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ABSTRACT

Estimating the ratio of two probability densities without estimating each density
separately has been shown to provide useful solutions to various machine learn-
ing tasks such as domain adaptation, anomaly detection, feature extraction, and
conditional density estimation. However, density ratio estimation in the context
of deep learning has not been extensively explored yet. In this paper, we apply
a Bregman-divergence minimization method for density ratio estimation to deep
neural networks and investigate its properties and practical performance in image
anomaly detection. Our numerical experiments on the CIFAR-10, CIFAR-100
and Fashion-MNIST datasets demonstrate that deep direct density ratio estima-
tion greatly improves the anomaly detection ability and reduces the computation
time over state-of-the-art methods.

1 INTRODUCTION

Anomaly detection (also known as outlier detection) has received a lot of attention in diverse re-
search areas such as monitoring (Lavin & Ahmad, 2015), credit card fraud detection (Phua et al.,
2010), and medical diagnosis (Schlegl et al., 2017). The aim of anomaly detection is to identify
outliers in a given dataset. A standard anomaly detection problem falls into the category of unsu-
pervised learning, due to lack of labeled anomaly data. While (semi-)supervised anomaly detection
methods perform better than unsupervised methods (Gao et al., 2006), they require anomalous data
for training, which are not always available in practice. Furthermore, the anomalous properties
may be diverse, and thus such (semi-)supervised methods are not necessarily useful in detecting an
unknown type of anomaly.

Traditional approaches for unsupervised anomaly detection such the as one-class support vector
machine (OC-SVM) (Schölkopf et al., 2001) and support vector data description (SVDD) (Tax &
Duin, 2004) have been widely used, which relies on the the assumption that a sample located in
a low-density region is regarded as an outlier. However, these approaches often face difficulties
when they are applied to high-dimensional data such as images, due to the curse of dimensionality.
Furthermore, these approaches depend heavily on the choice of tuning parameters (e.g., the Gaussian
kernel width) and there seems to be no universal method to appropriately determine the values of
such tuning parameters.

Recently, convolutional neural networks (CNNs) have significantly improved their performance in
various computer vision tasks, e.g., image classification and object detection (Krizhevsky et al.,
2012; He et al., 2016; Redmon et al., 2016). With the advent of deep learning, various methods have
been developed for anomaly detection in the context images (Chalapathy & Chawla, 2019). For
example, the generative model methods, which are based either on Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) or Autoencoders (AEs) (Hinton & Salakhutdinov, 2006), have
been applied in anomaly detection. While there are several other approaches, these are mostly
based on the idea of obtaining a good representation, e.g., intermediate representations in AE, i.e.,
latent spaces in GANs, of normal data with a neural network. Then the obtained representation is
used to define anomaly scores via reconstruction errors. However, since the representation learning
and the anomaly score calculation are performed separately, methods based on deep generative
models are suboptimal. To avoid such two-step optimization, different methods have been proposed
based on SVDD (Ruff et al., 2018) , but they cannot utilize the superior representation power of
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neural networks. Also all these unsupervised approaches suffer the problem of hyperparameter
optimization due to lack of supervision.

To overcome the weakness of unsupervised anomaly detection, weakly-supervised anomaly detec-
tion has been explored, where normal samples and unlabeled samples are utilized. More specifi-
cally, an approach based on density ratio estimation (Sugiyama et al., 2012a) has been investigated
thoroughly. In this approach, the ratio of probability densities of normal and unlabeled samples are
directly estimated without estimating each density separately, and it is used as an outlier score. A no-
table advantage of this direct density ratio estimation approach is that hyperparameter tuning can be
performed objectively through cross-validation. So far, various direct density ratio estimation meth-
ods have been developed, e.g., unconstrained least-squares importance fitting (uLSIF) (Kanamori
et al., 2009) and the Kullback-Leibler importance estimation procedure (KLIEP) (Sugiyama et al.,
2008). In the context of anomaly detection, kernel-base KLIEP was demonstrated to be superior in
accuracy and stability compared to OC-SVM, kernel mean matching (KMM) (Huang et al., 2006)
and uLSIF (Hido et al., 2011).

