Under review as a conference paper at ICLR 2020

QUANTITATIVELY DISENTANGLING AND UNDER-
STANDING PART INFORMATION IN CNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents an unsupervised method to learn a neural network, namely an
explainer, to disentangle and quantify the knowledge of object parts that is used
for inference by a pre-trained convolutional neural network (CNN). The explain-
er performs like an auto-encoder, which quantitatively disentangles part features
from intermediate layers and uses the part features to reconstruct CNN features
without much loss of information. The disentanglement and quantification of part
information help people understand intermediate-layer features used by the CNN.
More crucially, we learn the explainer via knowledge distillation without using
any annotations of object parts or textures for supervision. In experiments, our
method was widely used to diagnose features of different benchmark CNNs, and
explainers significantly boosted the feature interpretability.

1 INTRODUCTION

Convolutional neural networks (CNNs) (LeCun et al.|, |1998; [Krizhevsky et al.|[2012; He et al.| [2016))
have shown promise in many visual tasks, but the model interpretability has been an Achilles’ heel
of deep neural networks for decades. Especially in recent years, helping CNNs to earn trust for
safety issues in critical applications has become a new demand for CNNs beyond the accuracy.

Therefore, in order to explain the knowledge contained in a CNN, we aim to quantify signals in
intermediate-layer features, which represent object objects, away from signals for other concepts
(e.g. textures). Note that as shown in Table[T] our objective is not to qualitatively visualize object-
part features within a CNN. Instead, this work quantitatively explains how much information of
object parts and how much information of other concepts are used by the CNN for prediction. The
quantitative disentanglement of object-part information and other concepts from an intermediate
layer can provide new insights of information processing inside the CNN, and is of considerable
theoretical values in explainable Al

Crucially, we are not given any manual annotations of object parts in this study. Bau et al.| (2017)
used annotations of object partﬂ textures and other visual concepts to quantify the semantic mean-
ing of each filter. However, the requirement for the rigorous analysis of part concepts conflicts with
the fact that there does exist comprehensive annotations of all object parts and textures. It is be-
cause object parts encoded by the CNN usually do not have explicit names (e.g. the combination
of the neck and the left shoulder), thereby difficult to be annotated. In comparison, we propose to
objectively quantify the ratio of object-part concepts to all other concepts (see Table[3), which is not
supposed not to be affected by the potential subjective bias in human annotations.

Therefore, potential issues in above tasks can be summarized as follows.

e Automatic disentanglement of explainableﬂ (object-part) information and unexplainable informa-
tion that are activated in an intermediate layer is necessary for a rigorous and trustworthy diagnosis
of CNNs. Each filter of a conv-layer usually encodes a mixture of various semantics and noises (see

Fig.[T).

2In (Zhang et al.| 2018c), both “objects” and “parts” are categorized as parts.
'In this study, we do not distinguish the subtle difference between terms of interpretable and explainable.
We use terms of interpretable conv-layers and interpretable filters as defined in (Zhang et al., 2018c).

Under review as a conference paper at ICLR 2020

77 Performer Zmature maps of ordinary filters

S e I
semantics

Feature maps of interpretable filters

. Head
E I H Fllter 1 ' pattern
Xplainer -
P " -4 Rl Unclear . Torso
Filter 2 |7 . Filter2
Decode B Y semantics pattern

Figure 1: Explainer network. We use an explainer network to disentangle object-part features that
used by a pre-trained performer network. The explainer network disentangles object-part features
(B) from the performer to mimic signal processing in the performer. The explainer network can also
invert the disentangled object-part features to reconstruct features of the performer without much
loss of information. We compare traditional features (A) in the performer and the disentangled
features (B) in the explainer on the right. The gray and green lines indicate the information-pass
route during the inference process and that during the diagnosis process, respectively.

Traditional CNNs

Interpretable CNNs (Zhang et al.[2018¢

Can explain pre-trained model
Disentangle explainable signals
Semantic-level explanation
High feature interpretability

v
v
v

Capsule nets (Sabour et al.; 2017}

on & di

Explainer

v
v
v

v

v
v
v

High discrimination power v

Do not affect the pre-trained model
Potential broad applicability v v v

Table 1: Comparison between our research and other studies. Note that this table can only summa-
rize mainstreams in different research directions considering the huge research diversity. Please see
Section 2 for detailed discussions of related work.

Therefore, the disentanglement of object-part information requires us 1. to mathematically model
and distinguish features corresponding to object parts away from textures and noises, without any
part annotations; and 2. to quantify neural activations for object parts and other concepts. For
example, 90% signals for inference may be quantified as object parts and treat the rest 10% may be
considered as textures and noises.

e Semantic explanations: Furthermore, the disentangled features can be assigned with different ob-
ject parts with clear semantic meanings. In comparisons, network visualization and diagnosis (Fong
& Vedaldi, 2017} Selvaraju et al., |2017} [Ribeiro et al., 2016} |Lundberg & Leel 2017) mainly illus-
trate the appearance corresponding to a network output/filter at the pixel level, without quantitatively
summarizing strict semantics. Our method identifies which object parts are used for inference. Com-
pared to previous pixel-level visualization and diagnosis of a CNN, our quantitative disentanglement
of object-part features presents a more trustworthy way to diagnose CNNss.

Tasks, learning networks to diagnose networks: We propose a new strategy to boost feature inter-
pretability. Given a pre-trained CNN, we learn another neural network, namely a explainer network,
to transform and decompose chaotic intermediate-layer features of the CNN into (1) elementary
features corresponding to object parts and (2) unexplainable features. Accordingly, the pre-trained
CNN is termed a performer network.

As shown in Fig.[I] the performer is trained for superior performance, in which each filter usually
represents a chaotic mixture of object parts and textures (Bau et al., 2017). The explainer works
like an auto-encoder, which is learned to mimic the logic of the performer. Two specific sets of
filters in the explainer decomposes performer features into features of object parts and other con-
cepts, respectively. Then, the decomposed features are also trained to reconstruct features of upper
layers of the performer. The explainer is attached onto the performer without affecting the original
discrimination power of the performer.

A high reconstruction quality ensures the explainer successfully mimics the signal processing in
the performer (please see Appendix [C]for more discussions). Besides, the disentangled object-part
features can be treated as a paraphrase of performer feature representations. The proposed method
roughly quantifies the ratio of neural activations for object parts, i.e. telling us

e how much features (e.g. 90%) in the performer can be explained as object parts;

e information of what parts is encoded in the performer;

e for each specific inference score, which object parts activate filters in the performer, and how much
they contribute to the inference.

