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ABSTRACT

Deep Reinforcement Learning (Deep RL) has been receiving increasingly more
attention thanks to its encouraging performance on a variety of control tasks.
Yet, conventional regularization techniques in training neural networks (e.g., L2

regularization, dropout) have been largely ignored in RL methods, possibly because
agents are typically trained and evaluated in the same environment. In this work,
we present the first comprehensive study of regularization techniques with multiple
policy optimization algorithms on continuous control tasks. Interestingly, we find
conventional regularization techniques on the policy networks can often bring large
improvement on the task performance, and the improvement is typically more
significant when the task is more difficult. We also compare with the widely used
entropy regularization and find L2 regularization is generally better. Our findings
are further confirmed to be robust against the choice of training hyperparameters.
We also study the effects of regularizing different components and find that only
regularizing the policy network is typically enough. We hope our study provides
guidance for future practices in regularizing policy optimization algorithms.

1 INTRODUCTION

Regularization, typically referring to methods for preventing overfitting, is a key technique in
successfully training a neural network. Perhaps the most widely recognized regularization methods
in deep learning are L2 regularization (also known as weight decay) and dropout (Srivastava et al.,
2014). Those techniques are standard practices in supervised learning tasks from many domains.
Major tasks in computer vision, e.g., image classification (He et al., 2016; Huang et al., 2017), object
detection (Ren et al., 2015; Redmon et al., 2016), all use L2 regularization as a default option. In
natural language processing, for example, the Transformer model (Vaswani et al., 2017) uses dropout.
and the recently popular BERT model (Devlin et al., 2018) uses L2 regularization. In fact, it is very
rare to see state-of-the-art neural models trained without any regularization in a supervised setting.

However, in deep reinforcement learning (RL), those conventional regularization methods are largely
absent or underutilized in past research, possibly because in most cases we are maximizing the return
on exactly the same task as in training. In other words, there is a lack of generalization gap from the
training environment to the test environment (Cobbe et al., 2018). For popular policy optimization
algorithms like Asynchronous Advantage Actor-Crtic (A3C) (Mnih et al., 2016), Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015), Proximal Policy Optimization (PPO) (Schulman et al.,
2017), and Soft Actor Critic (SAC) (Haarnoja et al., 2018), conventional regularization methods were
not considered. Even in popular codebases such as the OpenAI Baseline (Dhariwal et al., 2017), L2

regularization and dropout were not incorporated.

Instead, the most commonly used regularization in the RL community, is an “entropy regularization”
term that penalizes the high-certainty output from the policy network, to encourage more exploration
during the training process and prevent the agent from overfitting to certain actions. The entropy
regularization was first introduced by Williams & Peng (1991) and now used by many contemporary
algorithms (Mnih et al., 2016; Schulman et al., 2017; Teh et al., 2017; Farebrother et al., 2018).

In this work, we take an empirical approach to questioning the conventional wisdom of not using
common regularizations. We study agent’s performance on the current task (the environment which
the agent is trained on), rather than its generalization ability to different environments as many recent
works (Zhang et al., 2018a; Zhao et al., 2019; Farebrother et al., 2018; Cobbe et al., 2018). We

1



Under review as a conference paper at ICLR 2020

specifically focus our study on policy optimization methods, which are becoming increasingly popular
and have achieved top performance on various tasks. We evaluate four popular policy optimization
algorithms, namely SAC, PPO, TRPO, and the synchronous version of Advantage Actor Critic
(A2C), on multiple continuous control tasks. A variety of conventional regularization techniques
are considered, including L2/L1 weight regularization, dropout, weight clipping (Arjovsky et al.,
2017) and Batch Normalization (BN) (Ioffe & Szegedy, 2015). We compare the performance of these
regularization techniques to that without regularization, as well as the entropy regularization.

