
Under review as a conference paper at ICLR 2020

GLOBAL RELATIONAL MODELS OF SOURCE CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Models of code can learn distributed representations of a program’s syntax and
semantics to predict many non-trivial properties of a program. Recent state-of-
the-art models leverage highly structured representations of programs, such as
trees, graphs and paths therein (e.g., data-flow relations), which are precise and
abundantly available for code. This provides a strong inductive bias towards se-
mantically meaningful relations, yielding more generalizable representations than
classical sequence-based models. Unfortunately, these models primarily rely on
graph-based message passing to represent relations in code, which makes them
de facto local due to the high cost of message-passing steps, quite in contrast to
modern, global sequence-based models, such as the Transformer. In this work,
we bridge this divide between global and structured models by introducing two
new hybrid model families that are both global and incorporate structural bias:
Graph Sandwiches, which wrap traditional (gated) graph message-passing layers
in sequential message-passing layers; and Graph Relational Embedding Atten-
tion Transformers (GREAT for short), which bias traditional Transformers with
relational information from graph edge types. By studying a popular, non-trivial
program repair task, variable-misuse identification, we explore the relative merits
of traditional and hybrid model families for code representation. Starting with a
graph-based model that already improves upon the prior state-of-the-art for this
task by 20%, we show that our proposed hybrid models improve an additional
10–15%, while training both faster and using fewer parameters.

1 INTRODUCTION

Well-trained models of source code can learn complex properties of a program, such as its implicit
type structure (Hellendoorn et al., 2018), naming conventions (Allamanis et al., 2015), and potential
bugs and repairs (Vasic et al., 2019). This requires learning to represent a program’s latent, semantic
properties based on its source. Initial representations of source code relied on sequential models
from natural-language processing, such as n-gram language models (Hindle et al., 2012; Allamanis
& Sutton, 2013; Hellendoorn & Devanbu, 2017) and Recurrent Neural Networks (RNNs) (White
et al., 2015), but these models struggle to capture the complexity of source code.

Source code is rich in structured information, such as a program’s abstract syntax tree, data and
control flow. Allamanis et al. (2018b) proposed to model some of this structure directly, provid-
ing a powerful inductive bias towards semantically meaningful relations in the code. Their Gated
Graph Neural Network (GGNN) model for embedding programs was shown to learn better, more
generalizable representations faster than classical RNN-based sequence models.

However, the debate on effective modeling of code is far from settled. Graph neural networks typ-
ically rely on synchronous message passing, which makes them inherently local, requiring many
iterations of message passing to aggregate information from distant parts of the code. However,
state-of-the-art graph neural networks for code often use as few as eight message-passing iterations
(Allamanis et al., 2018b; Fernandes et al., 2018), primarily for computational reasons: program
graphs can be very large, and training time grows linearly with the number of message passes. This
is in contrast to, e.g., Transformer models (Vaswani et al., 2017), which allow program-wide infor-
mation flow at every step, yet lack the powerful inductive bias from knowing the code’s structure.

This leads us to a basic research question: is there a fundamental dichotomy between global, un-
structured and local, structured models? Our answer is an emphatic no. Our starting point is the

1



Under review as a conference paper at ICLR 2020

sequence-to-pointer model of Vasic et al. (2019), which is state-of-the-art for the task of localizing
and repairing a particular type of bug. As a sequence model, their architecture can (at least poten-
tially) propagate information globally, but it lacks access to the known semantic structure of code.
To this end, we replace the sequence encoder of Vasic et al. (2019) with a GGNN, yielding a new
graph-to-mutlihead-pointer model. Remarkably, this model alone yields a 20% improvement over
the state of the art, though at the cost of being significantly larger than the sequence model.

Motivated by this result, we propose two new families of models that efficiently combine longer-
distance information, such as the sequence model can represent, with the semantic structural in-
formation available to the GGNN. One family, the Graph Sandwich, alternates between message
passing and sequential information flow through a chain of nodes within the graph; the other, the
Graph Relational Embedding Attention Transformer (GREAT), generalizes the relative position em-
beddings in Transformers by Shaw et al. (2018) to convey structural relations instead. We show that
our proposed model families outperform all prior results, as well as our new, already stronger base-
line by an additional 10% each, while training both substantially faster and using fewer parameters.