Diagnosing black-box networks vs. learning interpretable' networks: As compared in Table
diagnosing pre-trained black-box neural networks has distinctive contributions beyond learning se-
mantically meaningful intermediate-layer features, such as (Sabour et al.,|2017;|Zhang et al., 2018c).
It is because traditional black-box networks have exhibited much broader applicability than inter-

Under review as a conference paper at ICLR 2020

Interpretable track

AT Toss;
g2
= 2

AT TLoss LTALA
5

=8 18|58

g =

NS 3

Ordinary track Decoder

o e e | [S|
s3)e))s (fo-dec-t]) [ReLU [J[fodec-2 |

Figure 2: The explainer network (left). Detailed structures within the interpretable' track, the ordi-
nary track, and the decoder are shown on the right. People can change the number of conv-layers
and FC layers within the encoder and the decoder for their own applications.

disjul
ASEN
ASEN

Explaine

pretable networks.

e Model flexibility: Most existing CNNs are black-box models with low interpretability, so diagnos-
ing pre-trained CNNs has broad applicability. In comparison, interpretable neural networks usually
have specific requirements for structures (Sabour et al., 2017) or losses (Zhang et al.,[2018c), which
limit the model flexibility and applicability.

o Interpretability vs. discriminability: Unlike diagnosing pre-trained networks, learning inter-
pretable networks usually suffers from the dilemma between the feature interpretability and its
discrimination power. A high interpretability is not equivalent to, and sometimes conflicts with
a high discrimination power. As shown in (Sabour et al[2017), increasing the interpretability of a
neural network may affect its discrimination power. Furthermore, filter losses in the interpretable
CNN (Zhang et al.| 2018c)) greatly hurts the classification performance when the network has so-
phisticated structures (please see Appendix[A). People usually have to trade off between the network
interpretability and the performance in real applications.

Learning: We learn the explainer by distilling feature representations from the performer to the
explainer. No annotations of parts or textures are used to guide the feature disentanglement during
the learning process. We add a loss to specific filters in the explainer (see Fig. [2). Without part
annotations, the filter loss automatically encourages the filter to be exclusively triggered by a certain
object part of a category. This filter is termed an interpretable’ filter.

Meanwhile, the disentangled object-part features are also required to reconstruct features of upper
layers of the performer. Successful feature reconstructions guarantee to avoid significant information
loss during the disentanglement of part features.

Contributions of this study are summarized as follows.

e We tackle a new strategy to diagnose pre-trained neural networks, i.e. learning an explainer net-
work to disentangle object-part concepts that are used by a pre-trained CNN. Our method roughly
quantifies neural activations corresponding to object parts, which sheds new light on understanding
black-box models.

e Our method is able to learn the explainer without any annotations of object parts or textures
for supervision. Experiments show that our approach has considerably improved the feature inter-
pretability.

2 RELATED WORK

Network interpretability: Instead of analyzing network features from a global view (Wolchover,
2017 Schwartz-Ziv & Tishbyl [2017} [Rauber et al.l 2016), (Bau et al., 2017) defined six kinds of
semantics for intermediate-layer feature maps of a CNN, i.e. objects, parts, scenes, textures, mate-
rials, and colors. Fong and Vedaldi (Fong & Vedaldi, 2018)) analyzed how multiple filters jointly
represented a certain semantic concept. We can roughly consider the first two semantics as object
parts with explicit shapes, and summarize the last four semantics as textures. Our research aims to
disentangle object-part information from intermediate layers of the performer network.

Many studies for network interpretability mainly showed visual appearance corresponding to a neu-
ral unit inside a CNN (Zeiler & Fergus| 2014; Mahendran & Vedaldi, 2015} Simonyan et al.| 2013}
Dosovitskiy & Brox, |[2016;|Yosinski et al., 2015; Dong et al.,|2017) or extracted image regions that
were responsible for network output (Ribeiro et al., 2016} [Elenberg et al.,2017; Koh & Liang}, 2017
Fong & Vedaldi|, 2017; Selvaraju et al., 2017 Kumar et al.,|2017). Other studies retrieved mid-level
representations with specific meanings from CNNs for various applications (Kolouri et al., 2017

Under review as a conference paper at ICLR 2020

Lengerich et al., [2017). For example, (Zhou et al., 2015} [2016) selected neural units to describe
“scenes”. (Simon & Rodner;, 2015) discovered objects from feature maps of unlabeled images. In
fact, each filter in an intermediate conv-layer usually encodes a mixture of parts and textures, and
these studies consider the most notable part/texture component as the semantic meaning of a fil-
ter. In contrast, our research uses a filter loss to purify the semantic meaning of each filter (Fig.
visualizes the difference between the two types of filters).

A new trend related to network interpretability is to learn networks with disentangled, explainable
representations (Hu et al.|[2016j|Stone et al.L[2017} Liao et al.,|2016). Many studies learn explainable
representations in a weakly-supervised or unsupervised manner. For example, capsule nets (Sabour
et al.| 2017) and interpretable RCNN (Wu et al.| |2017) learned interpretable intermediate-layer fea-
tures. InfoGAN (Chen et al., 2016) and 5-VAE (Higgins et al., |2017) learned meaningful input
codes of generative networks. The study of interpretable CNNs (Zhang et al., [2018c) developed a
loss to push each intermediate-layer filter towards the representation of a specific object part during
the learning process without given part annotations. However, as mentioned in (Bau et al,2017)), an
interpretable model cannot always ensure a high discrimination power, which limits the applicability
of interpretable models. Therefore, instead of directly boosting the interpretability of the performer
network, we propose to learn an explainer network in an unsupervised fashion. (Vaughan et al.,
2018)) distilled knowledge of a network into an additive model, but this study does not explain the
network at a semantic level.

Meta-learning: Our study is also related to meta-learning (Chen et al.,|2017}; |/Andrychowicz et al.,
2016; ILi & Malikl 20165 |Wang et al. [2017). Meta-learning uses an additional model to guide the
learning of the target model. In contrast, our research uses an additional explainer network to explain
intermediate-layer features of the target performer network.

3 ALGORITHM

3.1 NETWORK STRUCTURE OF THE EXPLAINER

As shown in Fig.[2| the explainer network has two modules, i.e. an encoder and a decoder, which de-
compose the performer’s intermediate-layer features into explainable object-part features and invert
object-part features back to features of the performer, respectively. If features of the performer can
be well reconstructed, then we can roughly consider that the decomposed features contain nearly the
same information as features in the performer.

We applied the encoder and decoder with following structures to all types of performers in experi-
ments. Nevertheless, people can change the layer number of the explainer in their applications.

Encoder: In order to reduce the risk of over-interpreting textures or noises as parts, we design two
tracks for the encoder, namely an interpretable' track with interpretable filters and an ordinary track
with ordinary filters, which model object-part features and other features, respectively. Although as
discussed in (Zhang et al., [2018c)), a high conv-layer mainly represents parts rather than textures,
avoiding over-interpreting is still necessary for the explainer.

The interpretable track disentangles object parts from chaotic features. This track has two inter-
pretable conv-layers (namely conv-interp-1,conv-interp-2), each followed by a ReLLU layer and a
mask layer. The interpretable conv-layer is defined in (Zhang et al.,|2018c)). Each filter in an in-
terpretable conv-layer is learned to be exclusively triggered by a specific object part, and is termed
an interpretable filter. This interpretable filter is learned using both the task loss and an filter loss.
The filter loss boosts the interpretability, which will be introduced later. Besides, the ordinary track
contains a conv-layer (namely conv-ordin), a ReLU layer, and a pooling layer.

We sum up output features of the interpretable track ziner, and those of the ordinary track zowin as the
final output of the encoder, i.e. Zene = P - Tinerp + (1 — P) - Torain, Where a scalar weight p measures the
quantitative contribution from the interpretable track. p is parameterized as a sigmoid probability
p = sigmoid(wy), wp € 6, where 0 is the set of parameters to be learned. Our method encourages a
large p so that most information in z.,. comes from the interpretable track.

For example, if p = 0.9, we can roughly consider that about 90% feature information from the
performer can be represented as object parts due to the use of norm-layers.

