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ABSTRACT

Multivariate spatial point process models can describe heterotopic data over space.
However, highly multivariate intensities are computationally challenging due to
the curse of dimensionality. To bridge this gap, we introduce a declustering based
hidden variable model that leads to an efficient inference procedure via a varia-
tional autoencoder (VAE). We also prove that this model is a generalization of
the VAE-based model for collaborative filtering. This leads to an interesting ap-
plication of spatial point process models to recommender systems. Experimental
results show the method’s utility on both synthetic data and real-world data sets.

1 INTRODUCTION

Multivariate point processes are widely used to model events of multiple types occurring in an n di-
mensional continuum. This paper focuses on multivariate spatial point processes, which can uncover
hidden connections between subprocesses based on the correlations of their spatial point patterns.
Often we encounter missing data problems, where some subprocesses are not fully observable. The
underlying connections could further contribute to the prediction of these subprocesses over the
unobserved areas. Moreno-Muñoz et al. (2018) has shown the effectiveness of this joint model
for Gaussian processes with heterotopic data. Multi-output models in Lian et al. (2015) such as
coregionalization and cokriging can outperform independent predictions. However, there is limited
literature on the statistical methodology of the highly multivariate spatial point processes, according
to the very recent paper (Choiruddin et al., 2019).

Inference for multivariate spatial point processes intensities is still a challenging problem (Taylor
et al., 2015), especially with a large number of subprocesses. For popular Gaussian processes-based
approaches (Williams & Rasmussen, 2006), the multivariate intensity often consists of independent
and multi-output Gaussian processes. The complexity of the models and the curse of dimensional-
ity hinder this approach for highly multivariate data, such as friendship networks and recommender
systems with millions of users. In these problems, we only partially observe the events (e.g. users in-
teract with items, locations) for each subprocess (user). It is necessary to jointly infer the preference
of each user based on their hidden correlations. For example, a common approach in recommender
systems, collaborative filtering (He et al., 2017), predicts the item interests of each user with the
help of the collection of item preferences for a large number of users.

To address these problems, we propose a multivariate spatial point process model with a nonparamet-
ric intensity. We extend the well-known kernel estimator in Diggle (1985) to the multivariate case.
This generalization is achieved through the introduction of hidden variables inspired by stochastic
declustering (Zhuang et al., 2002). The latent variables naturally lead to a variational Bayesian in-
ference approach, which is different from the frequentist point estimation in the kernel estimator. To
reduce the complexity in the highly multivariate case, we consider an alternative set of hidden vari-
ables that are designed to work well as latent variables for a variational autoencoder (VAE) (Kingma
& Welling, 2014). This amortized inference (Gershman & Goodman, 2014) approach leads to fast
inference once the model is fully trained. Further, we show the equivalence for these two different
settings of hidden variables using the properties of the spatial point process. This efficient approach
makes it possible to apply multivariate spatial point processes in many areas, including recommender
systems with a large number of users. Moreover, the nonparametric method for analyzing spatial
point data patterns is not related to specific parametric families of models, which only requires the
intensity to be well-defined.
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Our approach is not a direct replacement for current inference methods on few-variate spatial point
processes (Jalilian et al., 2015). In contrast to the classical methodology, VAE requires a large
number of training data. The highly multivariate data that are widely available in recommender
systems and social networks can be ideal applications for our approach. In fact, it can be shown that
our model is a generalization of a state-of-the-art VAE-based collaborative filtering model (Liang
et al., 2018). Our model nonparametrically fits the underlying intensity function. Compared with
the multinomial distribution used in Liang et al. (2018), this leads to not only a smoother intensity
over space but also better predictions in terms of ranking-based losses. Compared to a univariate
model, such as the trans-Gaussian Cox processes (Williams & Rasmussen, 2006), our multivariate
model enhances the predictive ability on missing or unobserved areas, which is consistent with the
results of heterogeneous multi-output Gaussian processes (Moreno-Muñoz et al., 2018).