2 RELATED WORK

Distributed Representation of Programs: There has been increasing interest in modeling source
code using machine learning (Allamanis et al., 2018a). Hindle et al. (2012) model programs as se-
quences of tokens and use an n-gram model for predicting code completions. Raychev et al. (2015)
use conditional random fields (CRFs) to predict program properties over a set of pairwise program
features obtained from the program’s dependency graph. Many approaches use neural language
models to embed programs as sequences of tokens (Bhoopchand et al., 2016; White et al., 2015).
Some techniques leverage the ASTs of programs in tree-structured recurrent models (Piech et al.,
2015; Parisotto et al., 2016; Chen et al., 2018). code2vec (Alon et al., 2018) and code2seq (Alon
et al., 2019) model programs as a weighted combination of a set of leaf-to-leaf paths in the ab-
stract syntax tree. Finally, Allamanis et al. (2018b) proposed using GGNNs for embedding program
graphs consisting of ASTs together with control-flow and data-flow edges. Some recent models
of code embed run-time information of programs, e.g., program traces, besides syntactic informa-
tion (Wang et al., 2018). In this paper, we explore the space of combining sequence-based and
graph-based representations of programs, as well as introduce a Transformer-based model with ad-
ditional program-edge information to learn program representations. Fernandes et al. (2018) also
combine an RNN and a GNN architecture, achieving slight improvements over a GGNN. However,
they only consider a single RNN layer inserted at the start; we include larger and more diverse
hybrids, as well as entirely different combinations of structural and sequential features.

Neural Program Repair: Automatically generating fixes to repair program bugs is an active field
of research with many proposed approaches based on genetic programming, program analysis and
formal methods, and machine learning (Monperrus, 2018; Gazzola et al., 2019). In this paper, we fo-
cus on a specific class of repair task called VarMisuse as proposed by Allamanis et al. (2018b), who
use a graph-based embedding of programs to predict the most likely variable at each variable-use
location and generate a repair prediction whenever the predicted variable is different from the one
present, using an enumerative approach. Vasic et al. (2019) improved this approach by jointly pre-
dicting both the bug and repair locations using a two-headed pointer mechanism. Our multi-headed
pointer graph, graph-sandwich and GREAT models significantly outperform these approaches.

3 SEMI-STRUCTURED MODELS OF SOURCE CODE

Models of code have so far either been structured (GNNs) or unstructured (RNNs, Transformers).
Considering the graph-based models’ substantially superior performance compared to RNNs despite
their locality limitations, we may ask: to what extent could global information help GNNs, and to
what extent could structural features help sequence-based models?

3.1 MODELS

We address the questions of combining local and global information with two families of models.

2



Under review as a conference paper at ICLR 2020

Graph-sandwich Models Let T = 〈t1, t2, · · · , tn〉 denote a program’s token sequence and G =
(V, E) denote the corresponding program graph, where V is the set of node vertices and E is the list
of edge sets for different edge types. In both graph and sequence based models, the nodes v maintain
a state vector h(v) that is initialized with initial node embedding x(v) ∈ RD.

In a GGNN layer, messages of type k are sent from each node v ∈ V to its neighbors computed
as m

(v)
k = LinearLayerk(h(v)). After the message passing step, the set of messages at each node

are aggregated as m(v) = Σek(u,v)∈E m
(u)
k . Finally, the state vector of a node v is updated as

h
(v)
new = GRU(m(v), h(v)). In an RNN layer, the state of a node v (corresponding to a terminal

leaf token ti in T ) is updated as h
(v)
new = f(tv, h

(ti−1)). A Transformer compute tv → qt,kt,vt,
corresponding to a query, key and value for each token.1 Each token then computes its attention to
all other tokens using eij = (qikj

T )/
√
N 2, which can be soft-maxed to yield attention probabilities

aij = exp(eij)/Σ exp(ei,:).

Our first class of models follows from the observation that T ⊆ V ; i.e., the source code tokens
used by sequence models, like RNNs, are by definition also nodes in the program graph, so GGNNs
update their state with every message pass. We can thus envision a combined model that uses each
of these as a building block; for instance, assuming initial node features x(v) ∈ RD, the formula
[RNN, GGNN(3), RNN] describes a model in which we first run an RNN on all tokens ∈ T (in
lexical ordering), then, using these as initial states for v ∈ T while using the default node-type
embeddings for all other nodes, run three message passing steps using a GGNN, after which we
again gather the nodes corresponding to T and update their state with an additional RNN pass.