Under review as a conference paper at ICLR 2020

Norm-layer: We normalize Tinerp and zoqin to make the probability p accurately represent the ratio
of the contribution from the interpretable track, i.e. making each channel of these feature maps
produces the same magnitude of activation values. Thus, we add two norm-layers to the interpretable
track and the ordinary track (see Fig. . For each input feature map = € RE*2*P | the normalization
operation is given as (/%) = (9% /o, where ai, € a C 0 denotes the average activation magnitude
of the k-th channel o) = E.[Y,; max(z(“*),0)] through feature maps of all images, where z(7*)
denotes an element in z. We update ¢ during the forward propagation, just like in the learning for
batch normalization.

Mask layer: We add mask layers after two interpretable conv-layers to remove activations that are
unrelated to the target part. As shown in Fig. 3] each activated feature map after the mask layer
always has a single activation peak.

Let x; € RY*L denote the feature map of an interpretable filter f after the ReL.U operation. The
mask layer localizes the potential target object part on x as the neural unit with the strongest
activation j = argmaxuz[i’j]xifj), where 1= [i, j] denotes a neural unit in zy (1<4,5 <L), and x;”)
indicates its activation value.

Based on the estimated part location /i, the mask layer assigns zy with a mask masky to remove
noises, 7! = z o masky, where o denotes the Hadamard product. The mask w.rt. i is given as
masky = max(T}j,0), where T}, is a pre-define template with a single activation peak at ji. Theo-

retically, there are various choices for the template shape, but for simplicity, we used part templates

in (Zhang et al., |2018c) in this study, i.e. Tlgij) = max{l — M, 0}. || - |1 denotes the L-1

norm. Given ji, we treat mask; as a constant to enable gradient back-propagation.

Decoder: The decoder inverts wene t0 zqec to reconstruct performer features. The decoder has two FC
layers, namely fc-dec-1 and fc-dec-2, which are used to reconstruct feature maps of two correspond-
ing FC layers in the performer. The reconstruction loss will be introduced later. The better feature
reconstruction indicates that the explainer’s feature xe,. loses less information.

3.2 LEARNING

When we distill knowledge representations from the performer to the explainer, we minimize the
following loss for each input image.
Loss(0)= Z Aol —z(|>=nlog p—|—z Aj-Lossy(xy) (1)
leL f
where 0 denotes the set of parameters to be learned, including filter weights of conv-layers and
FC layers in the explainer, w, for p, and parameters for norm-layers. Ay, Ay and 7 are scalar
hyper-parameters.

e The first term ||z — x(;, ||I? is the reconstruction loss, which also minimizes the information loss
when we use the explainer’s features to mimic the logic of the performer. ;) denotes the feature
of the FC layer [in the decoder, L = {fc — dec — 1, fc — dec — 2}. x(;, indicates the corresponding
feature in the performer.

e The second term — log p encourages the interpretable track to make more contribution to the
inference. In other words, this term forces object-part information in the performer’s features go
through the interpretable track, instead of going through the traditional track a short-cut path.

e The third term Lossy(zy) is the loss of filter interpretability. Without annotations of object parts,
the filter loss forces each filter ¢ to be exclusively triggered by a specific object part of a certain
category.

During the back propagation, the interpretable filter f receives gradients from both the filter loss and
the reconstruction loss to update its weights. Whereas, ordinary filters in the ordinary track and the
decoder only learn from gradients of the reconstruction loss.

The filter loss was formulated in (Zhang et al.| |2019) as the minus mutual information between the
distribution of feature maps and that of part locations. Given an input image, x ; is learned to satisfy
that if the target part appears, then x; should have a single activation peak at the part location;
otherwise, x s should keep inactivated.

Loss; = szexLoser(a:f) =-MI(X;P) = —Z p(u)szexp(xfm) log p(eslu) %)

p(zys)

nepP

Under review as a conference paper at ICLR 2020

where MI(-) indicates the mutual information. X denotes a set of feature maps of the filter f, which
are extracted from different input images. P = {u|u = [¢,5],1 < 4,5 < L} U {0} is referred to as
a set of all part-location candidates. As mentioned above, each location p = [i, j] is referred to as
an activation unit in the feature map. Besides,) € P denotes the case that the target part of the
filter does not appear in the input image, and we expect all units in x y to keep inactivated. The joint
probability p(x 7, 1) describes the compatibility between x s and (. Please see (Zhang et al.,|{2018c)
or Appendixfor details of p(u) and p(x¢|p). The filter loss ensures xy match only one of all
L? + 1 location candidates.

As shown in Fig. 2] we add a filter loss to each interpretable filter f in the two conv-layers (conv-
interp-1 and conv-interp-2). x; € RY*E denotes the feature map of the interpretable filter after the
ReLU operation.

3.3 ANALYSIS OF THE ALGORITHM

Our algorithm makes a trade-off between the explanation power and the reconstruction accuracy of
the explainer. The item of the reconstruction loss in Equation equation |l{ensures a high reconstruc-
tion quality, i.e. the explainer should successfully mimic the signal processing in the performer. On
the other hand, w,, for p is updated based on both the — log p loss and the reconstruction loss. The
— log p loss encourages a high value of p, in order to push as much object-part information as pos-
sible to the interpretable track. Whereas, the reconstruction loss usually requires a moderate value
of p to avoid over-interpreting textural features and noises as object parts.

Equation equation 1| also boosts the mutual information between the feature map and all part loca-
tions. In other words, each filter should be triggered by a single region (part) of the object, rather
than repetitively appear on different regions of an object. We assume that repetitive shapes on var-
ious regions are more likely to describe low-level textures (e.g. colors and edges) than high-level
parts. We consider the left and right eyes as two different parts, because they have different contexts.
Thus, the filter loss pushes each interpretable filter towards the representation of an object part.

4 EXPERIMENTS

In experiments, we trained explainers for six types of performer networks to demonstrate the broad
applicability of our method. Performer networks were pre-trained using object images in two differ-
ent benchmark datasets for object classification. We visualized feature maps of interpretable filters in
the explainer to illustrate semantic meanings of these filters. Experiments showed that interpretable
filters in the explainer generated more semantically meaningful feature maps than conv-layers in the
performer.

Benchmark datasets: Because the evaluation of filter interpretability required ground-truth annota-
tions of object landmark (parts), we used two benchmark datasets with part annotations for training
and testing, i.e. the CUB200-2011 dataset (Wah et al., 2011)) and the Pascal-Part dataset (Chen et al.,
2014])). Note that previous studies (Chen et al.,|2014;Zhang et al.,[2018c]) usually selected animal cat-
egories to test part localization, because animals usually contain non-rigid parts, which present great
challenges for part localization. Therefore, we followed the experimental design in (Zhang et al.,
2018c) that selected the seven animal categories in the two datasets for evaluation. Both the datasets
provide object bounding boxes. The CUB200-2011 dataset (Wah et al., 2011} contains 11.8K bird
images of 200 species with center positions of fifteen bird landmarks. Here, we considered all 200
bird species in the CUB200-2011 dataset as a single category. The Pascal-Part dataset (Chen et al.
2014) provides ground-truth segmentations of a total of 107 object parts for six animal categories.