As explained above, direct density ratio estimation is a promising approach to anomaly detection.
However, direct density ratio estimation in the context of deep learning has not been extensively
explored yet. In this paper, we apply the Bergman-divergence minimization method for density
ratio estimation to deep neural networks and investigate its properties and practical performance in
image anomaly detection. An interesting finding is that batch normalization (BatchNorm), which is
an effective method in training deep neural networks (Ioffe & Szegedy, 2015; Bjorck et al., 2018),
does not work well in our context. We explain the reason for this phenomenon and propose not
to use BatchNorm in our proposed method. We perform numerical experiments on the CIFAR-10,
CIFAR-100 and Fashion-MNIST datasets and demonstrate that deep direct density ratio estimation
significantly improves the anomaly detection ability and reduces the computation time over state-
of-the-art methods.

2 RELATED WORK

An extensive review of classical anomaly detection methods can be found in Chandola et al. (2009).
In this section we focus on anomaly detection in the context of images and deep learning.

2.1 DENSITY RATIO ESTIMATION

Previous work (Nam & Sugiyama, 2015) has already applied deep density ratio estimation to
anomaly detection. However, this study only reported that CNN-based uLSIF is superior to kernel-
based uLSIF and kernel-based KLIEP for image datasets. However, from the kernel-based density
ratio estimation studies (Sugiyama et al., 2012a), it is known that KLIEP is more sensitive to outliers
than uLSIF and is more effective in detecting outlier samples. In addition, LeNet-5 (LeCun et al.,
1998), which was used in Nam & Sugiyama (2015), is a network architecture originally designed for
hand-written character recognition. So it has poor expressive ability compared to more recently pro-
posed neural network architecture for complex image datasets. To the best of our knowledge, there
are no studies investigating whether deep density ratio estimation under the KLIEP criterion with
modern deep learning techniques is effective compared to recent deep anomaly detection methods.
This is what we will investigate in this paper.

2.2 DEEP GENERATIVE MODEL AND DEEP SVDD

A typical method of deep anomaly detection in the context of image data is based on deep generative
models such as AEs or GANs. The main idea is based on the fact that it is difficult to generate
outlier samples from a latent space obtained by learning with only normal samples. In the context
of anomaly detection, Schlegl et al. (2017) first introduced an approach based on GANs, which is
called AnoGAN. AnoGAN uses a convex combination of the ℓ2 norm and a discrimination loss
between an input image and generated image as an anomaly score. Similary to AnoGAN, Deecke
et al. (2018) proposed ADGAN that improved the performance slightly. Since ADGAN never uses
the discriminator loss to calculate an anomaly score, the discriminator can be discard after training
the GAN.
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As a different method, Ruff et al. (2018) recently proposed an approach to detect outliers using
a deep neural network inspired by SVDD, which is a widely used one-class classification method
for anomaly detection. The main idea of the method, named Deep SVDD, is using a deep neural
network to minimize the volume of a hyper-sphere that encloses the network representations of
normal samples. Anomaly scores in the Deep SVDD approach is the distance of a data point from
the center of the hyper-sphere.

2.3 GEOMETRIC TRANSFORMATIONS

The geometric transformations (GTs) method (Golan & El-Yaniv, 2018) first creates a self-labeled
dataset by performing 72 distinct geometric transformations consisting of horizontal flips, transla-
tions, and rotations on normal data. Then a multi-class classifier is trained over the self-labeled
dataset, where the labels are the types of transformations. An anomaly score is defined based on the
Dirichlet distribution obtained by maximum likelihood estimation using the softmax output from the
classification network for the labels. GTs greatly exceed the accuracy of Deep SVDD and ADGAN
on benchmark datasets. Thus, in this paper, we will compare it with our method.

3 ANOMALY DETECTION VIA DENSITY RATIO ESTIMATION

Here we briefly review the framework of density ratio estimation by density ratio fitting under the
Bregman divergence for anomaly detection (Sugiyama et al., 2012b)1.