The resulting family of models alternates GGNN-style message passing operations and layers of
sequence-based models. By varying the number and size of sequential layers and blocks of GGNN-
style message passing, this variant particularly provides insight into the first question above (how can
global information help GNNs?), by showing the transition in performance potential of models that
increasingly incorporate sequential features. We refer to this class of models as sandwich models.

Graph Relational Embedding Attention Transformer The above family of models still rely
on explicit message passing for their structural bias, thereby only indirectly combining struc-
tural and global information to the model. We may wish to instead directly encode structural
bias into a sequence-based model, which requires a relaxation of the ‘hard’ inductive bias from
the GGNN. For Transformer-based architectures, Shaw et al. (2018) show that relational features
can be incorporated directly into the attention function by changing the attention computation to:3

eij = (q+ bij)k
T/
√
N where q and k correspond to the query and key vectors as described above,

bij is an added bias term for the specific attention weight between tokens i and j, and N is the per-
head attention dimension. In our case, we compute bij = WT

e e + be, where We ∈ RN , be ∈ R, and
e ∈ RN is an embedding of the edge type connecting nodes i and j, if any, or a “no edge” embedding
otherwise. We name this model GREAT, for Graph Relational Embedding Attention Transformer.

3.2 ARCHITECTURAL DETAILS

In this section, we present details of different architectures we compare and their hyperparameters.

General: All of our models follow the structure proposed by Vasic et al. (2019), stacking an ini-
tial token-embedding layer, a ‘core’ model that computes a distributed representation of the code
under inspection (in their case, an LSTM), followed by a projection into two pointers for the local-
ization and repair tasks (see Section 4). This core model is the part varied in our work. We use
SubwordTextEncoder from Tensor2Tensor (Vaswani et al., 2018) to generate a 10K sub-token
vocabulary from training data and embed each token by averaging embeddings of its sub-token(s).

GGNN: Many types of graph-based message-passing neural networks have been proposed for code,
mostly differing in how a node’s state is updated based on ‘messages’ sent by nodes it is connected
to. Most commonly used is the gated graph neural network (GGNN) (Li et al., 2015), which uses

1Transformers introduce several more components, including multi-headed attention, feed-forward blocks
in every layer and layer-normalization (Vaswani et al., 2017).

2Where the
√
N term is used to scale the attention weights

3Note that, although equivalent, Shaw et al. (2018) add the relational bias to the ‘key’ computation instead.

3



Under review as a conference paper at ICLR 2020

a GRU cell (Cho et al., 2014) to update a node’s state. Although other options sometimes out-
perform this architecture, the improvements are generally minor, so we rely on this model for our
baseline. One hyperparameter of the architecture is whether to use different transformations at each
message-passing step, or to reuse one set of transformations for multiple message passes. Follow-
ing Allamanis et al. (2018b), we use blocks of two message-passing layers, in which the first layer
is repeated three times, for four message passes per block. We then sweep over GGNN architectures
that repeat these blocks 1 to 4 times (thus yielding 4 to 16 message passes). By default, the message
dimension is set to 128, but we include an ablation with 256-dimensional messages as well.

RNNs: We experimented with the one-directional entailment-attention-based RNN proposed by
Vasic et al. (2019), but found a simpler bi-directional RNN architecture to work even better. We use
GRUs as the recurrent cells, vary the number of layers from 1 to 3, and the hidden dimension (of the
concatenated forward and backward component) in {128, 256, 512}.
Transformers: We base our architecture on the original Transformer (Vaswani et al., 2017), varying
the number of layers from 1 to 10 and the attention dimension in {128, 256, 512, 1024}.
Sandwich Models: We distinguish between two types of sandwich models: ‘small’ sandwiches,
which add a single RNN or Transformer to a GGNN architecture, and ‘large’ sandwiches, which
wrap every message-passing block (as defined above) with a 128-dimensional (bi-directional)
RNN/Transformer layer. We vary the number of message-passing blocks from 1 to 3 (corresponding
to 4 to 12 message passes) to span a similar parameter domain as the GGNNs above (ca. 1.5M –
5M), increasing the number of layers to 2 and their dimension to 512 for a later ablation.