Surprisingly, even though the training and testing environments are the same, we find that many of the
conventional regularization techniques, when imposed to the policy networks, can still bring up the
performance, sometimes significantly. Among those regularizations, L2 regularization, perhaps the
most simple one, tends to be the most effective for all algorithms and generally outperforms entropy
regularization. L1 regularization and weight clipping can boost performance in many cases. Dropout
and Batch Normalization tend to bring improvements only on off-policy algorithms. Additionally, all
regularization methods tend to be more effective on more difficult tasks. We also verify our findings
with a wide range of training hyperparameters and network sizes, and the result suggests find that
imposing proper regularization can sometimes save the effort of tuning other training hyperparameters.
Finally, we study which part of the policy optimization system should be regularized, and conclude
that generally only regularizing the policy network suffices, as imposing regularization on value
networks usually does not help. Our main contributions can be summarized as follows:
• We provide the first comprehensive study of common regularization methods in policy optimiza-

tion algorithms, which have been largely ignored in the RL literature.
• We find conventional regularizations can often be very effective in improving the performance on

continuous control tasks, espcially on harder ones. Remarkably, the most simpleL2 regularization
generally performs better than the more widely used entropy regularization. BN and dropout can
only help in off-policy algorithms.

• We experiment with multiple randomly sampled training hyperparameters for each algorithm and
confirm our findings still hold. The result also suggests that proper regularization can sometimes
ease the hyperparameter tuning process.

• We study which part of the network(s) should be regularized. The key lesson is to regularize the
policy network but not the value network.

2 RELATED WORKS

Regularization in Deep RL. Conventional regularization methods have rarely been applied in deep
RL. One rare case of such use is in Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2016), where Batch Normalization is applied to all layers of the actor µ network and layers of the
critic Q network prior to the action input, and L2 regularization is applied to the critic Q network
because it tends to have overestimation bias (Fujimoto et al., 2018).

Some recent studies have developed more complicated regularization approaches to continuous
control tasks. Cheng et al. (2019) regularizes the stochastic action distribution π(a|s) using a
suboptimal control prior. The regularization weight at a given state is adjusted based on the temporal
difference (TD) error. The larger the TD error, the more the action distribution moves towards the prior.
Galashov et al. (2019) introduces a default policy that receives limited information as a regularizer.
The information asymmetry between the behavior policy and the default policy helps to accelerate
convergence and improve performance. Parisi et al. (2019) introduces TD error regularization to
penalize inaccurate value estimation and Generalized Advantage Estimation (GAE) (Schulman et al.,
2016) regularization to penalize GAE variance. However, most of these regularizations are rather
complicated (Galashov et al., 2019), specifically designed for certain algorithms (Parisi et al., 2019),
or need prior information (Cheng et al., 2019). Also, these techniques consider regularizing the
output of the network instead of weights or intermediate layers, which conventional regularization do.
In this work, we focus on studying these simpler but under-utilized regularization methods.

Generalization in Deep RL typically refers to how the model perform in a different environment
from the one it is trained on. The generalization gap can come from different modes/levels/difficulties
of a game (Farebrother et al., 2018), simulation vs. real world (Tobin et al., 2017), parameter
variations (Pattanaik et al., 2018), or different random seeds in environment generation (Zhang et al.,
2018b). There are a number of methods designed to address this issue, e.g., through training the
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agent over multiple domains/tasks (Tobin et al., 2017; Rajeswaran et al., 2017), adversarial training
(Tobin et al., 2017), designing model architectures (Srouji et al., 2018), adaptive training (Duan et al.,
2016), etc. Meta Reinforcement Learning (Finn et al., 2017; Gupta et al., 2018; Al-Shedivat et al.,
2017) try to learn generalizable agents by training on a set of environments drawn from the same
family/distribution. There are also some comprehensive studies on RL generalization with interesting
findings (Zhang et al., 2018a;b; Zhao et al., 2019; Packer et al., 2018), e.g., algorithms performing
better on the training environment could perform worse under domain shift (Zhao et al., 2019).

Recently, several studies have investigated conventional regularization’s effect on generalization.
Farebrother et al. (2018) shows that in Deep Q-Networks (DQN), L2 regularization and dropout
can sometimes bring benefit when evaluated on the same Atari game with mode and difficulty
variations. Cobbe et al. (2018) shows that L2 regularization, dropout, data augmentation, and
Batch Normalization can improve generalization performance, but to a less extent than entropy
regularization and ε-greedy action selection, when evaluated with (Espeholt et al., 2018). Different
from those studies, we focus on regularization’s effect in the same environment, a more direct goal
compared with generalization, yet on which conventional regularizations are under-explored.

