doi: 10.1007/s10994-009-5152-4. URL https://doi.org/
10.1007/s10994-009-5152-4.

Ashish Bora, Eric Price, and Alexandros G. Dimakis. AmbientGAN: Generative models from lossy
measurements. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Hy7fDog0b.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan.
Unsupervised pixel-level domain adaptation with generative adversarial networks. Proceedings
- 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:
95–104, 2017. ISSN 1063-6919. doi: 10.1109/CVPR.2017.18.

Lei Cai, Zhengyang Wang, Hongyang Gao, Dinggang Shen, and Shuiwang Ji. Deep adversarial
learning for multi-modality missing data completion. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1158–1166. ACM, 2018.

C. Cortes and M. Mohri. Domain adaptation and sample bias correction theory and algorithm for
regression. Theoretical Computer Science, vol. 519, pp. 103126, 2014.

Nicolas Courty, Remi Flamary, Habrard Amaury, and Alain Rakotomamonjy. Joint distribution
optimal transportation for domain adaptation. 2017.

Bharath Bhushan Damodaran and Benjamin Kellenberger. DeepJDOT : Deep Joint Distribution
Optimal Transport for Unsupervised Domain Adaptation. 2018. URL https://arxiv.org/
pdf/1803.10081.pdf.

Zhengming Ding, Ming Shao, and Yun Fu. Latent low-rank transfer subspace learning for missing
modality recognition. In AAAI, pp. 1192–1198, 2014. ISBN 9781577356783.

Yaroslav Ganin and Victor Lempitsky. Unsupervised Domain Adaptation by Backpropagation. pp.
1180–1189, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Pro-
cessing Systems 27, pp. 2672–2680. Curran Associates, Inc., 2014. URL http://papers.
nips.cc/paper/5423-generative-adversarial-nets.pdf.

J. J. Hull. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach.
Intell., 16(5):550–554, May 1994. ISSN 0162-8828. doi: 10.1109/34.291440. URL http:
//dx.doi.org/10.1109/34.291440.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. CoRR, abs/1611.07004, 2016a. URL http://arxiv.org/
abs/1611.07004.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. arxiv, 2016b.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. URL http://
arxiv.org/abs/1312.6114. cite arxiv:1312.6114.

Wouter M. Kouw and Marco Loog. A review of single-source unsupervised domain adaptation.
CoRR, abs/1901.05335, 2019. URL http://arxiv.org/abs/1901.05335.

Yann LeCun, Leon Bottou, Yoshua Bengio, and P Haffner. Gradient-based learning applied to
document recognition. 1998.

11

https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1007/s10994-009-5152-4
https://openreview.net/forum?id=Hy7fDog0b
https://openreview.net/forum?id=Hy7fDog0b
https://arxiv.org/pdf/1803.10081.pdf
https://arxiv.org/pdf/1803.10081.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://dx.doi.org/10.1109/34.291440
http://dx.doi.org/10.1109/34.291440
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1901.05335

Under review as a conference paper at ICLR 2020

S.C Li, Jiang B., and B Marlin. MisGAN: Learning From Incmplete Data with generative Adver-
sarial Networks. In ICLR, 2019.

R.J.A. Little and D.B. Rubin. Statistical analysis with missing data. Wiley series in probability and
mathematical statistics. Probability and mathematical statistics. Wiley, 2002.

Ming-Yu Liu and Oncel Tuzel. CoGAN. Number Nips, 2016. ISBN 10495258. doi: arXiv:
1606.07536.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable features
with deep adaptation networks. pp. 97–105, 2015. URL http://dl.acm.org/citation.
cfm?id=3045118.3045130.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Domain adaptation with
randomized multilinear adversarial networks. CoRR, abs/1705.10667, 2017. URL http://
arxiv.org/abs/1705.10667.

Pierre-Alexandre Mattei and Jes Frellsen. MIWAE: Deep Generative Modelling and Imputation of
Incomplete Data. In ICML, 2019. URL http://arxiv.org/abs/1812.02633.

J. S. Murray. Multiple imputation: A review of practical and theoretical findings. In Statistical
Science, 33(2):142159, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. NIPS
Workshop on Deep Learning and Unsupervised Feature Learning 2011. 2011.