GREAT: Uses the same architectural variations as the Transformer family; edge-type embedding
dimensions are fixed at the per-head attention dimension, as described above.

Global hyper-parameters: We train most of our models with batch sizes of {12.5K, 25K, 50K}
tokens, with the exception of the Transformer architectures; due to the quadratic nature of the at-
tention computation, 25K tokens was too large for these models, so we additionally trained these
with 6.25K-token batches.4 Learning rates were varied in {1e-3, 4-e4, 1e-4, 4e-5, 1e-5}, where we
omitted the first option for our GGNN models and the last for our RNNs due to poor performance.
Sub-tokens were embedded using 128-dimensional embeddings.

3.3 ABOUT GRAPH REPRESENTATIONS OF CODE

Our program graphs borrow many edge types from Allamanis et al. (2018b), such as data-flow
(e.g., read & write), adjacent-token, and syntactic edges, which we further augment with edges be-
tween control-flow statements and function calls. When representing programs as graphs, a key
decision needs to be made regarding the Abstract Syntax Tree (AST). Typically, one of the edge
types in the graphs represents syntactic parent-child relationships in the AST. Additionally, some of
the edges representing relations (e.g., control-flow) are naturally represented as edges between inter-
nal nodes in this tree, e.g., between two IfStatement nodes. However, ablations often find that
the effectiveness of including the AST is limited in graph-based models (Allamanis et al., 2018b).

This raises the question of whether it is possible to represent programs as graphs that include se-
quential and semantic information, but not syntax. To this end, we propose a leaves-only graph
representation for code as follows: edges that represent semantic relationships such as control flow
and data flow can easily be moved down from internal nodes – which typically represent a span of
multiple tokens – to those leaf nodes in the graph that represent the begin token of that span. Thus,
an edge that used to connect two IfStatement interior AST nodes is moved down to connect the
corresponding if tokens. Now, the AST can be omitted entirely, thereby removing parent-child re-
lations among syntax nodes, producing what we call a leaves-only graph. This latter representation
is substantially more compressed than the graphs with ASTs, often using 2–3x fewer nodes (while
retaining most of the edges), and additionally aligns better with sequence-based models, because
all edges are directly connected to the original code tokens.5 We compare both settings for each
graph-based model, but unless otherwise specified, we use the ‘full’ graphs for the regular GGNN
model and the ‘leaves-only’ graphs (without ASTs) for the sandwich and GREAT models.

4Which still translates into 50+ samples per batch on average
5Which, we conjecture, improves the interaction between the two types of models.

4



Under review as a conference paper at ICLR 2020

4 EXPERIMENTAL SETUP

The VarMisuse Task We focus our study on the variable-misuse localization-and-repair task (Vasic
et al., 2019): given a function, predict two pointers into the function’s tokens, one pointer for the
location of a variable use containing the wrong variable (or a special no-bug location), and one
pointer for any occurrence of the correct variable that should be used at the faulty location instead.

Synthetic Dataset We used the ETH Py150 dataset (Raychev et al., 2016), which is based on
GitHub Python code, and already partitioned into train and test splits (100K and 50K files, respec-
tively). We further split the 100K train files into 90K train and 10K validation examples and applied
a deduplication step on that dataset (Allamanis, 2018). We extracted all top-level function defini-
tions from these files; any function that uses multiple variables can be turned into a training example
by randomly replacing one variable usage with another. As there may be many candidates for such
bugs in a function, we limit our extraction to up to three samples per function to avoid biasing our
dataset too strongly towards longer functions. For every synthetically generated buggy example,
an unperturbed, bug-free example of the function is included as well, to keep our dataset balanced,
yielding ca. 2M total training and 755K test samples. Finally, we train with functions with up to 250
tokens; at test time, we raise this to 1,000 to study our models’ generalization to longer functions.