Six types of CNNs as performers: We applied our method to six types of performers, including
the ResNet-101, ResNet-152 (He et al., [2016), AlexNet (Krizhevsky et al.l2012), the VGG-M (Si-

>To avoid ambiguity, a landmark is referred to as the central position of a semantic part with an explicit
name (e.g. a head, a tail). In contrast, the part corresponding to an interpretable filter does not have an explicit
name. We followed experiment settings in (Zhang et al., [2018c)), which selected the head, neck, and torso of]
each category in the Pascal-Part dataset (Chen et al., [2014)) as the landmarks and used the head, back, tail of|
birds in the CUB200-2011 dataset (Wah et al.,|2011) as landmarks. It was because these landmarks appeared
on testing images most frequently.

|Under review as a conference paper at ICLR 2020

Feature maps of an
interpretable filter in
the explainer
Feature maps of an
ordinary filter in the
performer

Feature maps of an
interpretable filter in
the explainer
Feature maps of an
ordinary filter in the
performer

Feature maps of an
interpretable filter in
the explainer

Feature maps of an [
ordinary filter in the
performer m

Figure 3: Visualization of interpretable filters in the explainer and ordinary filters in the performer.
As discussed in 2017), the top conv-layer of a CNN is more likely to represent object
parts than low conv-layers. We compared filters in the top conv-layer of the performer and inter-
pretable filters in the conv-interp-2 layer of the explainer. We used to visualize
the RF* of neural activations in a feature map after a ReLU layer and a mask layer. Ordinary filters
are usually activated by repetitive textures, while interpretable filters always represent the same part
through different images, which are more semantically meaningful. Please see Appendix [B]for more
results.

monyan & Zisserman, 2015), the VGG-S (Simonyan & Zisserman| [2015)), the VGG-16
& Zisserman), 2015).

Two experiments: We followed experimental settings in (Zhang et al, 2018¢) to conduct two ex-
periments, i.e. an experiment of single-category classification and an experiment of multi-category
classification. For single-category classification, we trained six performers with structures of the
AlexNet (Krizhevsky et al, 2012), VGG-M (Simonyan & Zisserman, 2015), VGG-S (Simonyan
& Zisserman, 2015), VGG-16 (Simonyan & Zisserman, 2015), ResNet-101 (He et al., 2016), and
ResNet-152 (He et al., for the seven animal categories in the two benchmark datasets. Thus,
we trained 40 performers, each of which was learned to classify objects of a certain category from
other objects. We cropped objects of the target category based on their bounding boxes as posi-
tive samples. Images of other categories were regarded as negative samples. For multi-category
classification, we trained the VGG-M (Simonyan & Zisserman), [2015), VGG-S (Simonyan & Zis-|
2015)), and VGG-16 (Simonyan & Zisserman, [2015) to classify the six animal categories in
the Pascal-Part dataset (Chen et al., 2014).

Experimental details: As discussed in 2017), high conv-layers in a CNN (performer)
are more likely to represent object parts, while low conv-layers mainly encode textures. Therefore,
we used feature maps before the top conv-layer of the performer as the input of the explainer, i.e. the
relu4 layer of the AlexNet/VGG-M/VGG-S (the 12th/12th/11th layer of the AlexNet/VGG-M/VGG-
S) and the relu5-2 layer of the VGG-16 (the 28th layer). Note that we did not select feature maps
of the top conv-layer to enable a fair comparison, because we can parallel the top conv-layer of the
performer to the conv-ordin layer of the explainer. For ResNets, we used the output feature of the
last residual block as the input of the explainer. We trained the explainer network to disentangle
these feature maps for testing.

For ordinary CNNs, the output of the explainer reconstructed the feature of the fc7 layer of the
AlexNet/VGG-M/VGG-S/VGG-16 performer and was fed back to the performer. Thus, a recon-
struction loss matched features between the fc-dec-2 layer of the explainer and the fc7 layer of the
performer. Another reconstruction loss connected the fc-dec-1 layer of the explainer and the previ-
ous fc6 layer of the performer. For ResNets, feature maps of fc-dec-1 and fc-dec-2 correspond to
outputs of the second last residual block and the last residual block, respectively, although they are
not FC layers. Each conv-layer in the explainer had D filters with a 3 x 3 x D kernel and a biased
term, where D is the channel number of its input feature map. We used zero padding to ensure the
output feature map had the same size of the input feature map. The fc-dec-1 and fc-dec-2 layers in
the explainer copied filter weights from the fc6 and fc7 layers of the performer, respectively. Pooling
layers in the explainer were also parameterized according to the last pooling layer in the performer.

Under review as a conference paper at ICLR 2020

Single-category Multi Pascal-Part dataset CUB200

bird cat cow dog horse sheep Avg. | Avg. Single-class Multi-class | dataset

AlexNet 0.153 0.131 0.141 0.128 0.145 0.140 0.140 | - AlexNet - 0.7137 | 0.5810

Explainer |0.104 0.089 0.101 0.083 0.098 0.103 0.096 | — VGG-M 09012 0.8066 | 0.8611

VGG-M 0.152 0.132 0.143 0.130 0.145 0.141 0.141 | 0.135 VGG-S 0.9270 0.8996 | 0.9533

Explainer |0.106 0.088 0.101 0.088 0.097 0.101 0.097 | 0.097 VGG-16 0.8593 0.8718 | 0.9579
VGG-S 0.152 0.131 0.141 0.128 0.144 0.141 0.139 | 0.138 ResNet-101 | 0.9727 - -
Explainer |0.110 0.085 0.098 0.085 0.091 0.096 0.094 | 0.107 ResNet-152 | 0.9833 - -

VGG-16 0.145 0.133 0.146 0.127 0.143 0.143 0.139 | 0.128
Explainer |0.095 0.089 0.097 0.085 0.087 0.089 0.090 | 0.109
ResNet-101 [0.147 0.134 0.142 0.127 0.144 0.142 0.139 | -

Explainer |0.098 0.088 0.099 0.088 0.088 0.093 0.092 | — Table 3: Average p values of ex-
ResNet-152 [0.148 0.134 0.143 0.128 0.145 0.142 0.140 | — plainers. p measures the quanti-
Explainer |0.097 0.088 0.098 0.089 0.088 0.092 0.092 | - tative contribution from the inter-

Table 2: Location instability of feature maps between per- pretable track. When we used an
formers and explainers that were trained using the Pascal- explainer to diagnose feature map-
Part dataset (Chen et al.l [2014). A low location instability s of a VGG network, about 86%—
indicates a high filter interpretability. Please see Appendix[F] 96% activation scores came from
for comparisons with more baselines. explainable features.

We set n = 1.0 x 106 for the AlexNet, VGG-M, and VGG-S, because these three CNNs have
similar numbers of layers. We set = 1.5 x 10° for the VGG-16 and ResNets, since they have more
conv-layers. For each type of CNN performers, the parameter setting was uniformly applied to the
learning of different performers for various categories. We set A\ = 5 x 10* /IEQCEY (|| max(x(;,, 0)][],

1
where the expectation was averaged over features of all images.

Evaluation metric: We compared the object-part interpretability between feature maps of the ex-
plainer and those of the performer. To obtain a convincing evaluation, we both visualized filters (see
Fig.[3) and used the objective metric of location instability to measure the fitness between a filter f
and the representation of an object part.