Arthur Pajot, Emmanuel de Bezenac, and Patrick Gallinari. Unsupervised Adversarial Image Re-
construction. In ICLR, 2019.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359, Oct 2010. ISSN 1041-4347. doi: 10.1109/TKDE.2009.191.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
encoders: Feature learning by inpainting. CoRR, abs/1604.07379, 2016. URL http://arxiv.
org/abs/1604.07379.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Foundations and Trends R© in
Machine Learning, 11(5-6):355–607, 2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Eric P. Xing and Tony Jebara (eds.), Pro-
ceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings
of Machine Learning Research, pp. 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR. URL
http://proceedings.mlr.press/v32/rezende14.html.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In Association for the Advancement of Artificial Intelligence,
2018.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017-Janua:2962–2971, 2017. ISSN 0733-2467. doi: 10.1109/CVPR.2017.316.

S. Van Buuren. Flexible imputation of missing data. 2nd ed. 2018.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
CoRR, abs/1708.05123, 2017. URL http://arxiv.org/abs/1708.05123.

Dingdong Yang, Seunghoon Hong, Yunseok Jang, Tiangchen Zhao, and Honglak Lee. Diversity-
sensitive conditional generative adversarial networks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rJliMh09F7.

12

http://dl.acm.org/citation.cfm?id=3045118.3045130
http://dl.acm.org/citation.cfm?id=3045118.3045130
http://arxiv.org/abs/1705.10667
http://arxiv.org/abs/1705.10667
http://arxiv.org/abs/1812.02633
http://arxiv.org/abs/1604.07379
http://arxiv.org/abs/1604.07379
http://proceedings.mlr.press/v32/rezende14.html
http://arxiv.org/abs/1708.05123
https://openreview.net/forum?id=rJliMh09F7

Under review as a conference paper at ICLR 2020

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. GAIN: Missing data imputation using
generative adversarial nets. In 35th International Conference on Machine Learning, ICML 2018,
pp. 9052–9059, 2018. ISBN 9781510867963.

Kaichao You, Ximei Wang, Mingsheng Long, and Michael Jordan. Towards accurate model
selection in deep unsupervised domain adaptation. 97:7124–7133, 09–15 Jun 2019. URL
http://proceedings.mlr.press/v97/you19a.html.

Y.-X. Wang Z. Lipton and A. Smola. Detecting and correcting for label shift with black box predic-
tors. International Conference on Machine Learning, 2018.

B. Zadrozny. Learning and evaluating classifiers under sample selection bias. International Confer-
ence on Machine Learning, 2014.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. 2017.

13

http://proceedings.mlr.press/v97/you19a.html

Under review as a conference paper at ICLR 2020

A PSEUDO-CODE

Input: N : number of epochs, k: batch size, lri: initial learning rate
Initialize parameters of g1, g2, D1, D2, f , h
while nepochs < N do

Sample {xSi, yS
i}1≤i≤k from pS

Sample {xjT1
}1≤j≤k from pT

Decay learning rate and update gradient scale at each batch
Compute L = L1 + L2 + L3 performing joint adaptation, imputation, classification
Update D1, D2 by ascending L through Gradient Reversal Layer
Update f, g1, g2, h by descending L

end
Algorithm 1: Training procedure

B OT FORMULATION

We present here in more details Adaptation-Imputation using Optimal Transport as a diver-
gence metric. The formulation is slightly different compared to ADV models.

B.1 FORMULATION OF THE IMPUTATION OT MODEL

We replace theH-divergence approximation given by the discriminators D1 and D2 by the Wasser-
stein distance between source and target instances (D1) and true and imputed feature representations
(D2), following the original ideas in Shen et al. (2018); Damodaran & Kellenberger (2018). In prac-
tice, we compute the Wasserstein distance using its primal form by finding a joint coupling matrix
γ, using a linear programming approach (Peyré et al., 2019).

Adaptation In Damodaran & Kellenberger (2018); Courty et al. (2017), the optimal transportation
problem is formulated on the joint (X,Y) distributions. Similarly to Shen et al. (2018), in our case,
we focus on a plan that acts only on the feature space without taking care of the labels. This leads
to the following optimization problem :

(6)L1 = min
f,γ1,g

∑
ij

(
||x̃S1i

− x̃T1j
||2 + ||x̃S2i

− x̃T2j
||2
)
γ1ij

where γ1ij is the alignment value between source instance i and target instance j.