3.1 FORMULATION

Let X Ă Rd be the data domain for positive integer d. Suppose that we are given independent and
identically distributed (i.i.d.) training samples txtr

i u
ntr
i“1 from a training distribution with density

p˚
trpxq on X and i.i.d. test samples txte

j u
nte
j“1 from a test distribution with density p˚

tepxq on X 2.
The training samples txtr

i u
ntr
i“1 are all inliers, while the test samples txte

j u
nte
j“1 do not only contain

inliers but can also contain some outliers if any. The goal of anomaly detection based on density
ratio estimation is to estimate the density ratio,

r˚pxq –
p˚
trpxq

p˚
tepxq

, (1)

from txtr
i u

ntr
i“1 and txte

j u
nte
j“1. The density ratio is close to one when x is an inlier and it is close to

zero when x is an outlier. Thus, the density ratio would be a suitable anomaly score.

A naive approach to estimate the density ratio Eq.(1) is to first estimate the numerator and denom-
inator densities separately from their associated samples and then take their ratio. However, such a
two-step approach is not reliable because the first step of density estimation is performed without
regard to the second step of taking the ratio. Below, we review a direct density ratio estimation
method that does not involved density estimation.

3.2 DENSITY RATIO ESTIMATION UNDER BREGMAN DIVERGENCE

The basic idea of direct density ratio estimation is to fit a density ratio model rpxq to the true
density ratio function r˚pxq under some divergence. Here we employ the Bregman (BR) divergence
(Bregman, 1967) for measuring the discrepancy between the true density ratio function and the
density ratio model. This framework includes various existing approaches of density ratio estimation
as special cases.

The BR divergence from t˚ to t is defined as follows:

BR1
f pt˚||tq – fpt˚q ´ fptq ´ Bfptqpt˚ ´ tq, (2)

1See Sugiyama et al. (2012a) for a comprehensive review on the application of density ratio estimation to
tasks other than anomaly detection.

2We assume that p˚
tepxq is strictly positive for all x P X .
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where fptq is a strictly convex function and differentiable. Minimizing the BR divergence between
the true density ratio r˚pxq and a model of the density ratio rpxq, weighted by p˚

te, gives

BR1
f pr˚||rq –

ż

p˚
tepxq rf pr˚pxqq ´ f prpxqq ´ Bf prpxqq pr˚pxq ´ rpxqqsdx

“ C ` BRf prq, (3)

where C –
ş

p˚
tepxqf pr˚pxqqdx is a constant independent of the density ratio model r and

BRf prq –

ż

p˚
tepxqBf prpxqqrpxqdx ´

ż

p˚
tepxqf prpxqqdx

´

ż

p˚
trpxqBf prpxqqdx. (4)

Then an empirical approximation yBRf prq of BRf prq is given by

yBRf prq –
1

nte

nte
ÿ

j“1

Bf prpxte
j qqrpxte

j q ´
1

nte

nte
ÿ

j“1

f prpxte
j qq

´
1

ntr

ntr
ÿ

i“1

Bf prpxtr
i qq. (5)

This immediately gives the following optimization criterion:

min
r

yBRf prq. (6)

As a particular BR divergence Eq.(3), Basu’s Power divergence (BA divergence) (Basu et al., 1998)
can be induced by the function,

fptq “
t1`α ´ t

α
, (7)

where α ą 0. By substituting Eq.(7) into Eq.(3), an empirical approximation yBAf prq of the BA
divergence without an irrelevant constant term is given by

yBAαprq –
1

nte

nte
ÿ

j“1

rpxte
j qα`1 ´

ˆ

1 `
1

α

˙

1

ntr

ntr
ÿ

i“1

rpxtr
i qα `

1

α
. (8)

The BA divergence includes uLSIF (α “ 1) and KLIEP (α Ñ 0) as special cases, and is more
general.