The metric of location instability was widely used (Zhang et al.l |2018c). As discussed in (Zhang
et al.| 2018c), compared to the interpretability metric in (Bau et al.,|2017), the location instability is
a more reasonable metric when the filter is automatically learned without ground-truth annotations
or scales of parts (see Appendix @ for details). Given a feature map x , we localized the part at the
unit & with the highest activation. We used (Zhou et al.| 2015)) to project the part coordinate /i on the
feature map onto the image plane and obtained p;,. We assumed that if the filter f consistently rep-
resented the same object part of a certain category through different images, then distances between
the inferred part location p; and some object landmarks® of the category should not change a lot a-
mong different objects. For example, if f always represented the head part on different objects, then
the distance between the localized part p; (i.e. the dog head) and the ground-truth landmark of the
shoulder should keep stable, although the head location p; changes in different images. Thus, for
single-category classification, we computed the deviation of the distance between p; and a specific
landmark through objects of the category, and we used the average deviation w.r.t. various land-
marks to evaluate the location instability of f. The location instability was reported as the average
deviation, when we computed deviations using all pairs of filters and landmarks of the category. For
multi-category classification, we first determined the target category of each filter f and then com-
puted the location instability based on objects of the target category. We assigned each interpretable
filter in the explainer to the category whose images can activate the filter most. Please see (Zhang
et al., 2018c) for computational details of this evaluation metric.

According to network structures used in experiments, we can parallel the explainer to the top conv-
layer of the performer, because they both receive features from the relu4/relu5-2 layer of the per-
former and output features to the upper layers of the performer. Crucially, as discussed in (Bau
et al.,|2017), low conv-layers in a CNN usually represent colors and textures, while high conv-layers
mainly represent object parts; the top conv-layer of the CNN is most likely to model object parts
among all conv-layers. Therefore, to enable a fair comparison, we compared feature maps of the
conv-interp-2 layer of the explainer with feature maps of the top conv-layer of the performer.

4.1 EXPERIMENTAL RESULTS AND ANALYSIS

Tables [2|and] compare the interpretability between feature maps in the performer and feature maps
in the explainer. Feature maps in our explainers were much more explainable than feature maps in

Under review as a conference paper at ICLR 2020

Performer | Explainer A Error
VGG-M 6.12% | 6.62% 0.5%
VGG-S 595% | 6.97% 1.02%
AlexNet | VGG-M | VGG-S | VGG-16 VGG-16 203% | 217% 0.14%
Performer | 0.1502 0.1476 0.1481 0.1373 ResNet-101 | 1.67% 3.19% 1.52%
Explainer | 0.0906 | 0.0815 | 0.0704 | 0.0490 ResNet-152 | 0.71% 1.55% 0.84%

Table 4: Location instability of feature maps in per- Table 5: Multi-category classification
formers and explainers that were trained using the errors using features of performers and
CUB200-2011 dataset [2011). A low lo- explainers based on the Pascal-Part
cation instability indicates a high filter interpretabili- ~ dataset (Chen et all 2014). Please see
ty. Please see Appendix [F]for comparisons with more Appendix [J]for more results of performers
baselines. and explainers.

o
Filter 1 in the NN
»=95.8% VGG-16
activations are _| performer

disentangledas | Filter 2 in the
object parts VGG-16

performer
Filter 1in the
p=581% AlexNet
activationsare | Performer
disentangledas | Filter 2 in the
object parts AlexNet
performer

Figure 4: Comparisons of feature maps of different performers corresponding to different values
of p. 95.8% of VGG-16 features were disentangled as object parts, while only 58.1% of AlexNet
features were disentangled as object parts. Note that each visualized filter of the performer does not
strictly represent a single object part, which is different from interpretable filters in the explainer.

performers in all comparisons. The explainer exhibited only 35.7%-68.8% of the location instability
of the performer, which means that interpretable filters in the explainer more consistently described
the same object part through different images than filters in the performer.

The p value of an explainer indicates the quantitative ratio of the contribution from explainable fea-
tures. Table3]lists p values of explainers that were learned for different performers. p measures the
quantitative contribution from the interpretable track. For example, the VGG-16 network learned
using the CUB200-2011 dataset has a p value p = 0.9579, which means that about 95.8% feature
information of the performer can be represented as object parts, and only about 4.2% feature in-
formation comes from textures and noises. In contrast, the AlexNet is not so powerful in learning
object-part features. Only about 58.1% feature information describes object parts, when the AlexNet
is learned the CUB200-2011 dataset.

Fig. 4] visualizes feature maps of the VGG-16 and AlexNet to demonstrate the difference between
different conv-layers in part information. We found that the explainer disentangled more features
from the VGG-16 network as object parts than those from the AlexNet. Accordingly, the visualized
feature maps of the VGG-16 network were also more localized and more related to part pattern-
s. Note that p is just a rough measurement of object-part information. Accurately disentangling
semantic information from a CNN is still a significant challenge.

To evaluate feature reconstructions of an explainer, we fed the reconstructed features back to the
performer for classification. As shown in Table [5] we compared the classification accuracy of ex-
plainer’s reconstructed features with the accuracy based on original performer features. Performers
outperformed explainers in object classification. We used the explainer’s increase of classification
errors w.rt. the performer (i.e. “A Error” in Table 5 to measure the information loss during feature
transformation in the explainer.

Visualization of filters: We used the visualization method proposed by 2015) to com-
pute the receptive field (RF) of neural activations of an interpretable filter (after ReLU and mask
operations), which was scaled up to the image resolution. As mentioned in (Zhou et al, [2013),
the computed RF represented image regions that were responsible for neural activations of a filter,

Under review as a conference paper at ICLR 2020

interpretable Ordina — interpretable word'”a - W Ord&
A 167 neck filters: 58 head filters: | oo
; contributing 42.2% contributing 12.8% filter

N 44 other filters: 243 torso filters:
contributing 0.2% contributing 44.8% afﬁz:o“
>
interpretable _

Figure 5: Grad-CAM attention maps and quantitative analysis. We used (Selvaraju et al., [2017)
to compute grad-CAM attention maps of interpretable feature maps in the explainer and ordinary
feature maps in the performer. Interpretable filters focused on a few distinct object parts, while
ordinary filters separated its attention to both textures and parts. We can assign each interpretable
filter with a semantic part. E.g. the network learned 58, 167, and 243 filters in the conv-interp-2 layer
to represent the head, neck, and torso of the bird, respectively. We used the linear model in (Zhang
et al., |2018b)) to estimate contributions of different filters to the classification score. We summed
up contributions of a part’s filters as the part’s quantitative contribution. Please see Appendix D] for
more results.

which was much smaller than the theoretical size of the RF. Fig. [3| used RFﬂ to visualize inter-
pretable filters in the conv-interp-2 layer of the explainer and ordinary filters in the top conv-layer
of the performer. Fig. [5] compares grad-CAM attention maps (Selvaraju et all 2017) of the conv-
interp-2 layer in the explainer and those of the top conv-layer of the performer. Interpretable filters
in an explainer mainly represented an object part, while feature maps of ordinary filters were usually
activated by different image regions without clear meanings.

5 CONCLUSION AND DISCUSSIONS

In this paper, we have proposed a new network-diagnosis strategy, i.e. learning an explainer net-
work to disentangle object-part features and other features that are used by a pre-trained performer
network. We have developed a simple yet effective method to learn the explainer, which guarantees
the high interpretability of feature maps without using annotations of object parts or textures for
supervision. Theoretically, our explainer-performer structure supports knowledge distillation into
new explainer networks with different losses. People can revise network structures inside the or-
dinary track, the interpretable track, and the decoder and apply novel interpretability losses to the
interpretable track.