The contributions of this paper are three-fold. We first build a novel multivariate spatial point pro-
cess model and find a direct connection with the VAE-based collaborative filtering through detailed
theoretical analysis. Secondly, this connection introduces amortized inference for an efficient multi-
variate point process estimation. Finally, point processes generalize the discrete distribution used in
(Liang et al., 2018) and lead to better recommendations. We validate these benefits through extensive
experiments for both synthetic and real-world multivariate data sets.

2 PRELIMINARIES

Spatial point process A point process (PP) is a random counting measure N(x) on a com-
plete separable metric space R (here we always assume that R ⊂ Rn) that takes values on
{0, 1, 2, ...}

⋃
{∞}. While the major theory of point processes centers around the temporal dynam-

ics, spatial point process models (Diggle et al., 1983) are established in forestry and seismology,
focusing on the stationary and isotropic case. We focus on the (first-order) intensity function λ(x),
which is the expected rate of the accumulation of points around a particular spatial location x. We
write

λ(x) = lim
|∆x|↓0

E [N(∆x)]

|∆x|
, (1)

where ∆x is a small ball in the metric space, e.g. the Euclidean space Rn, with the centre x and
measure |∆x| . The second-order intensity function is naturally defined as

λ(2)(x, y) = lim
|∆x|,|∆y|↓0

E [N(∆x)N(∆y)]

|∆x||∆y|
, (2)

measuring the chance of points co-occurring in both ∆x and ∆y. Normalizing this leads to the
pair-correlation function g(x, y) = λ(2)(x, y)/λ(x)λ(y). g(x, y) > 1 indicates that points are more
likely to attract each other and form clusters than the simple Poisson process where g(x, y) = 1.

Common models in SPP include the Poisson process with a non-stationary rate λ(x), and the Cox
process with a nonnegative-valued intensity process Λ(x), which is also a stochastic process. Cox
processes conditional on a realization of the intensity process Λ(x) = λ(x) are Poisson processes
with intensity λ(x). To model the aggregated points patterns, Poisson cluster (Neyman-Scott) pro-
cesses generate parent events from a Poisson process. Then each parent independently generates a
random number of offsprings. The relative positions of these offsprings to the parent are distributed
according to some p.d.f Kσ(x) in space (Diggle et al., 1983). Many point process models, includ-
ing most Cox processes, are in fact Poisson cluster processes. Repulsive SPPs, on the other hand,
model that nearby points of the process tend to repel each other. Higher order intensities are often
considered in this case, such as determinantal PPs.

Alternatively, if we are more interested in the realization intensity λ(x) than the mechanical in-
terpretation, the trans-Gaussian Cox process provides a tractable way to construct the Cox process
using a nonlinear transformation on a Gaussian process S(x). Popular choices for Λ(x) include the
log-Gaussian Cox process (LGCP) with exp(S(x)) and the permanental process with S(x)2. Re-
cent works on Cox processes have been extensively focused on the cases that are modulated via the
Gaussian random field, due to its capability in modeling the intensity and pair-correlations between
subprocesses. In the next section, we develop a more explicit approach to model interactions for fast
inference and the generalization ability for new subprocesses.
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Inference for Point Processes Inference methods for point processes are mainly based on the or-
der statistics or likelihood function. The order statistics are often estimated nonparametrically, such
as the kernel estimator (Diggle, 1985) of the intensity function. For the likelihood-based inference,
we assume that one observes events X = {xi}Ni=1 of the underlying spatial point process over the
area R. The log-likelihood for the inhomogeneous Poisson process over space R is

log p(X|Θ) =

N∑
i=1

log(λ(xi))−
∫
R

λ(x) dx . (3)

The integration term is the log void probability and can be viewed as a normalization term for the
likelihood. For Cox processes, the likelihood is the expectation over the Poisson likelihood. It is
difficult to directly integrate over the distribution of Λ. Monte Carlo methods (Adams et al., 2009)
are commonly used to approximate the expectation. To improve the scalability of the expensive
sampling, many methods such as variational inference (Lloyd et al., 2015), Laplace approximation
(Williams & Rasmussen, 2006) and reproducing kernel Hilbert spaces (Flaxman et al., 2017) are
proposed.