To investigate robustness, let us take the derivative Eq.(8) with respect to parameters in the density-
ratio model r and equate it to zero. Then we have the following estimation equation:

1

nte

nte
ÿ

j“1

rpxte
j qα∇rpxte

j q ´
1

ntr

ntr
ÿ

i“1

rpxtr
i qα´1∇rpxtr

i q “ 0b, (9)

where ∇ is the differential operator with respect to the parameters in the density-ratio model r, b
denotes the number of parameters, and 0b denotes the b-dimensional vector with all zeros. In the
case of α Ñ 0 which corresponds to KLIEP, the estimation equation is given as follows:

1

nte

nte
ÿ

j“1

∇rpxte
j q ´

1

ntr

ntr
ÿ

i“1

rpxtr
i q´1∇rpxtr

i q “ 0b. (10)

Comparing this with Eq.(9), the BA method can be regarded as a weighted version of KLIEP accord-
ing to rpxte

j qα and rpxtr
i qα. As mentioned above, since outliers tend to take smaller ratio values, the

BA method down-weights the effect of those samples. Thus, the KLIEP (i.e., α Ñ 0) can provide a
more sensitive anomaly score than uLSIF, which corresponds to α “ 1, in the above sense.
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Figure 1: Evolution of the averages of density ratio values for 1
ntr

ř

i“1 rpxtr
i q and 1

nte

ř

j“1 rpxte
j q

during training with the KLIEP criterion. The left graph contains results on without BatchNorm,
while the right graph contains the results with BatchNorm.

4 DENSITY RATIO ESTIMATION AND BATCH NORMALIZATION

BatchNorm (Ioffe & Szegedy, 2015) has become a de facto standard for training deep neural net-
works with various architectures. Its effectiveness is still being investigated from various angles.
Bjorck et al. (2018) argued that its effect may be smoothing the loss surface. This enables training
with larger learning rates, which results in faster convergence and better generalization. Despite
its empirical success on many tasks and recent theoretical progress, we argue that BatchNorm is
incompatible with density ratio estimation using deep neural networks.

To explain the reason, let us consider using CNN to estimates the density ratio function under the
KLIEP criterion:

lim
αÑ0

yBAαprq “
1

nte

nte
ÿ

j“1

rpxte
j q ´

1

ntr

ntr
ÿ

i“1

lnprpxtr
i qq. (11)

In the direct density ratio estimation problem, we use not only training data but also test data that
include both inliers and outliers during density ratio fitting. Thus, outliers are heterogeneously
distributed in a mini-batch.

Figure 1 plots the transition of the averages of density ratio values 1
ntr

řntr

i“1 rpxtr
i q and

1
nte

řnte

j“1 rpxte
j q during training with and without BatchNorm under the KLIEP criterion in Eq.(11).

Minimizing this objective function, the model is optimized to increase the second term in Eq.(11).
However, when BatchNorm is used, density ratio estimation becomes unstable and 1

ntr

řntr

i“1 rpxtr
i q

takes a large value suddenly compared to the case where BatchNorm is not used. In this figure,
the density ratio obtained with BatchNorm diverges after the 1300th iteration, and consequently no
outliers can be detected. Therefore, we decided not to use BatchNorm in this paper, which resulted
in good empirical performance.

5 EXPERIMENTS

In this section, we use benchmark datasets to demonstrate the effectiveness of our method in
anomaly detection. All experiments were performed using the PyTorch (Paszke et al., 2017) library.
We used the AWS p3.2xlarge instance which has a single NVIDIA V100 GPU.

5.1 DATASET

Our method was evaluated on three publicly available benchmark image datasets: CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and Fashion-MNIST (Xiao et al., 2017). (i.) CIFAR-10
consists of various color images, which has 50000 32ˆ32ˆ3 training images in ten classes. (ii.)
CIFAR-100 is similar to CIFAR-10, but with 100 classes containing 500 images per class. These
classes are grouped into 20 superclasses each containing five classes. We used 20 superclasses in
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our experiments. (iii.) Fashion-MNIST which consists of 70000 28ˆ28ˆ1 grayscale images de-
picting fashion items in ten classes. To compatible with CIFAR-10 and CIFAR-100 classification
architectures, we resize the images to 32ˆ32.

5.2 EVALUATION STRATEGY

Our experimental settings are the same as the previous work (Golan & El-Yaniv, 2018). For all
datasets, the inlier and outlier classes were defined as follows. One particular class was considered
as the inlier class and all other classes were regarded as the outlier classes. For example, in the case
of CIFAR-10, there are 5000 training data per class, so ntr “ 5000. On the other hand, since there
are 1000 test data for each class, the number of test samples is nte “ 10000, which consists of 1000
inlier samples and 9000 outlier samples. The area under the receiver operating characteristic curve
(AUROC) is used as a metric to evaluate whether an outlier class can be detected in the test data.