3 REGULARIZATION METHODS

There are in general two kinds of common approaches for imposing regularization, one is to discour-
aging complex models (e.g., weight regularization, weight clipping), and the other is to inject certain
kind of noise in the activations (e.g., dropout and Batch Normalization). Here we briefly introduce
those regularization methods we investigate in our experiments.

L2 / L1 Weight Regularization. Large weights are usually believed to be a sign of overfitting to the
training data, since the function it represents tend to be complex. One can encourage small weights by
adding a loss term penalizing the norm of the weight vector. Suppose L is the original empirical loss
we want to minimize. SGD updates the model on a mini-batch of training samples: θi ← θi− η · ∂L∂θi ,
where η is the learning rate. When applying L2 regularization, we add an additional L2-norm squared
loss term 1

2λ||θ||
2
2 to the training objective. Thus the SGD step becomes θi ← θi − η ∂L∂θi − η · λ · θi.

Similarly, in the case of L1 weight regularization, the additional loss term is λ||θ||1, and the SGD
step becomes θi ← θi − η · ∂L∂θi − η · λ · sign(θi).

Weight Clipping. Weight clipping is an extremely simple idea: after each gradient update step, each
individual weight is clipped to range [−c, c], where c is a hyperparameter. This could be formally
described as θi ← max(min(θi, c),−c). In Wasserstein GANs (Arjovsky et al., 2017), weight
clipping is used to satisfy the constraint of Lipschitz continuity. This greatly stablizes the training of
GANs (Goodfellow et al., 2014), which were notoriously hard to train and often suffered from “mode
collapse” before. Weight clipping could also be seen as a regularizor since it drastically reduce the
complexity of the model space, by preventing any weight’s magnitude from being larger than c.

Dropout. Dropout (Srivastava et al., 2014) is one of the most successful regularization technique
developed specifically for neural networks. The idea is to randomly deactivate a certain percentage
of neurons during training; during testing, a rescaling operation is taken to ensure the scale of the
activations is the same as training. One explanation for its effectiveness in reducing overfitting is they
can prevent “co-adaptation” of neurons. Another explanation is that dropout acts as a implicit model
ensemble method, because during training a different model is sampled to fit each mini-batch of data.

Batch Normalization. Batch Normalization (BN) (Ioffe & Szegedy, 2015) is invented to address the
problem of “internal covariate shift”, and it does the following transformation: ẑ = zin−µB√

σ2
B+ε

; zout =

γẑ + β, where µB and σB are the mean and standard deviation values of input activations over B, γ
and β are trainable affine transformation parameters (scale and shift) which provides the possibility
of linearly transforming normalized activations back to any scales. BN turns out to be able to greatly
accelerate the convergence and bring up the accuracy. It has become a standard component, especially
in convolutional networks. BN also “acts as a regularizer” (Ioffe & Szegedy, 2015): since the statistics
µB and σB are dependent on the current batch, BN subtracts and divides different values in each
iteration. This randomness can encourage subsequent layers to be robust to such variation of input.

Entropy Regularization. In a policy optimization framework, the policy network is used to model
a conditional distribution over actions, and entropy regularization is widely used to prevent the
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learned policy from overfitting to one or some of the actions. More specifically, in each step, the
output distribution of the policy network is penalized to have a high entropy. Policy entropy is
calculated at each step as −Eai∼π(ai|si) log π(ai|si), where (si, ai) is the state-action pair. Then the
per-sample entropy is averaged within the batch of state-action pairs to get the regularization term

LH =
1

N

∑
si

Hsi . A coefficient λ is also needed, and λLH is added to the policy objective J(θ) to

be maximized during policy updates. Entropy regularization also encourages exploration due to more
stochasticity in actions, leading to better performance in the long run.