Variational Autoencoder As a stochastic variational inference algorithm, VAE (Kingma &
Welling, 2014) is maximizing the evidence lower bound (ELBO) of the log-likelihood function

log p(X|Θ) ≥ Eqφ(z|X)[log(pθ(X|z)]−KL(qφ(z|X)|p(z)). (4)

The hidden variables z have a simple multivariate Gaussian prior p(z) = N (z; 0, I). The true pos-
terior, which is often intractable as in the Cox process, is approximated via a multivariate Gaussian
qφ(z|X) = N (z;µφ(X), σφ(X)). The KL divergence term in the ELBO can be calculated analyti-
cally. VAE uses a multilayer perceptron (MLP) to learn the mean and variance of the approximated
posterior directly from the data. The most related work here is a recent VAE-based model for col-
laborative filtering (VAE-CF) (Liang et al., 2018). They assume that each user is a multinomial
distribution over items with the log-likelihood log pθ(Xu|zu) =

∑N
i=1Xiu log πi(zu) for each user

u. Here Xu is the observed data of user clicking items, πi(zu) is the probability that user u clicks
the item i and Xiu is an indicator function on whether the user u clicked the item i.

3 MULTIVARIATE SPATIAL POINT PROCESSES

Here we consider a multivariate case of the SPP, with U interdependent univariate point processes
on the sample space R. The intensity function is measured in a similar way as the univariate case
via λu(x) = lim|∆x|↓0 (E [Nu(∆x)] /|∆x|) , where Nu(∆x) is the number of events within a set
∆x for the subprocess u.

3.1 A NONPARAMETRIC MODEL

The observed data of multivariate SPP include the location of Nu events Xu = {xui }
Nu
i=1 associated

with each subprocess u. For each u, the observed event locations follow a Poisson process with spa-
tial intensity λu(x), which is a realization of the random intensity Λu(x). Using the nonparameteric
kernel estimator, the intensity of the subprocess u is estimated by

λu(x) =

Nu∑
i=1

Kσ(x− xui ). (5)

Here Kσ(x) is a kernel function and we usually adopt the radial basis function kernel (RBF) where
Kσ(x) = exp(−‖x‖2/2σ2). We ignore the end-correction (Diggle, 1985) for now.

In real-world applications, however, one often encounters the missing data problem, where we can-
not directly observe points in certain areas for some subprocesses. Instead, we seek to infer the hid-
den data from other fully observed subprocesses. Note that N =

∑U
u=1Nu is the total number of

events. We introduce hidden variables Y ui for each event xi = 1, ..., N and subprocess u = 1, ..., U ,
where Y ui = 1 if the subprocess u includes event xi and Y ui = 0 otherwise. EY ui = pui is the
probability that event xi is from the subprocess u. Then the intensity process for our multivariate
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SPP model is

Λu(x) =

N∑
i=1

Y ui Kσ(x− xi), (6)

for each subprocess u. This model generalizes the kernel density-based intensity to the missing data
case. Similarly to the original method, it can be applied to estimate the intensity for both cluster
processes such as Cox processes and repulsive ones like determinantal PPs. In order to incorporate
prior information and model the data uncertainty, we adopt a variational inference approach for the
hidden variables.

3.2 VARIATIONAL INFERENCE

A major drawback of current inference methods for SPP is the introduction of a large number of
parameters in the highly multivariate case. For our model, we use an amortized inference approach
- VAE (Kingma & Welling, 2014) to avoid the computational complexity of directly estimating the
posterior for each subprocess u.