5.3 EXPERIMENTAL SETUP

We used the VGG11 (Simonyan & Zisserman, 2014) model as the backbone architecture without
BatchNorm for density ratio estimation. Multiple convolutional layers in VGG11 are followed by
three fully-connected (FC) layers. The first and second layers have 4096 channels, and the third
layer has 1 channels. We used dropout regularization where the dropout rate was set to 0.5 in the
convolution and FC layers. Taking into account the non-negativity of the density ratio, the output
layer was set to the softplus function logp1 ` exq. On the other hand, the Wide Residual Network
(WRN) model (Zagoruyko & Komodakis, 2016) was only used as the backbone in Golan & El-Yaniv
(2018). Thus, we conducted numerical experiments not only with WRN but also with VGG11 as
backbone models in GTs for comparison. In WRN, we set the depth and width of the model to 10
and 4, respectively.

For all dataset, CNN-based KLIEP was trained by stochastic gradient descent (SGD) (Bottou et al.,
2018) with batch size of 128. We set the learning rate to 0.02 and the number of epochs to 30. We
used weight decay of 10´4. Experiments were repeated over five trials. We converted the value
of each pixel into the interval [0, 1] without other preprocesses and data augmentation. For fair
comparison, GTs implemented by ourselves used the same settings such the batch size, optimizer
and learning rate3.

5.4 RESULTS

The experimental results are shown in Table 1. The proposed CNN-based KLIEP clearly outper-
forms GTs on the benchmark datasets. In CIFAR-100, we omitted the name of the superclasses due
to lack of space. The correspondence between indices and superclasses is listed in Appendix A. The
inlier class consists of multiple classes in CIFAR-100. Experimental results show that KLIEP can
stably achieve higher accuracy than the existing methods even in the multiclass setting.

Table 2 shows the computation time of each method for each dataset. Since the GTs method needs to
perform geometric transformations to create the self-labeled dataset and training using that dataset,
the computation time is long compared to our method. From the above results, it can be said that
our proposed method is superior not only in terms of accuracy but also in terms of computational
efficiency.

In addition, Appendix B shows that transfer learning is also effective in density ratio estimation.
In this work, we used weight decay of 0.1 for fine-tuning the ImageNet-pretrained network from
the PyTorch class torchvision.models 4. We have also shown in Appendix B the result of
changing the parameter α of the BA divergence in Eq.(8). Overall, KLIEP (α Ñ 0) was found to
be optimal for anomaly detection. This result is consistent with the theoretical analysis shown in
Sec.3.2.

3For the details of the original implementation, refer to
https://github.com/izikgo/AnomalyDetectionTransformations.

4https://pytorch.org/docs/stable/torchvision/models.html
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Table 1: Average AUROC in % with standard deviation (over 5 trials with different seeds) per
method. The best performing method in terms of the mean AUC is specified by bold face.

Dataset inlier class GTs GTs KLIEP
(VGG11) (WRN)

plane 69.0 ˘ 1.0 76.3 ˘ 0.6 93.6 ˘ 0.3
car 94.3 ˘ 0.3 95.0 ˘ 0.1 94.8 ˘ 0.7
bird 76.2 ˘ 2.0 84.9 ˘ 1.0 86.7 ˘ 0.3
cat 64.1 ˘ 0.8 77.1 ˘ 0.4 85.8 ˘ 0.6

deer 83.4 ˘ 1.0 88.5 ˘ 0.2 89.1 ˘ 0.5
CIFAR-10 dog 83.7 ˘ 0.8 86.7 ˘ 0.3 87.4 ˘ 1.0