We divide the encoder of the explainer into an interpretable track and an ordinary track to reduce the
risk of over-interpreting textures or noises as parts. Fortunately, experiments have shown that most
of signals in the performer can be explained as parts.

Directly learning interpretable features (Zhang et al.l 2018c) may hurt the discrimination power,
especially when the CNN has complex structures (e.g. residual networks, see Section[I). In compar-
ison, learning an explainer does not affect the performer, thereby ensuring the broad applicability.

We have applied our method to different types of performers, and experimental results show that our
explainers can disentangle most information in the performer into object-part feature maps, which
significantly boosts the feature interpretability. E.g. for explainers for VGG networks, more than
80% signals go through the interpretable track, so they can be explained as object-part information.

“When an ordinary filter in the performer does not have consistent contours, it is difficult for (Zhou et al |
2015)) to align different images to compute the average RF. Thus, for performers, we simply used a round RF
for each activation. We overlapped all activated RFs in a feature map to compute the final RF.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gémez Colmenarejo, Matthew W. Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient
descent by gradient descent. In NIPS, 2016.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In CVPR, 2017.

X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting
and representing objects using holistic models and body parts. In CVPR, 2014.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
NIPS, 2016.

Yutian Chen, Matthew W. Hoffman, Sergio Gémez Colmenarejo, Misha Denil, Timothy P. Lillicrap,
Matt Botvinick, and Nando de Freitas. Learning to learn without gradient descent by gradient
descent. In ICML, 2017.

Yinpeng Dong, Hang Su, Jun Zhu, and Fan Bao. Towards interpretable deep neural networks by
leveraging adversarial examples. In arXiv:1708.05493, 2017.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks.
In CVPR, 2016.

Ethan R. Elenberg, Alexandros G. Dimakis, Moran Feldman, and Amin Karbasi. Streaming weak
submodularity: Interpreting neural networks on the fly. In NIPS, 2017.

Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded by
filters in deep neural networks. In CVPR, 2018.

Ruth C. Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful pertur-
bation. In ICCV, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. [-vae: learning basic visual concepts with a con-
strained variational framework. In ICLR, 2017.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric P. Xing. Harnessing deep neural
networks with logic rules. In arXiv:1603.06318v2, 2016.

PangWei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
ICML, 2017.

Soheil Kolouri, Charles E. Martin, and Heiko Hoffmann. Explaining distributed neural activations
via unsupervised learning. In CVPR Workshop on Explainable Computer Vision and Job Candi-
date Screening Competition, 2017.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012.

Devinder Kumar, Alexander Wong, and Graham W. Taylor. Explaining the unexplained: A class-
enhanced attentive response (clear) approach to understanding deep neural networks. In CVPR
Workshop on Explainable Computer Vision and Job Candidate Screening Competition, 2017.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, 1998.

Benjamin J. Lengerich, Sandeep Konam, Eric P. Xing, Stephanie Rosenthal, and Manuela Veloso.
Visual explanations for convolutional neural networks via input resampling. In ICML Workshop
on Visualization for Deep Learning, 2017.

11

Under review as a conference paper at ICLR 2020

Ke Li and Jitendra Malik. Learning to optimize. In arXiv:1606.01885, 2016.

Renjie Liao, Alex Schwing, Richard Zemel, and Raquel Urtasun. Learning deep parsimonious
representations. In NIPS, 2016.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In NIPS,
2017.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In CVPR, 2015.

Paulo E. Rauber, Samuel G. Fadel, Alexandre X. Falc ao, and Alexandru C. Telea. Visualizing the
hidden activity of artificial neural networks. In Transactions on PAMI, 23(1):101-110, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?” explaining the
predictions of any classifier. In KDD, 2016.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules. In NIPS,
2017.

Ravid Schwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via infor-
mation. In arXiv:1703.00810, 2017.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In ICCV, 2017.

Marcel Simon and Erik Rodner. Neural activation constellations: Unsupervised part model discov-
ery with convolutional networks. In ICCV, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
visualising image classification models and saliency maps. In arXiv:1312.6034, 2013.

Austin Stone, Huayan Wang, Yi Liu, D. Scott Phoenix, and Dileep George. Teaching composition-
ality to cnns. In CVPR, 2017.

Joel Vaughan, Agus Sudjianto, Erind Brahimi, Jie Chen, and Vijayan N. Nair. Explainable neural
networks based on additive index models. In arXiv:1806.01933, 2018.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical report, In California Institute of Technology, 2011.

J.X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J.Z.d Leibo, R. Munos, C. Blundell, D. Ku-
maran, and M. Botvinick. Learning to reinforcement learn. In arXiv:1611.05763v3, 2017.

Natalie Wolchover. New theory cracks open the black box of deep learning. In Quanta Magazine,
2017.

Tianfu Wu, Xilai Li, Xi Song, Wei Sun, Liang Dong, and Bo Li. Interpretable r-cnn. In arX-
iv:1711.05226, 2017.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural
networks through deep visualization. In ICML Deep Learning Workshop, 2015.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
ECCV, 2014.

Q. Zhang, R. Cao, F. Shi, YN. Wu, and S.-C. Zhu. Interpreting cnn knowledge via an explanatory
graph. In AAAI, 2018a.

Q. Zhang, W. Wang, and S.-C. Zhu. Examining cnn representations with respect to dataset bias. In
AAAI 2018b.

12

Under review as a conference paper at ICLR 2020

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks.
In CVPR, 2018c.

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable cnns. In arXiv:1901.02413,
2019.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
emerge in deep scene cnns. In ICRL, 2015.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In CVPR, 2016.

13

Under review as a conference paper at ICLR 2020

A CONFLICTS BETWEEN THE FEATURE INTERPRETABILITY AND THE
DISCRIMINATION POWER

Unlike our learning explainers to diagnose pre-trained CNNs, directly learning explainable
intermediate-layer features usually hurts the discrimination power of the neural network, especially
when the neural network has sophisticated structures.

To prove this assertion, we did further experiments. We followed experimental settings in (
let al., 2018c) to add an interpretable conv-layer with filter losses above the last residual block and
learn interpretable feature representations. We trained ResNets for the binary classification for each
animal category in the VOC Part dataset 2014), just like experiments in (Zhang et al.|
2018¢).

In the following table, we compared the classification errors between the original ResNet-
101/ResNet-152 and the revised ResNet-101/ResNet-152 with an interpretable layer.

bird cat cow dog horse sheep Avg.
original ResNet-101 050% 2.00% 051% 150% 5.00% 0.51% | 1.67%
interpretable ResNet-101 | 0.50% 2.75% 0.51% 3.00% 12.50% 8.10% | 4.56%
original ResNet-152 025% 0.75% 0.00% 1.75% 1.26% 0.25% | 0.71%
interpretable ResNet-152 | 2.24% 2.25% 838% 250% 9.09% 6.06% | 5.09%

Table 6: Classification errors of original ResNets and interpretable ResNets

Therefore, our learning explainers to diagnose a pre-trained CNN without hurting the discrimination
power of the CNN has distinctive contributions beyond learning models with interpretable features.

B VISUALIZATION OF FEATURE MAPS OF THE EXPLAINER AND FEATURE
MAPS OF THE PERFORMER

Bird
filter 1

Bird
filter 2

Bird
filter 3

Cat
filter 1

Cat
filter 2

Cat
filter 3

Cow
filter 1

Cow
filter 2

Cow
filter 3

Under review as a conference paper at ICLR 2020

Visualization of feature maps in the conv-interp-2 layer of the explainer. Each row corresponds
to feature maps of a filter in the conv-interp-2 layer. We simply used a round RF for each neural
activation and overlapped all RFs for visualization.