The generative process of our model can be described as follow: For each subprocess u, it has
a K-dimensional hidden variable zu with a multivariate normal prior zu ∼ N (0, IK). Here we
use a low-dimensional representation and then a nonlinear mapping fθ(zu) = {pui }Ni=1 transforms
zu so that it has the same dimension as the number of events N . Finally the spatial points of the
subprocess u are sampled according to the intensity λ(x) =

∑N
i=1 p

u
iKσ(x− xi). We approximate

the intractable posterior distribution of z, q(z|X) with a multivariate Gaussian N (µφ(X), σφ(X)).
As in Liang et al. (2018), we use MLPs to learn the nonlinear function fθ(z) with parameters θ and
the mean and variance with parameters φ. The variational bound of our multivariate Cox process
model is then

log p(Xu|Θ) ≥ Eqφ(zu|Xu)[log(pθ(Xu|zu)]−KL(qφ(zu|Xu)|p(zu)) = L. (7)

The first term in L is essentially a complete likelihood function. For each subprocess u, it has the
following (expected) intensity function

Eqφ(zu|Xu)Λu(x) =

Nu∑
i=1

puiKσ(x− xui ) (8)

and a Poisson process log-likelihood function from (8) and (3)

Eqφ(zu|Xu) log pθ(Xu|zu) =

Nu∑
i=1

log(

Nu∑
i=1

puiKσ(x− xui ))−
∫
R

Nu∑
i=1

puiKσ(x− xui )dx. (9)

For applications without explicit spatial information, we embed each event into a latent space as a
vector. First, we obtain a similarity graph for all events. Then the embedding xi of ith event in this
graph is obtained via graph neural networks (GNNs) such as GraphSAGE (Hamilton et al., 2017).
See Figure 1 for an illustration of our framework.

3.3 ALTERNATIVE MODEL

Recall that the hidden variables Y ui describe whether the event xi is from the subprocess u. By
definition, we have

∑U
u=1 Y

u
i = 1 and

∑U
u=1 p

u
i = 1 for any i. During the training process, it is dif-

ficult to normalize the probability pui over all subprocesses (have to use the full data). Moreover, this
constraint leads to guv < 1 for u 6= v, implying mutual-inhibition behaviors between subprocesses.
Instead, we consider an alternative model where pui is the probability that the subprocess u generates
an event xi i.e.

∑N
i=1 p

u
i = 1 for each u. During the training, the total number of events Nu is not

viewed as a hidden variable for each subprocess. Thus the alternative model essentially normalizes
λu by a constant. With the reparameterization trick in Kingma & Welling (2014), we sample the
log-likelihood function using all events within a mini user batch and compute the gradient. This
approach incorporates all information about the user so that negative sampling is not needed. See
Algorithm 1 for our training procedure. For the model prediction, the normalized intensity of a
new subprocess can be efficiently calculated in O(N) using the approximated posterior qφ(z|Xnew)
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Figure 1: Visual illustration of our spatial point process model via VAE during the training.

and nonlinear function fθ(z) with parameters θ, φ inferred from data. We can further reduce the
computational challenge (Liang et al., 2018) for large N due to fθ(z) by discretizing the space.

Now we show the equivalence of our multivariate model and the alternative one. There are two
probabilities to consider. The first one is the conditional probability of observed events Xu in the
subprocess u with an intensity function λu(x), given that there are Nu events within the metric
space R. The second one is the probability of sample Xu of size Nu from the normalized density
hu(x) = λu(x)/

∫
R
λu(s)ds. For general SPPs data, we have

Theorem 1. A spatial point process on a measurable set R ⊂ Rn with an intensity function λu(x)
is equivalent to Nu i.i.d samples within R with p.d.f hu(x) = λu(x)/

∫
R
λu(s)ds, given we know

Nu =
∫
λu(s)ds, which is the number of points within R for the point process model.

Proof. See Section B in Appendix.