4 EXPERIMENTS

4.1 SETTINGS

Algorithms. We evaluate the six regularization methods introduced in Section 3 using four popular
policy optimization algorithms, namely, A2C (Mnih et al., 2016), TRPO (Schulman et al., 2015), PPO
(Schulman et al., 2017), and SAC (Haarnoja et al., 2018). The first three algorithms are on-policy
while the last one is off-policy. For the first three algorithms, we adopt the code from OpenAI
Baseline (Dhariwal et al., 2017), and for SAC, we use the official implementation at (Haarnoja, 2018).

Tasks. The algorithms with different regularizations are tested on nine continuous control tasks:
Hopper, Walker, HalfCheetah, Ant, Humanoid, and HumanoidStandup from the MuJoCo simulation
environment (Todorov et al., 2012); Humanoid, AtlasForwardWalk, and HumanoidFlagrun from the
more challenging RoboSchool (OpenAI) suite. Among the MuJoCo tasks, agents for Hopper, Walker,
and HalfCheetah are easier to learn, while Ant, Humanoid, HumanoidStandup are relatively harder
(larger state-action space, more training examples). The three Roboschool tasks are even harder
than all the MuJoCo tasks as they require more timesteps to converge. To better understand how
different regularization methods work on different difficulties, we roughly categorize the first three
environments as “easy” tasks and the last six as “hard” tasks.

Training. On MuJoCo tasks, we keep all training hyperparameters unchanged as in the codebase
adopted. Since hyperparameters for the RoboSchool tasks are not included in the original codebase,
we briefly tune the hyperparameters for each algorithm before we apply any regularization (more
details in Appendix C). For details on regularization strength tuning, please refer to Appendix A.

The results shown in this section are obtained by only regularizing the policy network, and a
further study on this issue will be presented in Section 6. We run each experiment independently
with five random seeds, then use the average return over the last 100 episodes as the final result. Each
regularization method is evaluated independently, with other regularizations turned off. We refer to
the result without any regularization methods as the baseline. For BN and dropout, we use its training
mode when we update the network, and test mode when sampling trajectories.

Note that entropy regularization is still applicable for SAC, despite it already incorporates the the
maximization of entropy in the reward term. In our experiments, we add the entropy regularization
term to the policy optimization loss function in equation (12) of the original paper (Haarnoja et al.,
2018). Meanwhile, policy network dropout is not applicable to TRPO because during policy update,
different neurons in the old and new policy networks are dropped out, causing different shifts in the
old and new action distributions given the same state, which then causes the trust region constraint to
be violated. In this case, the algorithm fails to perform any policy update from network initialization.

4.2 RESULTS.

Training curves. We plot the training curves from four environments (rows) in Figure 1, on four
algorithms (columns). Figures for the rest five environments are deferred to Appendix B. In the figure,
different colors are used to denote different regularization methods, e.g., black is the baseline method.
Shades are used to denote ±1 standard deviation range. Notably, these conventional regularizations
can frequently boost the performance across different tasks and algorithms, demonstrating that a
study on the regularization in deep RL is highly demanding. Interestingly, in some cases where the
baseline (with the default hyperparameters in the codebase) does not converge at all, e.g., A2C Ant,
PPO Humanoid, imposing some regularization can make the training converge. Another observation
is that BN always significantly hurts the baseline for on-policy algorithms, causing the training to not
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Figure 1: Reward vs. timesteps, for four algorithms (columns) and four environments (rows).

converge at all. The reason will be discussed later. For the off-policy SAC algorithm, dropout and BN
sometimes bring large improvement on hard tasks like AtlasForwardWalk and RoboschoolHumanoid.

How often do regularizations help? To quantitatively measure the effectiveness of the regulariza-
tions on each algorithm across different tasks, we define the condition when a regularization is
said to “improve” upon the baseline in a certain environment. Denote the baseline mean return over
five seeds on an environment as µenv,b, and the mean and standard deviation of the return obtained
with a certain regularization method over five seeds as µenv,r and σenv,r. We say the performance
is “improved” by the regularization if µenv,r − σenv,r > max(µenv,b, T (env)), where T (env) is the
minimum return threshold of an environment. The threshold serves to ensure the return is at least in a
reasonable level. We set the threshold to be 105 for HumanoidStandup and 103 for all other tasks.