Dog
filter 1

Dog
filter 2

Dog
filter 3

Horse
filter 1

Horse
filter 2

Horse
filter 3

Sheep
filter 1

Sheep I
filter 2 \-'

nadl 5%

Visualization of feature maps in the conv-interp-2 layer of the explainer. Each row corresponds
to feature maps of a filter in the conv-interp-2 layer. We simply used a round RF for each neural
activation and overlapped all RFs for visualization.

15

Under review as a conference paper at ICLR 2020

Bird
filter 1

Bird
filter 2

Cow
filter 1

Cow
filter 2

Cat
filter 1

Cat
filter 2

Dog B
filter 1

Dog
filter 2

Horse
filter 1

Horse
filter 2 &8

Sheep
filter 1

Sheep
filter 2

Visualization of feature maps in the top conv-layer of the performer. Each row corresponds to feature
maps of a filter in the top conv-layer. We simply used a round RF for each neural activation and
overlapped all RFs for visualization.

C ENSURING THE EXPLAINER TO MIMIC THE PERFORMER

A high reconstruction quality ensures the explainer successfully mimics the signal processing in
the performer. Let us assume the explainer mistakenly uses an object part for prediction, which
the performer does not use. Then, when we add or remove the target part from an testing image,
the explainer will generate a obviously different feature, but the performer will not; vice versa. In
this way, given sufficient training samples, a high reconstruction quality can ensures the explainer
approximate the logic of signal processing in the performer.

16

Under review as a conference paper at ICLR 2020

D GRAD-CAM ATTENTION MAPS

interpretable Ordinary interpretable Ordinary interpretable Ordinary interpretable Ordinary

Grad-CAM attention maps. We used (Selvaraju et al.| 2017)) to compute grad-CAM attention maps
of interpretable features of the conv-interp-2 layer in the explainer and those of ordinary features
of the top conv-layer in the performer. Interpretable filters in the conv-interp-2 layer focused on
distinct object parts, while ordinary filters in the performer separated its attention to both textures
and parts.

The quantitative analysis in Figure 4 of the paper shows an example of how to use the disentangled
object-part features to quantitatively evaluate contributions of different parts to the output score of
object classification. Based on prior semantic meanings of the interpretable filters, we show a prior
explanation of the logic in the classification without manually checking activation distributions of
each channel of the feature map. Thus, this is different from the visualization of CNN representa-
tions, which requires people to manually check the explanation based on visualization results.

E DETAILED RESULTS OF p VALUES

Pascal-Part dataset (Chen et al.[[2014) CUB200-2011 (Wah et al.[[2011)
Single-category Multi-category
bird cat cow dog horse sheep Avg. Avg. Avg.
AlexNet 075 072 069 072 070 0.70 0.71 - 0.5810
VGG-M 081 080 081 080 081 0.81 0.81 0.9012 0.8611
VGG-S 091 090 090 09 090 090 0.90 0.9270 0.9533
VGG-16 088 089 087 087 086 0.88 0.87 0.8593 0.9579
ResNet-101 | 0.98 0.97 0.97 097 098 097 0.97 - -
ResNet-152 | 0.98 0.98 0.98 098 098 099 0.98 - -

Table 7: p values of explainers.

F MORE RESULTS OF LOCATION INSTABILITY

In this supplementary material, we add another baseline for comparison. Because we took fea-
ture maps of the relu4 layer of the AlexNet/VGG-M/VGG-S (the 12th/12th/11th layer of the
AlexNet/VGG-M/VGG-S) and the relu5-2 layer of the VGG-16 (the 28th layer) as target feature
maps to be explained, we sent feature maps of these layers feature into explainer networks to dis-
entangle them. Thus, we measured the location instability of these target feature maps as the new
baseline.

The following two tables show that our explainer networks successfully disentangled these target
feature maps, and the disentangled feature maps in the explainer exhibited much lower location
instability.

17

Under review as a conference paper at ICLR 2020

Single-category

bird cat cow dog horse sheep Avg
AlexNet (the relu4 layer) 0.152 0.130 0.140 0.127 0.143 0.139 0.139
AlexNet (the top conv-layer) | 0.153 0.131 0.141 0.128 0.145 0.140 0.140
Explainer 0.104 0.089 0.101 0.083 0.098 0.103 0.096
VGG-M (the relu4 layer) 0.148 0.127 0.138 0.126 0.140 0.137 0.136
VGG-M (the top conv-layer) | 0.152 0.132 0.143 0.130 0.145 0.141 0.141
Explainer 0.106 0.088 0.101 0.088 0.097 0.101 0.097
VGG-S (the relu4 layer) 0.148 0.127 0.136 0.125 0.139 0.137 0.135
VGG-S (the top conv-layer) | 0.152 0.131 0.141 0.128 0.144 0.141 0.139
Explainer 0.110 0.085 0.098 0.085 0.091 0.096 0.094
VGG-16 (the relu5-2 layer) 0.151 0.128 0.145 0.124 0.146 0.146 0.140
VGG-16 (the top conv-layer) | 0.145 0.133 0.146 0.127 0.143 0.143 0.139
Explainer 0.095 0.089 0.097 0.085 0.087 0.089 0.090

Table 8: Location instability of feature maps in performers and explainers. Performers are learned
based on the Pascal-Part dataset (Chen et al., [2014)

AlexNet (relu4 layer) 0.1542
AlexNet (the top conv-layer) 0.1502
Explainer 0.0906
VGG-M (relu4 layer) 0.1484
VGG-M (the top conv-layer) 0.1476
Explainer 0.0815
VGG-S (relud layer) 0.1518
VGG-S (the top conv-layer) 0.1481
Explainer 0.0704
VGG-16 (relu5-2 layer) 0.1444
VGG-16 (the top conv-layer) 0.1373
Explainer 0.0490

Table 9: Location instability of feature maps in performers and explainers. Performers are learned
based on the CUB200-2011 dataset (Wah et al.,[2011)

G ABOUT EVALUATION METRIC

The location instability is designed to evaluate the fitness between an intermediate-layer filter f and
the representation of a specific object part, and it has been widely used in (Zhang et al., 2018c}a)).
Therefore, we used this metric for evaluation in our experiments. In fact, there is another metric to
identify semantics of CNN filters, which was proposed by (Bau et al.,[2017). This study annotated
pixel-level labels for six kinds of semantics (objects, parts, scenes, textures, materials, and colors)
on testing images. Then, given a feature map of a filter f, they used the intersection-of-union (IoU)
between activation regions in the feature map and image regions of each kind of semantics to iden-
tify the semantic meaning of this filter. Le. for filters oriented to representations of object parts, this
metric measures whether or not activation regions in a feature map greatly overlap to ground-truth
segment of a specific object part. However, in this study, we disentangled original feature maps
into object parts without any ground-truth annotations of object parts. The disentangled object parts
usually represent joint regions of ground-truth parts, sub-regions of ground-truth parts, or combina-
tions of small ground-truth parts, although each disentangled object part consistently describes the
same part through different objects. Therefore, when filters are learned without ground-truth part
annotations, the metric in (Bau et al.,[2017)) is less suitable to evaluate the object-part semantics than
the metric of location instability (Zhang et al.| 2018a).