According to this theorem (see supplementary material), we can replace the log-likelihood function
(9) in the ELBO with

Eqφ(zu|Xu) log pθ(Xu|zu) =

Nu∑
i=1

log(hu(xui )) + C. (10)

Here C is related to the log-likelihood on the number of events Nu, which is a constant because∫
R
λu(s)ds = Nu is observed. One drawback of this approach is that, for the prediction of actual

missing data, we cannot infer the number of missing points. Instead, our VAE-based model gener-
ates the normalized intensity predicting the possible locations for the missing events. We use the
alternative definition of pui from now on. This result also shows that VAE-CF is a special case of
this multivariate spatial point process model over a discrete space X of events. This is because that
VAE-CF uses a delta function as the kernel and then hu(xi) = λu(xi)/

∫
X
λu(s)ds = pui . In the

general case on a continuous space, we can replace the δ function with other kernels such as RBF,
resulting in hu(x) =

∑N
i=1 p

u
i exp(‖x− xi‖2/2σ2).

One benefit of this alternative model is its resulted consistency. The nonparametric kernel estimation
for the point process intensity is unbiased. To see this, for any measurable set R, we take the
expectation of the estimated intensity λ(x) over the Poisson point process distribution

E
∫
R

λ(x)dx =

∫
R

E
N∑
i=1

Kσ(x− xi)dx =

∫
R

∫
R

Kσ(x− y)ρ(y)dydx =

∫
R

ρ(y)dy, (11)

where ρ(y) is the true intensity function. Then Eλ(x) = ρ(x) under mild conditions, e.g., a spa-
tially continuous assumption on ρ. But it is inconsistent due to the non-vanishing variance without
normalization. For our alternative model, the normalized intensity function hu(x) is still unbiased.
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Algorithm 1: Training VAE SPP with stochastic gradient descent.
Input: Traning subprocesses u ∈ UT with their point locations Xu

Result: Parameters θ and φ
Initialize θ and φ randomly;
while not converged do

Sample a subprocesses batch Ub from UT and their points Xb =
⋃
u∈Ub

Xu ;
forall u ∈ Ub do

Sample zu ∼ N (µφ(Xu), σφ(Xu)) with reparameterization trick;
Compute fθ(zu) = {pui }xi∈Xb ;
forall x ∈ Xu do

Compute sampled normalized intensity hu(x) ≈
∑
xi∈Xb p

u
iKσ(x− xi);

end
Compute noisy gradients of the ELBO L w.r.t θ and φ

end
Average noisy gradients over batch;
Update θ and φ with the Adam optimizer (Kingma & Ba, 2015);

end

And according to the standard theory of the multivariate kernel density estimation (KDE), the con-
sistency of hu(x) is also guaranteed. Another benefit of using this alternative form can be seen from
the cross pair-correlation function. For the alternative model, we remove the undesirable restriction
of negative correlations between all users (guv < 1 for u 6= v) and can incorporate more diverse
relationships between users. To see this, we first consider the auto and cross pair-correlation func-
tion guv = EΛuΛv/EΛuEΛv . For our original model, it is straightforward to prove that guu > 1
and guv < 1, u 6= v (see supplementary material). The auto pair-correlation functions show that our
model is more aggregate than the simple Poisson process.

4 EXPERIMENTS

We compare our model (with the RBF kernel, VAE-SPP) with both VAE-CF (Liang et al., 2018) and
univariate spatial point process models using a standard KDE (Diggle, 1985) or TGCP (Williams &
Rasmussen, 2006) as intensity functions. We adopt the experiment setting in VAE-CF. We split the
data into training, validation and testing sets. For the multivariate model, the training data is used to
learn the parameters θ, φ. For KDE and TGCP models, we omit the training data because different
subprocesses are assumed to be independent and also because of the computational complexity of
fitting a highly multivariate TGCP. We assume that only 80% of the events in the validation and
test sets are observed. The remaining 20% are viewed as missing data to be inferred by different
models. Hyperparameters are selected on the validation data as in Liang et al. (2018). Finally, we
compare the prediction performance of different models on the missing data given the partially-
observed events. We use standard ranking losses such as normalized discounted cumulative gain at
k (NDCG@k) and recall at k (Recall@k) defined in Liang et al. (2018).