The result is shown in Table 1. Perhaps the most significant observation is that L2 regularization is the
most often to improve upon the baseline. A2C algorithm is an exception, where entropy regularization
is the most effective. L1 regularization behaves similar to L2 regularization, but is outperformed
by the latter. Weight clipping’s usefulness is highly dependent on the algorithms and environments.
Despite in total it only helps at 30.6% times, it can sometimes outperform entropy regularization by a
large margin, e.g., in TRPO Humanoid and PPO Humanoid as shown in Figure 1. BN is not useful at
all in the three on-policy algorithms (A2C, TRPO, and PPO). Dropout is not useful in A2C at all, and
sometimes help in PPO. However, BN and dropout can be useful in SAC. All regularization methods
generally improve more often when used on harder tasks, perhaps because for easier ones baseline is
often sufficiently strong to reach a high performance.

It should be noted that under our definition, not “improving” does not indicate the regularization is
hurting the performance. If we define “hurting” as µenv,r + σenv,r < µenv,b (the reward minimum
threshold is not considered here), the total percentage of hurting is 0.0% for L2, 2.8% for L1, 5.6%
for weight clipping, 44.4% for dropout, 66.7% for BN, and 0.0% for entropy. In other words, under
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our parameter tuning range, L2 and entropy regularization never hurt with appropriate strengths. For
BN and dropout, we also note that almost all hurting cases are in on-policy algorithms, except one
case for BN in SAC. We can conclude that dropout and BN are not reliable regularization approaches
for on-policy methods and could only be helpful in off-policy methods. In sum, all regularizations in
our study very rarely hurt the performance except for BN/dropout in on-policy methods.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 33.3 100.0 77.8 0.0 50.0 33.3 0.0 33.3 22.2 33.3 50.0 44.4 16.7 58.3 44.4
L2 0.0 50.0 33.3 0.0 66.7 44.4 33.3 83.3 66.7 66.7 66.7 66.7 25.0 66.7 52.8
L1 0.0 50.0 33.3 0.0 66.7 44.4 33.3 66.7 55.6 33.3 50.0 44.4 16.7 58.3 44.4

Weight Clip 0.0 16.7 11.1 33.3 33.3 33.3 33.3 66.7 55.6 33.3 16.7 22.2 25.0 33.3 30.6
Dropout 0.0 0.0 0.0 N/A N/A N/A 33.3 50.0 44.4 66.7 50.0 55.6 33.3 33.3 33.3

BatchNorm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 11.1 33.3 50.0 44.4 8.3 16.7 13.9

Table 1: Percentage (%) of environments where the final performance “improves” when using
regularization, according to our definition in Section 4.2.

Ranking all regularizations. Furthermore, to better compare their relative effectiveness, we rank
the performance of all the regularization methods, together with the baseline, for each algorithm and
task, and present the average ranks in Table 2. Except for BN and dropout in on-policy algorithms,
all regularizations on average outperform baselines. Again, L2 regularization is the strongest in most
cases. Other similar observations can be made as in Table 1: BN and dropout are generally not
favorable for the three on-policy algorithms, but they can be useful on SAC (ranking higher than
baseline). L1 and weight clipping perform similarly as L2 in TRPO and PPO, better than entropy
regularization, but worse in A2C and SAC. For every algorithm, baseline ranks lower on harder
tasks than easier ones; in total, it ranks 3.50 for easier tasks and 5.25 for harder tasks. This indicates
regularization is more effective when the tasks are harder.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 3.33 4.50 4.11 3.33 4.67 4.22 3.00 6.00 5.00 4.33 5.83 5.33 3.50 5.25 4.67
Entropy 1.00 1.50 1.33 4.67 3.00 3.56 3.00 4.17 3.78 3.00 3.83 3.55 2.92 3.13 3.06
L2 2.67 1.50 1.89 1.33 2.83 2.33 3.00 2.17 2.45 3.00 2.67 2.78 2.50 2.29 2.36
L1 4.33 3.67 3.89 2.67 2.17 2.34 3.33 2.67 2.89 3.67 4.83 4.44 3.50 3.34 3.39