Imputation For the imputation part, we keep the reconstruction MSE component in Equation 2
and derive the distribution matching loss as:

(7)LOT = min
f,γ2,g

∑
ij

||x̃S2i
− x̂S2j

||2γ2ij

where γ2ij is the alignment value between source instance i and j.

The final imputation loss is:

L2 = λOT × LOT + λMSE × LMSE (8)

Classification The classification term in Equation 3 is unchanged.

B.2 IMPLEMENTATION

The optimization problem in Equation 5 is solved in two stages following an alternate optimization
strategy:

• we fix all parameters but γ1 and γ2 and find the joint coupling matrices γ1 and γ2 using
EMD

14

Under review as a conference paper at ICLR 2020

• we fix γ1 and γ2 and solve ming1,g2,h,f L

In practice, we first minimize L3 for a couple of epochs (taken to be 10 for digits) then minimize
L1 + L2 + L3 in the remaining epochs.

Learning rate and parameters are explained further in Section D.

C DATASET DESCRIPTION

C.1 DIGITS

Table 4: Statistics on digits datasets

USPS MNIST SVHN MNIST-M

Train 7438 60k 73257 60k
Test 1860 10k 26032 10k
Size 28 × 28 28 × 28 32 × 32 28 × 28

Channels 1 1 3 3

Pre-processing We scale all images to be 32 × 32 and we normalize the input in [−1, 1]. When
adaptation involves a domain with three channels (SVHN or MNIST-M) and a domain with a single
channel, we simply triplicate the channel of the latter domain. As in Damodaran & Kellenberger
(2018) we use balanced source batches which proves to increase performance especially when the
source dataset is imbalanced (e.g. SVHN and USPS datasets) while the target dataset (usually
MNIST derived) is balanced. Scaling the input images enables us to use the same architecture
across datasets. In practise the embedding size is 2048 after preprocessing. For missing versions,
we set pixel values to zero in a given patch. Figure 4 shows MNIST-M digits with varying missing
patch size.

Figure 4: missing-features MNIST-M

Evaluation The digits datasets are provided with a predefined train / test split. We report
accuracy results on the target test set and use the source test set as validation set (Section D.2.1).
The number of instances in each dataset is reported in Table 4. We run each model five times with a
different seed for initialization (using Xavier Uniform initialization) and report mean and standard
deviations in Table 1.

Infrastructure Experiments are run using a Tesla V100-SXM2 GPU machine with 32GB RAM.
Code is written in PyTorch https://pytorch.org/ (Paszke et al., 2017).

C.2 ADS

Preprocessing Table 5 lists various statistics on the traffic for the two ads datasets; we describe
in this paragraph how datasets are processed.

ads-kaggle The Criteo Kaggle dataset is a reference dataset for CTR prediction and groups
one week of log data. The objective is to model the probability that a user will click on a given
ad given his navigation context: p(Click|Context). Positives refer to displays which are clicked

15

https://pytorch.org/

Under review as a conference paper at ICLR 2020

and negatives to displays not clicked. For each datum, there are 13 continuous and 26 categorical
features. We divide the traffic into two domains using feature number 30; for a given value for this
categorical feature, all instances have a single missing numeric feature (feature number 5). We then
construct an artificial dataset simulating transfer between known and new users. We process the
original Criteo Kaggle dataset to have an equal number of source and target data. We then perform
train / test split on this dataset keeping 20% of data for testing. We used in our experiments the
continuous features; to show the benefit of modelling additional missing features, we extend the
missing features list to features 1, 5, 6, 7, 11 and 12 by setting them to zero on the target domain.
After these operations, 6 features are missing and 7 are non-missing. Preprocessing consists in
normalizing continuous features using a log transform.

ads-real The data collected in this dataset is similar to ads-kaggle. We filter out non-clicks
and the final task is to model the sale probability for a clicked ad: p(Sale|Click = 1, Context).
Positives refer to clicked ads which lead to a sale; negatives to clicked ads which did not lead to
a sale. We use one week of sampled logs as a training set, and use the following day data as the
test set. This train / test definition is used so as to better correlate with the performance of a model
used online. We use typical features in production models on this dataset and focus on a sample of
continuous features aggregated across user timelines describing the clicking and purchase behavior
of a user. In comparison to ads-kaggle more continuous features are used. The count features
can be User-centric i.e. describe the global activity of the user (number of clicks, displays, sales
done globally across partners) or User-partner features i.e. describing the history of the user on the
given partner (number of clicks, sales... on the partner). The latter are missing for new users. Counts
are aggregated across varying windows of time and categories of partner catalog. We bucketize these
count features using log transforms and consider these as categorical features by one-hot encoding
the different buckets based on the vocabulary file. After processing the final input size is 596 with
29 features used. 12 features are missing and 17 are non-missing.