4.1 MULTIVARIATE SPP ON SPATIAL DATA

Synthetic data sets We simulate two different data sets using multiexponential and multisine
models. For the multiexponential data set, we simulate 5,000 Poisson processes with λk(x) =
ake
−bkx, k = 1, ..., 5000, x ∈ [0, 30] as training data. Here ak and bk are uniformly sampled be-

tween [5, 10] and [0.1, 0.2] separately. 500 validation and 500 test subprocesses are generated in the
same way with parameters sampled from ak and bk. The multisine data set is generated via replac-
ing the intensity function with λk(x) = max(ak ∗ sin(bkx), 5) and sampling ak and bk uniformly
between [5, 10] and [1, 2] separately. Each realization of the spatial point process is discretized using
a uniform grid over x with grid spacing 0.01.

Location-based Social Network. We consider the Gowalla data set (Cho et al., 2011) in New
York City (NYC) and California (CA). We use a bounding box of -124.4096, 32.5343, -114.1308,
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Table 1: Testing results on the simulation data sets. Both the mean and variance are percentages
(same below).

Multiexp Multisine
Name NDCG@100 Recall@50 Recall@100 NDCG@100 Recall@50 Recall@100
VAE-CF 6.78(0.28) 7.25(0.40) 14.5(0.52) 3.30(0.15) 2.49(0.13) 4.64(0.18)
VAE-SPP 7.11(0.31) 7.34(0.40) 14.9(0.54) 3.53(0.15) 2.58(0.13) 4.90(0.18)
KDE 5.27(0.15) 5.85(0.12) 11.8(0.17) 3.23(0.15) 2.29(0.12) 4.55(0.27)
TCGP 3.11(0.14) 3.32(0.11) 6.44(0.11) 3.77(0.14) 1.88(0.11) 3.92(0.17)

42.0095 for CA and -74.0479, 40.6829, -73.9067, 40.8820 for NYC (both from flickr1). Each user
with at least 20 events (check-ins) is viewed as a subprocess. There are 673,183 events and 6,728
users for Gowalla-CA. We randomly select 500 users as the validation set and 500 users as the
testing set. We use the remaining users for training. For Gowalla NYC, there are 86,703 events from
1,171 users. We set the size of both validation and testing sets to 100. For the spatial tessellation,
we use uniform grids (32 × 32 for NYC and 64 × 64 for CA). Both our model and VAE-CF can
work without grids. We further compare the performance of our model with VAE-CF by viewing
each location as an item.

Table 2: Testing results on the Gowalla data sets with uniform grids.
CA NYC

Name NDCG@100 Recall@50 Recall@100 NDCG@100 Recall@50 Recall@100
VAE-CF 41.8(1.5) 64.8(2.0) 70.0(2.0) 43.6(2.3) 73.9(2.9) 86.2(2.2)
VAE-SPP 42.3(1.5) 65.2(2.0) 70.2(1.9) 44.8(2.4) 74.5(2.9) 86.2(2.2)
KDE 34.5(1.5) 59.2(2.0) 64.0(2.0) 41.2(1.5) 69.9(2.0) 83.6(2.0)
TCGP 31.8(1.3) 56.5(2.0) 60.9(2.0) 37.3(2.3) 59.9(3.3) 75.9(2.8)

Table 3: Testing results on the Gowalla data sets without discretization.
CA NYC

Name NDCG@100 Recall@20 Recall@100 NDCG@100 Recall@20 Recall@100
VAE-CF 21.3(0.77) 16.6(0.74) 32.8(0.97) 16.0(1.7) 13.2(1.7) 26.3(2.4)
VAE-SPP 21.6(0.77) 17.0(0.80) 33.5(0.76) 16.1(1.7) 13.7(1.8) 27.1(2.5)

In Table 1, we summarize the performance of both multivariate and univariate models on the sim-
ulation data sets. It is clear that the multivariate models outperform the univariate ones. Moreover,
testing on multivariate models takes less time because it only evaluates the posterior probability
and intensity function. This illustrates the power of multivariate models using amortized inference.
Within the multivariate models, our continuous model further improves upon the discrete VAE-CF.
This is due to the fact that these simulation intensities are continuous over R. For real-world appli-
cations, the results on the location-based social network prediction and recommendation with and
without grids are presented in Table 2 and 3. We observe the same pattern in both NYC and CA.
We stop using univariate models from now on due to their inferior performances, especially for col-
laborative filtering applications. Moreover, our model improves discrete VAE-CF regardless of the
choice of spatial grids. For visualization purposes, in Figure 2, we plot a user’s check-in locations in
Gowalla-NYC and intensities estimated via different methods. Comparing with VAE-CF, our model
generates a continuous intensity. The univariate models overfit the training data and lead to inferior
predictions of the missing data.