Metrics As we are mainly interested in contrasting the behavior of different models of code, we fo-
cus most of our results on the various models’ learning curves by tracking development-set accuracy
on 25K held-out samples every 250K samples as the models train. Here, we measure two accuracy
metrics: localization accuracy (whether the model correctly identifies the bug’s location for buggy
samples); and (independently) repair accuracy (whether the model points to the correct variable to
repair the bug). Note that these metrics focus on buggy samples; the models also determine whether
a function is buggy, which we discuss below. We group all models by their ‘family’, as categorized
in Section 3.2, reporting the maximum held-out performance per family.

For deeper insight into the fully trained models’ performance, we also analyze the performance of
the best models in each family in more depth on the test portion of our synthetic dataset. Specifically,
we assess their bugginess-classification accuracy (whether the model correctly identifies the method
as (non-)buggy) and their joint localization and repair accuracy (for buggy samples, how often the
model correctly localizes and repairs the bug). Here, we also increase the maximum function size to
1,000 tokens and analyze the impact of longer functions on our models’ performance.

5 RESULTS

There are many degrees of freedom in our family of models, so we structure our results around
a series of comparisons, which we analyze and discuss in this section. We start with our key re-
sult, which compares all our model families (RNNs, Transformers, GGNNs, Sandwich hybrids, and
GREAT models) across a comparable parameter domain (ca. 1.4M – 5.5M parameters) in Figure 1.

Although there are subtle differences between the models’ behavior on localization and repair accu-
racy, the overall picture is consistent: whereas our newly proposed graph-to-multihead-pointer mod-
els already substantially outperform RNN-based models (the previous state-of-the-art), and some-
times Transformers, the hybrid global & structured models achieve significantly better results faster.

The GGNN models take the longest to converge, continuing to improve slightly even after a week of
training mainly because their largest (16-layer) architecture starts to dominate the 12-layer version’s
performance after ca. 170h. The Sandwich models follow its training curve, but are more accurate
and faster to converge, achieving especially good results for limited training budgets, partly because
they succeeded with just 4 – 8 layers of message passing by relying on their global components.

The Transformer architecture, although slower at first, widely outperforms the RNN as a baseline
model. The GREAT model tracks its learning curve, starting out slower than the models with ex-
plicit message passing, but gradually overtaking them after ca. 10h, as the underlying Transformer
becomes increasingly effective. We note that this model achieves state-of-the-art results despite
having, at the time of this writing, received less training time (ca. 64h compared to up to 240h).

The RNN and GGNN models appear to be particularly complementary; even though the RNN’s
localization accuracy is very poor compared to the GGNN, the combined model still sustains a

5



Under review as a conference paper at ICLR 2020

Figure 1: Comparison of top-performing models from all model families across a comparable pa-
rameter domain of 1.5M – 5M parameters. Performance visualized using localization and repair
accuracy Pareto front w.r.t. training time.

∼5% improvement on the latter.6 However, the Transformer Sandwich does not seem to benefit
similarly, showing virtually no difference in performance with the RNN Sandwich model. This
strongly suggests that the Transformer’s ability to access long-distance information overlaps in large
part (though not entirely, given GREAT’s performance) with the GGNNs’ ability to do so using
message passing. We conjecture that the Transformer learns to infer many of the same connections
(e.g., data-flow, control-flow) that are encoded explicitly in the graph’s message passing.

To understand the behavior of the many models and combinations that may be used for code, we
now explore the variations on our choices of parameters, models, and metrics.

5.1 LARGER MODELS

Model capacity is a potential threat to any comparison between models of different families. We
aimed to ensure a fair comparison in the previous section by selecting a range of hyper-parameters
(which includes the number of stacked layers) for these architectures that span a similar parameter
count range. For instance, a 6-layer Transformer with 512-dimensional attention is comparable to a
2-layer 512-dimensional bi-directional RNN and an 8-layer GGNN. However, all these architectures
are relatively modest, having at most ∼5M parameters. By increasing the number, and dimension-
ality of their layers, we can evaluate a second family of models with ca. 5–20M parameters.

Figure 2 shows the performance for the low- and high-parameter variations for each of our best-
performing model families. Overall, while providing more parameters to the GGNNs made virtually
no difference, all our hybrid models increase 2–3% in both localization and repair accuracy, provid-
ing further support for combining global, structured models. The best-performing instances of each
model family were consistently the larger architectures, 15M parameters for the GGNN, 12.5M &
10M for the RNN and Transformer Sandwiches respectively and 7.9M for GREAT.7

5.2 ON SYNTACTIC INFORMATION

In the previous results, the GGNN models were trained on ‘full’ graphs (as described in Section 3.3),
that use the code’s AST structure, and the sandwich models on ‘leaves-only’ graphs, with only
source token nodes, and edges moved to connect these directly. These settings are arguably each
appropriate to the underlying model, but both models can also use the alternative setting.