H UNDERSTANDING OF FILTER LOSSES

According to (Zhang et al.,|2019), we can re-write the filter loss as

Loss; = —H(P) + H(P'[X) + > PPz HPYX = ay)
zf

18

Under review as a conference paper at ICLR 2020

where P’ = {0, P*}. H(P) = —}_ p p(p) log p(p) is a constant prior entropy of part-location
candidates (here i = () is a dummy location candidate).

To compute above mutual information, p(y) is defined as constant. p(x¢|u) is given as
1
p(xplp) = pay|T,) = 7 Xp [tr(zf 'Tu)} 3)
"

where T}, denotes the part template corresponding to the part location p, as shown in the following
figure. Z,, = chf exp(tr(zy - T,)]. tr(-) indicates the trace of a matrix.

Best fit this [
Feature maps template
= 6
5 % . Lossy
® 2 8 - Lossy
S S C | Lossy

Tl
mAre

Part template 7}, corresponding to each part location p (Zhang et al., [2019)

Low inter-category entropy: The second term H (P’ = {0,P*}|X) is computed as H(T' =
{0,PTHX) = =32, p(xf) 3 cropy P(Rlzs) log p(play), where PY = {pi, pio, ..., pr2} C

2

P and p(P"|zy) = ZiL:1 p(pi|z). We define the set of all valid part locations in P as a single
label to represent the category c. We use a negative template () to denote other categories. This term
encourages a low conditional entropy of inter-category activations, i.e. a well-learned filter f needs
to be exclusively activated by a certain category c and keep silent on other categories. The feature
map x s can usually identify whether the input image belongs to category ¢ or not, i.e. y fitting to
either a valid part location i € P or (), without great uncertainty.

Low spatial entropy: The third term is given as H(PT|X = zy) = ijl Dpilxr) log pluilxy),

where p(p;|zf) = ;((ﬁiim. This term encourages a low conditional entropy of spatial distribution

of x’s activations. le. given an image I € I., a well-learned filter should only be activated by

a single region /i € P of the feature map x, instead of being repetitively triggered at different
locations.

Optimization of filter losses: The computation of gradients of the filter loss w.r.t. each element ()

of feature map xz is time-consuming. (Zhang et al., 2019) computes an approximate but efficient
gradients to speed up the computation, as follows.

OLossy p(p)tijetm@s T
PG > Jz—#{tr(xf -Ty) — log [Zup(mf)]}
f nepP

%Me”(lf‘f){tr(l’f . T) — log[Zﬂp(xf)}}
Zii

where 7 is the target template for feature map xs. Let us assume that there are multiple object

categories C. We simply assign each filter f with the category ¢ € C whose images activate f
the most, i.e. éA: argmax Eq .rer. D2, ; x}”) If thg input image I belongs to the filter f’s target
cAategory, then T' = T}, where ji = ArgIMAax, ¢, j]x;”)If image I belongs to other categories, then
T =0. Considering Vi € P\ {1}, e!"@5' 1) > etr(@s-Ti) after initial learning epoches, we can make
approximations in the above equation.

Note that above assignments of object categories are also used to compute location instability for
intermediate-layer filters to evaluate their interpretability.

19

Under review as a conference paper at ICLR 2020

Inspired by optimization tricks in (Zhang et al) 2019), we updated the parameter \; =

v Ee f[HaL#SfT“H} /E, f[HaLazsfsf] for the N-th learning epoch in an online manner, where

M%Sfm: denotes gradients of reconstruction losses obtained from upper layers. In particular, giv-
en performers for single-category classification, we simply used feature maps of positive images
(i.e. objects of the target category) to approximately estimate the parameter o for the norm-layer,
because positive images can much more strongly trigger interpretable filters than negative images.
Thus, computing o based on positive images made p accurately measure the contribution ratio of the
interpretable track when the network made predictions to positive images. We will clarify all these
settings when the paper is accepted. In experiments, for interpretable filters in the conv-interp-2
layer, we added the filter loss to 2 = p - 25 + (1 — p) - &orain, Where Zorain € R*** denotes a channel
of Tqgin that corresponds to the channel of filter f. We found that this modification achieved more
robust performance than directly applying the filter loss to x ¢. In this case, the filter loss encouraged
a large value of p and trained the interpretable filter f, but we did not pass gradients of the filter loss

to the ordinary track.

I ABOUT PARAMETER SETTINGS

In the experimental section, we have clarified settings for parameters. We simply set = 1.0 x 106
for the AlexNet, VGG-M, and VGG-S without sophisticatedly turning the value of . We set =
1.5 % 10° for the VGG-16, since the VGG-16 has more conv-layers than the other networks. For each
type of CNNs, the same value of 1 was uniformly applied to various CNNs for different categories.
Our method is not sensitive to 7. When the VGG-16 used the 7 value of the AlexNet, it only changed
an average location instability of 0.003 over all experiments.

J EVALUATING THE RECONSTRUCTION QUALITY BASED ON THE
OBJECT-CLASSIFICATION ACCURACY

In order to evaluate the feature-reconstruction quality, we used the classification accuracy based
on explainer features as an evaluation metric. We fed output features of the explainer back to the
performer for classification. Theoretically, a high classification accuracy may demonstrate that the
explainer can well reconstruct performer features without losing much information. Note that ex-
plainers were learned to reconstruct feature maps of performers, rather than optimizing the classifi-
cation loss, so explainers could only approximate the classification performance of performers but
could not outperform performers.

In addition, we added another baseline, namely Explainer+:cls, which used the object-classification
loss to replace the reconstruction loss to learned explainer networks. Thus, output features of Ex-
plainer+cls exhibited higher classification accuracy than features of the original explainer.

The following table compares the classification accuracy between the performer and the explainer.
For multi-category classification, the performance of explainers was quite close to that of perform-
ers. Learning explainers with classification losses exhibited significantly better classification perfor-
mance than learning explainers with reconstruction losses. Because Explainer+cls directly learned
from the classification loss, Explainer+cls sometimes even outperformed the performer.

Pascal-Part (Chen et al.|[2014) CUB200 (Wah et al.;|2011)

Multi-category Single-category

Performer Explainer Explainer+cls | Performer ~ Explainer ~Explainer+cls | Performer Explainer — Explainer+cls
AlexNet - - - 4.60% 820% 2.88% |441% 1098% 3.57%
VGG-M | 6.12% 6.62% 522% |3.18% 8.58% 3.40% |2.66% 684% 2.54%
VGG-S | 595% 697% 5.43% |2.26% 1097% 3.86% |2.76% 853% 2.72%
VGG-16 | 2.03% 2.17% 2.49% |134% 6.12% 1.76% | 1.09% 6.04% 0.90%

Table 10: Classification errors based on feature maps of performers and explainers.

20

	Introduction
	Related work
	Algorithm
	Network structure of the explainer
	Learning
	Analysis of the algorithm

	Experiments
	Experimental results and analysis

	Conclusion and discussions
	Conflicts between the feature interpretability and the discrimination power
	Visualization of feature maps of the explainer and feature maps of the performer
	Ensuring the explainer to mimic the performer
	Grad-CAM attention maps
	Detailed results of p values
	More results of location instability
	About evaluation metric
	Understanding of filter losses
	About parameter settings
	Evaluating the reconstruction quality based on the object-classification accuracy