4.2 MULTIVARIATE SPP WITH A LATENT SPACE

MovieLens data sets (ML-100K and ML-1M) include the movie (item) rating by users and we
binarize the rating with a threshold of 4. In the spatial point process setting, we view each user
as a subprocess over the latent space of item embeddings. Here the item embedding is generated
via a GNN. This framework is a natural generalization of the multimodal distribution over items.

1https://www.flickr.com/places/info/
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Figure 2: Estimated density functions for a Gowalla user in NYC (log scale). The first row from
left to right: observed check-in locations (in red), held-out check-in locations (in blue, as missing
data) and the estimated intensity from VAE-SPP. The second row from left to right: the estimated
intensity (or density) from VAE-CF, KDE and TGCP.

The item-item graph is constructed based on item-item similarities. We use the Jaccard distance
to measure the similarities between items, which are further viewed as the sampling probabilities
for GNN. Currently, we only consider 1-hop connections. Both GNN and VAE are trained jointly,
which according to our experiments leads to better performance compared to separate training. For
movie recommendation tasks, we compare the discrete VAE-CF to our joint model with GNN. The
results in Table 4 show again the improvement of our model over the baseline.

Table 4: Testing results on the MovieLens data sets.
ML100K ML1M

Name NDCG@100 Recall@20 Recall@100 NDCG@100 Recall@20 Recall@100
VAE-CF 40.8(2.8) 32.3(2.8) 57.6(3.3) 41.6(0.76) 33.1(0.81) 56.8(0.88)
VAE-SPP 41.5(2.9) 31.3(2.7) 59.0(3.5) 42.3(0.77) 33.9(0.82) 57.6(0.88)

5 CONCLUSION

In this paper, we introduce a novel spatial point process model for efficient inference on the highly
multivariate case. Through amortized inference, our model makes it possible to investigate correla-
tions between a myriad of point patterns based on a large number of training data, and the theoretical
analysis builds the connection between our model and VAE-CF. There are many promising direc-
tions of future works including the extension for spatiotemporal PPs (Mohler et al., 2011) and using
features as covariances. Another interesting application is to handle the cold-start problem of the
new items using our latent space approach, due to the inductive ability of GNN (Hamilton et al.,
2017) to generate embeddings.
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A TABLE OF NOTATIONS

Table 5: Notations.
Notation Definition or Descriptions

N(x) counting measure on a metric space R

Nu the number of events of subprocess u

λu(x) intensity function of a subprocess u

Λu(x) intensity process of a subprocess u

Kσ(x) kernel function

U # of subprocesses on the space

Ub subprocesses in a batch

X events set

Xu observed events of subprocess u

Xb all the observed events in a batch of sub-
processes

xi embedding/location of the ith event

Y ui hidden variables indicate whether the
subprocess u includes the ith event

zu K-dimensional hidden variable repre-
sents subprocess u

pui probability of the ith event occurs in
subprocess u

φ, θ parameters of encoder(µφ, σφ) and
decoder(fθ)

guv = EΛuΛv/EΛuEΛv auto and cross pair-correlation function

hu(x) normalized density

B PROOF OF THEOREM 1

Proof. We define our model as a point process on R with the intensity function λu(x).

The alternative model is Nu i.i.d samples within R with p.d.f hu(x), given that we know Nu =∫
λu(s)ds is the number of points within the point process model.