Figure 3 shows the training curves for the alternative settings. In all cases, the models that do not use
syntax train substantially faster because each sample’s graph representation is more than twice as
small, so these models naturally lead in accuracy early on in training. However, whereas the GGNN

6Difference up to convergence of the combined model; the accuracy gap shrinks to 2.1% after ca. 10 days.
7Which achieves state-of-the-art results in all settings despite having had comparatively less training time.

6



Under review as a conference paper at ICLR 2020

Figure 2: Comparison of smaller (1.5–5M parameter) and larger (5–20M parameter, identified with
‘++’) variants of each model family. Localization and repair accuracy Pareto-front w.r.t. time.

equipped with syntax overtakes its counter-part within ca. 48h, the sandwich models display a much
longer lag, with no cross-over observed at all on localization accuracy in this time window.8

The sandwich model on full graphs still compares favorably with the GGNN baseline, though its
early training behavior is not as effective. It is also interesting to note that the best-performing
Sandwich models in this setting were consistently architectures with more message-passing steps.
This may be due to the additional distance between information propagated along the tokens and
along semantic edges, which in this setting are almost universally connected to AST-internal nodes.

5.3 RNNS IN SANDWICHES: SINGLE VS. MANY

Recent work on neural summarization also mixed RNNs and GGNNs (Fernandes et al., 2018), but
did so by inserting a single RNN layer into a GNN architecture, before any message passing. We
compare this architecture to a full Sandwich model in Figure 4. Although a single RNN certainly
helps compared to the GGNN, interleaving RNNs and GGNN-style message passes performed sub-
stantially better. In fact, the best performing full Sandwiches used fewer parameters than the Single
models because they used 8 message passes instead of 12, relying more heavily on the RNNs.9

8Given the slope of the two curves, we may expect a reversal after 10+ days of training.
9The same pattern held for high-parameter versions of these models, where the performance gap also grew.

Figure 3: Comparing impact of graph representation on GGNNs and RNN Sandwich models. Lo-
calization and repair accuracy Pareto-front w.r.t time. Note: y-axis cropped to simplify comparison.

7



Under review as a conference paper at ICLR 2020

Figure 4: Comparison of RNN sandwiches with a single RNN vs. those with RNNs around every
message-passing block (‘Multi’). Localization and repair accuracy Pareto-front w.r.t. time.

Table 1: Test-set results of best-performing models by family, on metrics of Vasic et al. (2019).
Grouped by maximum length; 6.5% of test set samples exceeded 250 tokens (the training limit).

Class. Accuracy Loc & Rep Accuracy Training
Model Family ≤ 250 ≤ 1000 ≤ 250 ≤ 1000 Parameters Time

RNN1 71.8% 70.6% 44.4% 42.5% 4.3M 31.3h
Transformer 75.9% 73.2% 67.7% 63.0% 3.7M 41.5h

GGNN 81.4% 79.2% 64.0% 60.9% 5.5M 241h
RNN Sandwich 82.5% 81.9% 75.8% 73.8% 12.6M 109h

Transformer Sandwich 81.1% 78.1% 74.5% 71.4% 10M 161h
GREAT 2 79.9% 76.9% 76.2% 73.3% 7.9M 49.8h

1: a stronger version of the model proposed in Vasic et al. (2019) (previous SOTA).
2: this instance has not yet trained for more than 64h at this time, so results may increase.

5.4 TEST-SET ANALYSIS

Having identified our best-performing models in each family, we now study their performance on
the test data, specifically using the metrics used in Vasic et al. (2019) (see Section 4) in Table 1.
In general, the two metrics correlated well; models that accurately determined whether a function
contained a bug also accurately identified the bug (and repair), as may be expected. The baseline
RNN model achieves a modest 44% accuracy at the latter task; this is slightly lower than reported in
prior work (Vasic et al., 2019), which is likely due in part to our dataset de-duplication. Transformers
and GGNNs perform substantially better (and comparably, though the latter trained 6x longer for
this performance), but still fall well short of our hybrid models’ performance, which are especially
much more accurate on long functions. The GREAT model shows most promise on the repair task,
already outperforming the sandwich models despite having so far had limited training time.