frog 89.3 ˘ 1.0 88.4 ˘ 0.1 93.2 ˘ 0.4
horse 94.5 ˘ 0.2 95.8 ˘ 0.0 88.5 ˘ 0.5
ship 92.2 ˘ 0.2 94.3 ˘ 0.1 95.6 ˘ 0.3
truck 90.0 ˘ 0.2 90.9 ˘ 0.1 92.6 ˘ 1.0
avg 83.7 87.8 90.7
0 72.9 ˘ 1.4 76.8 ˘ 1.1 84.5 ˘ 0.5
1 66.0 ˘ 1.9 66.2 ˘ 2.0 81.9 ˘ 2.6
2 74.3 ˘ 1.4 78.8 ˘ 1.9 96.0 ˘ 0.3
3 76.3 ˘ 0.7 73.3 ˘ 3.1 86.7 ˘ 1.0
4 76.2 ˘ 1.5 78.2 ˘ 1.4 90.8 ˘ 1.6
5 59.8 ˘ 2.7 54.9 ˘ 2.7 81.9 ˘ 1.2
6 69.2 ˘ 1.8 72.5 ˘ 2.6 86.7 ˘ 1.1
7 65.2 ˘ 2.1 63.5 ˘ 1.4 88.2 ˘ 0.5
8 75.3 ˘ 2.0 86.6 ˘ 0.7 82.7 ˘ 0.5
9 87.3 ˘ 0.4 89.1 ˘ 0.3 92.0 ˘ 0.5

CIFAR-100 10 78.9 ˘ 1.7 85.4 ˘ 2.1 94.1 ˘ 0.3
11 83.1 ˘ 0.3 85.7 ˘ 0.4 85.4 ˘ 0.7
12 78.3 ˘ 0.5 84.1 ˘ 0.8 84.0 ˘ 0.5
13 59.5 ˘ 1.2 57.3 ˘ 0.7 74.8 ˘ 1.6
14 82.5 ˘ 0.6 90.7 ˘ 0.9 90.1 ˘ 1.6
15 66.1 ˘ 0.7 70.5 ˘ 0.8 78.1 ˘ 1.1
16 64.1 ˘ 1.5 73.0 ˘ 1.7 82.0 ˘ 0.5
17 92.5 ˘ 0.2 93.9 ˘ 0.3 96.0 ˘ 0.2
18 89.0 ˘ 0.2 90.2 ˘ 0.5 90.1 ˘ 0.9
19 82.6 ˘ 0.7 82.8 ˘ 1.7 87.2 ˘ 0.7
avg 75.0 77.7 86.7

T-shirt/top 88.2 ˘ 0.3 94.1 ˘ 0.3 98.4 ˘ 0.1
Trouser 98.9 ˘ 0.3 99.0 ˘ 0.5 99.9 ˘ 0.0
Pullover 86.9 ˘ 0.6 92.2 ˘ 0.2 98.5 ˘ 0.1

Dress 92.7 ˘ 0.3 89.3 ˘ 1.1 99.2 ˘ 0.0
Coat 91.1 ˘ 0.1 91.7 ˘ 0.7 98.3 ˘ 0.1

Fashion-MNIST Sandal 95.7 ˘ 0.4 92.8 ˘ 0.5 99.8 ˘ 0.1
Shirt 83.6 ˘ 0.4 85.2 ˘ 0.2 95.7 ˘ 0.2

Sneaker 95.8 ˘ 0.3 97.9 ˘ 0.1 99.8 ˘ 0.0
Bag 98.0 ˘ 0.1 96.7 ˘ 0.2 99.8 ˘ 0.1

Ankle boot 99.4 ˘ 0.0 99.4 ˘ 0.4 99.8 ˘ 0.0
avg 93.0 93.8 98.9

6 CONCLUSION AND FUTURE WORK

In this paper, density ratio estimation under the KLIEP criterion was performed with CNN, and its
effectiveness for anomaly detection was investigated. The method of deep anomaly detection has
been actively discussed in recent years, but its main approach is to use a deep generative model
(Schlegl et al., 2017; Deecke et al., 2018), Deep SVDD (Ruff et al., 2018), and Geometric Transfor-
mations (Golan & El-Yaniv, 2018). Our numerical experiments on the CIFAR-10, CIFAR-100 and
Fashion-MNIST datasets demonstrated that deep direct density ratio estimation greatly improves the
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Table 2: Average computation time in seconds with standard deviation for training on each datasets
per methods.