1) Our model has the following probability generating functional

G(v) = exp(−
∫

Rd
[1− v(x)] Λ(dx)) (12)

2) Given Nu,

p(x1, ..., xNu |Nu) =

Nu∏
i=1

hu(xi) (13)

3) Our alternative model (a counting r.v. N(x) with locations according to hu(x)) has the following
characteristic functional

Gc(v) =

∞∑
n=0

p(N(R) = n)E[exp(

∫
R

log(v(s))N(ds))|N(R) = n] (14)

10
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Using 2), we can evaluate this conditional probability

E[exp(

∫
R

log(v(s))N(ds))|N(R) = n] = (

∫
R
λu(s)v(s)ds

λu(s)ds
)n (15)

Using 2) again and because the point process observation probability is

p(ω) = p(N(R) = Nu)p(x1, ..., xNu |Nu) =
1

n!
[

n∏
i=1

λu(xi)] exp(−
∫
R

λ(x)dx), (16)

we have

Gc(v) = exp(−
∫
R

λ(x)dx)(1 +

∞∑
n=1

1

n!
(

∫
R

λ(s)v(s)ds)n) = exp(

∫
R

λ(s)(v(s)− 1)ds). (17)

The theorem follows from Gc(v) = G(v) as the probability generating functional completely deter-
mines the probability structure of the point process.

We show that (10) holds in the main paper.
Corollary 1.1.

Eqφ(zu|Xu) log p(Xu|zu) =

Nu∑
i=1

log(hu(xui )) + C. (18)

Proof. Define λu(x) = Eqφ(zu|Xu)Λu(x).

Eqφ(zu|Xu) log p(Xu|zu) = log
(
p(N(R) = Nu)p(xu1 , ..., x

u
Nu |Nu)

)
(19)

=

Nu∑
i=1

log(hu(xui )) + log(p(N(R) = Nu)) (20)

log(p(N(R) = Nu)) = n log(

∫
R

λ(x)dx)− log(n!)−
∫
R

λ(x)dx (21)

is only a function of Nu.

C AUTO AND CROSS PAIR-CORRELATION FUNCTIONS

We show that gu,v(x, y) > 1 for u = v and gu,v(x, y) < 1 for u 6= v for our orginal model.

gu,v(x, y) =
EΛu(x)Λv(x)

EΛu(x)EΛv(x)
(22)

We have

EΛu(x)Λv(x) = E(

N∑
i=1

Y ui Kh(x− xi))(
N∑
j=1

Y vj Kh(y − xj)) (23)

=

N∑
i=1

N∑
j=1

EY ui Y vj Kh(x− xi)Kh(y − xj). (24)

Similarly,

EΛu(x)EΛv(x) = (E
N∑
i=1

Y ui Kh(x− xi))(E
N∑
j=1

Y vj Kh(y − xj)) (25)

=

N∑
i=1

N∑
j=1

pui p
v
jKh(x− xi)Kh(y − xj). (26)

Note that
∑U
u=1 Y

u
i = 1 and

∑U
u=1 p

u
i = 1. When i 6= j, we have EY ui Y vj = pui p

v
j for any u, v.

When i = j, EY ui Y ui = pui > (pui )2 for u = v and EY ui Y vi = 0 < pui p
v
i . Then it is easy to see

gu,v(x, y) > 1 for u = v and gu,v(x, y) < 1 for u 6= v.
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D ADDITIONAL EXPERIMENTS

On the training of VAE and GNN, we tried different settings and choose to train them jointly.

Table 6: Testing results on MovieLens-100K. These methods share the same VAE network and
trained with 100 epochs. The test data is evaluating the model with the best performance during the
validation. Separate means that GNN is trained separately with VAE-SPP.

NDCG@100 Recall@20 Recall@100
VAE-CF 0.4088 0.3232 0.5763
VAE-SPP 0.4150 0.3134 0.5899
VAE-SPP-Separate 0.4143 0.3115 0.5882

We also did experiments on the MLPs for VAE. For Movie Lens 1M, the larger network in VAE-CF
leads to a 40.3 NDCG@100 for VAE-CF and 41.9 for VAE-SPP. As a result, we use the smaller one
instead.
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