Table 5: Statistics on ads datasets

Dataset ads-kaggle ads-real

Domain Source Target Source Target
Split Train Test Train Test Train Test Train Test

Positive 246 872 61 841 92 333 22 943 X X X X
Negative 699 621 174 783 854 160 213 681 X X X X

Total 946 493 236 624 946 493 236 624 24 465 756 3 760 233 819 073 147 358
P (Y) 0.2608 0.2613 0.0976 0.0970 X X X X

Evaluation On both datasets the train and test sets are fixed. We run each model five times with a
different seed for initialization (using Xavier Uniform initialization) and report mean and standard
deviations in Table 2.

Infrastructure For ads-real, models are trained using internal large-scale distributed infras-
tructure. For ads-kaggle, we keep the same setting and code as in digits.

D IMPLEMENTATION DETAILS

D.1 NEURAL NET ARCHITECTURE

D.1.1 DIGITS

We experiment with the ADV and OT versions of our imputation model. For ADV models, we use
the DANN model description in Ganin & Lempitsky (2015); for OT we use the DeepJDOT model
description in Damodaran & Kellenberger (2018). Both models can be considered as simplified
instances of our corresponding ADV and OT imputation models when no imputation is performed.

Performance of the adaptation models is highly dependent on the NN architectures used for adap-
tation and classification. In order to perform fair comparisons and since our goal is to evaluate the
potential of joint adaptation-imputation-classification, we selected these architectures through pre-

16

Under review as a conference paper at ICLR 2020

liminary tests and use them for both the ADV and OT models. The two models are described below
and illustrated in Figure 5.

• Feature extractors g1 and g2 consists of three convolutional layers with 5×5 kernel and 64 filters
interleaved with max pooling layers with a stride of 2 and 2 × 2 kernel. The final layer has 128
filters. We use batch norm on convolutional layers and ReLU as an activation after max pooling.
As in Damodaran & Kellenberger (2018) we find that adding a sigmoid activation layer as final
activation is helpful.

• Classifier f consists of two fully connected layers with 100 neurons with batch norm and ReLU
activation followed by the final softmax layer. We add Dropout as an activation for the first layer
of the classifier.

• DiscriminatorD1 andD2 is a single layer NN with 100 neurons, batch norm and ReLU followed
by the final softmax layer. On USPS→MNIST and MNIST→ USPS dataset we use a stronger
discriminator network which consists of two fully connected layers with 512 neurons.

• Generator h consists of two fully connected layers with 512 neurons, batch norm and ReLU
activation. This architecture is used for ADV and OT imputation models. In practice using wider
and deeper networks increases classification performance with the more complicated classifica-
tion tasks (SVHN→ MNIST, MNIST→ MNIST-M); in these cases we add an additional fully
connected network with 512 neurons. The final activation function is a sigmoid.

We use the same architecture described above for full, missing and partial models to guarantee fair
comparison. As a side note, the input to the imputation model’s classifier is twice bigger as in the
standard adaptation models.

Figure 5: Base architecture for the ADV DANN model

D.1.2 ADS

We experiment with ADV models only. As input data is numeric and low dimensional, architectures
are simpler than in digits.

ads-kaggle Our feature extractor is a three layered NN with 128 neurons and with a final
sigmoid activation. The classifier is taken to be a single layered NN with 128 neurons and a final
softmax layer. Activations are taken to be ReLUs. The domain discriminator is taken to be a two
layered NN with 128 neurons and a final softmax layer. Finally the reconstructor is taken to be a
two-layered NN with 256 neurons and final sigmoid activation.

ads-real Input features after processing are fed directly into the feature extractors g1, g2 con-
sisting of two fully connected layers with 128 neurons. The classifier and discriminator is taken to
be single-layered NN with 25 neurons. The reconstructor is taken to be a two-layered NN with 128
neurons. Inner activations are taken to be ReLUs and the final activation of the feature extractor is
taken to be a sigmoid.