Dataset GTs KLIEP
CIFAR-10 450.1 ˘ 1.8 85.8 ˘ 0.1

CIFAR-100 380.6 ˘ 1.0 47.0 ˘ 0.1
Fashion-MNIST 436.3 ˘ 2.0 100.1 ˘ 0.2

anomaly detection ability and reduces the computation time over state-of-the-art methods. We also
showed that BatchNorm is not compatible with density ratio estimation using deep neural networks.

The objective function Eq.(8) continues to decrease regardless of whether or not BatchNorm is
adopted. A similar phenomenon has been investigated in the context of learning from positive and
unlabeled data (Kiryo et al., 2017) , which caused overfitting when a model with high expressive
ability such as a deep neural network is used. More specifically, the empirical risk tends to be
negative during training, and they proposed to cleverly impose a non-negativity constraint to avoid
overfitting. On the other hand, when density ratio estimation is performed under the BA divergence,
there is a constant term C “

ş

p˚
tepxqf pr˚pxqqdx that is dropped during training. Since the value

of C is unknown, we cannot directly impose a suitable non-negativity constraint in the current case.
Thus, it is an important future work to explore a more stable learning algorithm for deep density
ratio estimation.
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A SUPERCLASS NAMES

Here is the list of superclass and classes in the CIFAR-100.

index superclass classes
0 Aquatic mammals beaver, dolphin, otter, seal, whale
1 Fish aquarium fish, flatfish, ray, shark, trout
2 Flowers orchids, poppies, roses, sunflowers, tulips
3 Food containers bottles, bowls, cans, cups, plates
4 Fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
5 Household electrical devices clock, computer keyboard, lamp, telephone, television
6 Household furniture bed, chair, couch, table, wardrobe
7 Insects bee, beetle, butterfly, caterpillar, cockroach
8 Large carnivores bear, leopard, lion, tiger, wolf
9 Large man-made outdoor things bridge, castle, house, road, skyscraper
10 Large natural outdoor scenes cloud, forest, mountain, plain, sea
11 Large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
12 Medium-sized mammals fox, porcupine, possum, raccoon, skunk
13 Non-insect invertebrates crab, lobster, snail, spider, worm
14 People baby, boy, girl, man, woman
15 Reptiles crocodile, dinosaur, lizard, snake, turtle
16 Small mammals hamster, mouse, rabbit, shrew, squirrel
17 Trees maple, oak, palm, pine, willow
18 Vehicles 1 bicycle, bus, motorcycle, pickup truck, train
19 Vehicles 2 lawn-mower, rocket, streetcar, tank, tractor
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B ROBUSTNESS AND TRANSFER LEARNING

Table 3: Average AUROC in % with standard deviation (over 5 trials with different seeds) per
method.

Dataset inlier class BA divergence KLIEP
(α “ 1) (α “ 0.5) (α Ñ 0) (ImageNet)

plane 73.8 ˘ 6.7 82.2 ˘ 5.2 93.6 ˘ 0.3 96.9 ˘ 0.4
car 80.2 ˘ 6.7 94.4 ˘ 2.0 94.8 ˘ 0.7 99.0 ˘ 0.1
bird 82.4 ˘ 2.3 82.5 ˘ 1.3 86.7 ˘ 0.3 94.3 ˘ 0.3
cat 80.2 ˘ 1.2 81.7 ˘ 2.0 85.8 ˘ 0.6 91.4 ˘ 0.8

deer 80.2 ˘ 1.1 85.6 ˘ 0.8 89.1 ˘ 0.5 96.1 ˘ 0.2
CIFAR-10 dog 79.7 ˘ 3.5 86.2 ˘ 0.7 87.4 ˘ 1.0 94.5 ˘ 0.6