6 CONCLUSION

We demonstrate that models leveraging richly structured representations of source code do not have
to be confined to local contexts. Instead, models that leverage only limited message passing in
combination with global models learn much more powerful representations faster. We proposed
two different architectures for combining local and global information: sandwich models that com-
bine two different message-passing schedules and achieve highly competitive models quickly, and
the GREAT model which adds information from a sparse graph to a Transformer to achieve state-
of-the-art results. In the process, we raise the state-of-the-art performance on the VarMisuse bug
localization and repair task by over 30%.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of code.
CoRR, abs/1812.06469, 2018. URL http://arxiv.org/abs/1812.06469.

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale using
language modeling. In Working Conference on Mining Software Repositories (MSR), 2013.

Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Suggesting accurate method
and class names. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 38–49. ACM, 2015.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Comput. Surv., 51(4):81:1–81:37, July 2018a. ISSN
0360-0300.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018b.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed repre-
sentations of code. CoRR, abs/1803.09473, 2018.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from struc-
tured representations of code. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Avishkar Bhoopchand, Tim Rocktäschel, Earl Barr, and Sebastian Riedel. Learning python code
suggestion with a sparse pointer network. arXiv preprint arXiv:1611.08307, 2016.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program
translation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp.
2547–2557. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7521-tree-to-tree-neural-networks-for-program-translation.pdf.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural summarization.
arXiv preprint arXiv:1811.01824, 2018.

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software repair: A survey. IEEE
Trans. Software Eng., 45(1):34–67, 2019.

Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks the best choice for
modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 763–773. ACM, 2017.

Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. Deep learning type
inference. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 152–162. ACM,
2018.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the natural-
ness of software. In Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pp. 837–847, 2012.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks, 2015.

Martin Monperrus. Automatic software repair: A bibliography. ACM Comput. Surv., 51(1):17:1–
17:24, January 2018. ISSN 0360-0300.

9

http://arxiv.org/abs/1812.06469
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf


Under review as a conference paper at ICLR 2020

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. CoRR, abs/1611.01855, 2016. URL http:
//arxiv.org/abs/1611.01855.

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, and Leonidas
Guibas. Learning program embeddings to propagate feedback on student code. In Proceedings of
the 32Nd International Conference on International Conference on Machine Learning - Volume
37, ICML’15, pp. 1093–1102, 2015.

Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties from ”big
code”. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pp. 111–124, 2015.

Veselin Raychev, Pavol Bielik, and Martin T. Vechev. Probabilistic model for code with decision
trees. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016, pp. 731–747, 2016.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. arXiv preprint arXiv:1803.02155, 2018.

Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. Neural program
repair by jointly learning to localize and repair. arXiv preprint arXiv:1904.01720, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, François Chollet, Aidan N. Gomez, Stephan
Gouws, Llion Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam
Shazeer, and Jakob Uszkoreit. Tensor2tensor for neural machine translation. In Proceedings
of the 13th Conference of the Association for Machine Translation in the Americas, AMTA 2018,
Boston, MA, USA, March 17-21, 2018 - Volume 1: Research Papers, pp. 193–199, 2018. URL
https://www.aclweb.org/anthology/W18-1819/.

Ke Wang, Rishabh Singh, and Zhendong Su. Dynamic neural program embeddings for program
repair. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshyvanyk. Toward
deep learning software repositories. In Proceedings of the 12th Working Conference on Mining
Software Repositories, pp. 334–345. IEEE Press, 2015.

10

http://arxiv.org/abs/1611.01855
http://arxiv.org/abs/1611.01855
https://www.aclweb.org/anthology/W18-1819/

	Introduction
	Related Work
	Semi-Structured Models of Source Code
	Models
	Architectural Details
	About Graph Representations of Code

	Experimental Setup
	Results
	Larger Models
	On Syntactic Information
	RNNs in Sandwiches: Single vs. Many
	Test-set Analysis

	Conclusion