D.2 NETWORK PARAMETERS

D.2.1 HYPERPARAMETER TUNING

Tuning hyperparameters for UDA is tricky as we do not have access to the label in the target distribu-
tion and thus cannot choose parameters minimizing the target risk on a validation set. Several papers

17

Under review as a conference paper at ICLR 2020

set hyperparameters through reverse cross-validation (Ganin & Lempitsky, 2015). Other approaches
developed for model selection are based on risk surrogates obtained by estimating an approximation
of the risk value on the source based on the similarity of source and target distributions (without
the labels). In the experiments, we used a recent estimator, Deep Embedded Validation (DEV) (You
et al., 2019) for tuning the initial learning rate; λ1 and λOT in OT. For other parameters, we used
heuristics and typical hyperparameter values from UDA papers (such as batch size) without further
tuning. We use a cross entropy link function on the source validation set; this value provides a
proxy for the target test risk. Using parameters from the original paper, this estimator helps select
parameter ranges which perform reasonably well. We keep the estimator unchanged for the full and
missing adaptation models. In the imputation case the discriminator used for computing importance
sampling weights discriminates between [x̃S1

, x̃S2
] and [x̃T1

, x̃T2
] (cf. D1 in Figure 1).

D.2.2 DIGITS

We find that the results are highly dependent on the NN architecture and the training parameter
setting. In order to evaluate the gain obtained with Adaptation-Imputation, we use the same
NN architecture for all models (ADV and OT) but fine tune the learning rates for each model using the
DEV estimator (other parameters do not have a significant impact on the classification performance).

ADV We use an adaptive approach as in Ganin & Lempitsky (2015) for decaying the learning
rate lr and updating the gradient’s scale s between 0 and 1 for the domain discriminators. We

choose the decay values used in Ganin & Lempitsky (2015) ie. s =
2

1 + exp(−10× p)
− 1 and

lr =
lri

(1 + 10× p)0,75
where p is ratio of current batches processed over the total number of batches

to be processed without further tuning. We tune the initial learning rate lri, chosen in the range
{10−2, 10−2.5, 10−3, 10−3.5, 10−4} following Section D.2.1. In practise we take lri = 10−2 for
ADV Adaptation-Imputation, Adaptation-Full, Adaptation-Partial and lri =
10−2.5 for ADV Adaptation-Missing. We use Adam (Kingma & Ba, 2014) as the optimizer
with momentum parameters β1 = 0.8 and β2 = 0.999 and use the same decay strategy and initial
learning rate for all components (feature extractor, classifier, reconstructor). Batch size is chosen to
be 128; we see in practise that initializing the adaptation models with a source model with smaller
batch size (such as 32) can be beneficial.

OT We choose parameter λ1 = λOT = 0.1 in Equations 4 and 8 after tuning in the range
{10−1, 10−2, 10−3} using DEV; the goal is indeed to down weight the contribution of align-
ment through Wasserstein distance which should be scaled compared to the classification term.
Following Damodaran & Kellenberger (2018), batch size is taken to be 500 and we use EMD
as Optimal Transport metric. We initialize adaptation models with a source model in the first
10 epochs and divide the initial learning rate by two as adaptation starts for non-imputation
models. For Adaptation-Imputation we follow a decaying strategy on the learning rate
and on the adaptation weight as explained in the next item. We choose lri in the range
{10−2, 10−2.5, 10−3, 10−3.5, 10−4}. In practise we fix lri = 10−2 for all models.

Imputation parameters In practice we can define a weight for each term in Equation 2 and 4.
Further studies are conducted in Section 4.4 on weightings in Equation 2: in digits experiments
we choose L2 = LMSE +LADV for ADV and OT to reduce the burden of additional feature tuning.
For ADV model, we fix parameters in Equation 4 to 1. In the OT model, we vary λ1 between 0
and 0.1 and λ2 between 0 and 1 following the same schedule as the gradient scale update for ADV
models. Although not necessary to achieve good mean values, this proves to reduce significantly the
variance.

D.2.3 ADS

We use an adaptive strategy for updating the gradient scale and the learning rate with the same
parameters as in the digits dataset. Optimizer is taken to be Adam. Batch size is taken to be big
so that target batches include sufficient positive instances.