frog 83.3 ˘ 3.4 90.8 ˘ 0.7 93.2 ˘ 0.4 97.5 ˘ 0.4
horse 73.8 ˘ 6.7 88.9 ˘ 3.4 88.5 ˘ 0.5 97.3 ˘ 0.2
ship 89.4 ˘ 2.5 93.1 ˘ 2.6 95.6 ˘ 0.3 98.6 ˘ 0.3
truck 83.4 ˘ 1.1 92.2 ˘ 0.7 92.6 ˘ 1.0 98.5 ˘ 0.1
avg 80.6 87.8 90.7 96.4
0 76.3 ˘ 0.5 91.4 ˘ 2.5 84.5 ˘ 0.5 90.4 ˘ 1.4
1 67.7 ˘ 2.3 87.8 ˘ 1.3 81.9 ˘ 2.6 89.9 ˘ 0.9
2 85.3 ˘ 3.6 77.3 ˘ 7.5 96.0 ˘ 0.3 96.4 ˘ 1.3
3 66.3 ˘ 4.3 81.6 ˘ 1.6 86.7 ˘ 1.0 94.6 ˘ 0.4
4 70.8 ˘ 1.9 83.5 ˘ 1.7 90.8 ˘ 1.6 93.1 ˘ 2.2
5 62.5 ˘ 1.5 74.1 ˘ 2.0 81.9 ˘ 1.2 92.2 ˘ 0.7
6 67.9 ˘ 4.5 83.9 ˘ 4.8 86.7 ˘ 1.1 94.0 ˘ 0.7
7 74.6 ˘ 4.3 73.7 ˘ 6.9 88.2 ˘ 0.5 92.5 ˘ 0.5
8 76.2 ˘ 3.4 79.1 ˘ 2.7 82.7 ˘ 0.5 89.3 ˘ 4.7
9 79.8 ˘ 6.4 79.4 ˘ 2.9 92.0 ˘ 0.5 97.1 ˘ 0.3

CIFAR-100 10 86.5 ˘ 0.5 69.7 ˘ 4.5 94.1 ˘ 0.3 95.9 ˘ 0.5
11 72.5 ˘ 3.6 75.2 ˘ 4.1 85.4 ˘ 0.7 88.0 ˘ 4.4
12 75.0 ˘ 1.6 87.3 ˘ 1.1 84.0 ˘ 0.5 89.2 ˘ 0.6
13 71.9 ˘ 1.5 78.9 ˘ 2.9 74.8 ˘ 1.6 88.0 ˘ 1.2
14 71.3 ˘ 9.2 77.2 ˘ 5.9 90.1 ˘ 1.6 93.7 ˘ 1.4
15 73.7 ˘ 1.7 74.6 ˘ 5.8 78.1 ˘ 1.1 86.7 ˘ 1.4
16 76.0 ˘ 2.4 72.4 ˘ 1.3 82.0 ˘ 0.5 89.2 ˘ 0.2
17 79.3 ˘ 6.6 92.4 ˘ 1.0 96.0 ˘ 0.2 97.4 ˘ 1.8
18 71.7 ˘ 8.8 83.0 ˘ 1.2 90.1 ˘ 0.9 95.1 ˘ 0.8
19 73.2 ˘ 3.6 79.9 ˘ 3.3 87.2 ˘ 0.7 93.4 ˘ 0.7
avg 73.9 80.1 86.2 92.3

T-shirt/top 93.4 ˘ 3.1 97.8 ˘ 0.2 98.4 ˘ 0.1 -
Trouser 86.1 ˘ 2.7 99.8 ˘ 0.2 99.9 ˘ 0.0 -
Pullover 94.3 ˘ 1.8 97.1 ˘ 1.3 98.5 ˘ 0.1 -

Dress 95.1 ˘ 0.8 98.6 ˘ 0.1 99.2 ˘ 0.0 -
Coat 89.2 ˘ 4.9 97.3 ˘ 0.6 98.3 ˘ 0.1 -

Fashion-MNIST Sandal 99.6 ˘ 0.2 92.8 ˘ 0.5 99.8 ˘ 0.1 -
Shirt 89.8 ˘ 2.4 92.7 ˘ 2.3 95.7 ˘ 0.2 -

Sneaker 95.4 ˘ 4.6 99.7 ˘ 0.1 99.8 ˘ 0.0 -
Bag 87.3 ˘ 1.5 99.5 ˘ 0.2 99.8 ˘ 0.1 -

Ankle boot 94.3 ˘ 5.8 99.8 ˘ 0.0 99.8 ˘ 0.0 -
avg 92.5 97.5 98.9 -
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