18

Under review as a conference paper at ICLR 2020

ads-kaggle The initial learning rate is chosen in the range {10−4, 10−5, 10−6, 10−7} using
DEV and fixed to be 10−6 for all models. Batch size is taken to be 500 and we initialize models
with a simple classification loss for five epochs. We run models for 50 epochs after which we notice
that models reach a plateau. We find that adding a weighted MSE term allows to achieve higher
stability (as measured by variance) as further studied in Section 4.4. In a similar fashion to Pathak
et al. (2016), we tune this weight in the range {1, 10−1, 10−2, 7.5×10−3, 5×10−3, 10−3}. We find
that 0.005 offers the best compromise between mean loss and variance. Moreover on this dataset
we use a faster decaying strategy for the discriminator’s D2 and the reconstructor’s h learning rate,

lr =
lri

(1 + 30× p)0,75
to achieve higher stability in the training curves while the feature extractor

g1, g2 and D1’s learning rate are unchanged.

ads-real The initial learning rate is chosen in the range {10−4, 10−5, 10−6} and fixed to be
10−6 for all models. The learning rate is decayed with the same parameters as digits for all
models. We run models for ten epochs which provides a good trade-off between learning time and
classification performance. Batch size is taken to be 500. We choose L2 = LMSE +LADV without
further tuning; this simple weight achieves already good results.

E EMBEDDING VISUALIZATION ON DIGITS

In this section we visualize the embeddings learned by the various models on digits by projecting
the embeddings in a 2D space using t-SNE (the original embedding size being 2048). Figure 6 rep-
resents the embeddings learned for ADV models on MNIST→MNIST-M. Figures 7 and 8 represent
these embeddings for OT models respectively on MNIST→MNIST-M and MNIST→ USPS.

On these figures, we see that imputation models generate feature representations that overlap
better between source and target examples per class than the adaptation counterparts (although
Adaptation-Partial does a good job at overlapping feature representations). This corre-
lates with the accuracy performance on the test set. Moreover we notice, as expected, that missing
and partial adaptation networks perform badly compared to the full adaptation counterparts which
justifies the use of imputation model when confronted to missing data.

19

Under review as a conference paper at ICLR 2020

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 6: Embeddings for MNIST→MNIST-M dataset on a batch, for source missing (acc 14.4%)
(a) (b); ADV missing (acc 32.6%) (c) (d); ADV partial (acc 27.0%) (e) (f) ADV with imputation (acc
56.3%); (g) (h) and ADV full (acc 74.2%) (i) (j). (a) (c) (e) (g) (i) represent the target (blue) and
source (red) clusters, (b) (d) (f) (h) (j) represent the classes on source and target instances.

20

Under review as a conference paper at ICLR 2020

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 7: Embeddings for MNIST→MNIST-M dataset on a batch, for source missing (acc 14.5%)
(a) (b); OT missing (acc 18.8%) (c) (d); OT partial (acc 27.75%) (e) (f); OT with imputation (acc
28.6%) (g) (h) and OT full (acc 45.9%) (i) (j). (a) (c) (e) (g) (i) represent the target (blue) and source
(red) clusters, (b) (d) (f) (h) (j) represent the classes on source and target instances.

21

Under review as a conference paper at ICLR 2020

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 8: Embeddings for MNIST→ USPS dataset on a batch, for source missing (acc 25.0%) (a)
(b); OT missing (acc 58.0%) (c) (d); OT partial (acc 62.42%) (e) (f); OT with imputation (acc 65.2%)
(g) (h) and OT full (acc 91.5%) (i) (j). (a) (c) (e) (g) (i) represent the target (blue) and source (red)
clusters, (b) (d) (f) (h) (j) represent the classes on source and target instances.

22

	Introduction
	Problem definition
	Adaptation-Imputation model
	Training
	Inference

	Experiments
	Datasets and experimental setting
	Digits
	Ads
	Ablation analysis

	Related work
	Unsupervised Domain Adaptation (UDA)
	Imputation

	Conclusion
	Pseudo-code
	OT formulation
	Formulation of the imputation OT model
	Implementation

	Dataset description
	Digits
	Ads

	Implementation details
	Neural Net architecture
	digits
	Ads

	Network parameters
	Hyperparameter tuning
	Digits
	Ads

	Embedding visualization on digits