Weight Clip 3.67 3.83 3.78 3.00 2.33 2.55 3.00 2.50 2.67 4.33 4.17 4.22 3.50 3.21 3.31
Dropout 6.00 6.00 6.00 N/A N/A N/A 5.67 4.67 5.00 3.33 3.17 3.22 5.00 4.61 4.74

BatchNorm 7.00 7.00 7.00 6.00 6.00 6.00 7.00 5.83 6.22 6.33 3.50 4.44 6.58 5.58 5.92

Table 2: The average rank in the mean return for different regularization methods. L2 regularization
tops the ranking for most algorithms and environment difficulties.

5 ROBUSTNESS WITH HYPERPARAMETER CHANGES

In the previous section, the experiments are conducted mostly with the default hyperparameters in
the codebase we adopt, which are not necessarily optimized. For example, PPO Humanoid baseline
performs poorly using default hyperparameters, not converging at all. Meanwhile, it is known that RL
algorithms are very sensitive to hyperparameter changes (Henderson et al., 2018). Thus, our findings
can be vulnerable to such variations. To further confirm our findings, we evaluate the regularizations
under a variety of hyperparameter settings. For each algorithm, we sample five hyperparameter
settings for the baseline and apply regularization on each of them. Due to the heavy computation
budget, we only evaluate on five MuJoCo environments: Hopper, Walker, Ant, Humanoid, and
HumanoidStandup. Under our sampled hyperparameters, poor baselines are mostly significantly
improved. For further details on sampling and training curves, please refer to Appendix D and H.
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Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 2.70 4.13 3.65 3.70 3.40 3.50 3.00 5.53 4.69 4.20 5.00 4.73 3.40 4.52 4.14
Entropy 3.50 2.93 3.12 3.60 3.47 3.51 4.30 4.40 4.37 3.10 4.47 4.01 3.63 3.82 3.75
L2 4.40 2.27 2.98 2.50 2.53 2.52 1.90 1.80 1.83 3.50 2.73 2.99 3.08 2.33 2.58
L1 2.70 2.53 2.59 3.10 2.27 2.55 2.80 2.20 2.40 3.70 4.00 3.90 3.08 2.75 2.86

Weight Clip 3.30 3.13 3.19 2.20 3.33 2.95 3.70 2.87 3.15 5.80 4.27 4.78 3.75 3.40 3.52
Dropout 4.40 6.07 5.51 7.00 7.00 7.00 6.10 5.33 5.59 4.20 4.27 4.25 4.90 5.22 5.12

BatchNorm 7.00 6.93 6.95 5.90 6.00 5.97 6.20 5.80 5.93 3.50 3.27 3.35 5.65 5.50 5.55

Table 3: The average rank in the mean return for different regularization methods, under five randomly
sampled training hyperparameters for each algorithm.

Similar to Table 2, the results of regularization ranks are shown in Table 3. For results of improvement
percentages similar to Table 1, please refer to Appendix E. We note that our main findings still hold:
1) the regularizations can improve more effectively on baselines with harder tasks; 2) L2 is still
generally the best regularization method; 3) BN and dropout hurts on-policy algorithms but can bring
improvement only for the off-policy SAC algorithm. Interestingly, different from previous section,
L1 regularization and weight clipping tend to be more effective than the entropy regularization. The
gaps between entropy and L2, L1 and weight clipping are even larger for harder tasks.
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Figure 2: Final reward vs. single hyperparameter change. "Rollout Timesteps" refers to the number
of state-action samples used for training between policy updates.

To better visualize the robustness against change of hyperparameters, we show the result when a single
hyperparameter is varied in Figure 2. We note that the certain regularizations can consistently improve
the baseline with different hyperparameters. In the second and third cases, proper regularizations
can ease the hyperparameter tuning process, as they can bring up the performance of baselines with
suboptimal hyperparameters to be even higher than baselines with better hyperparameters.
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Figure 3: Final reward vs. changes in the width and depth of network.

We also analyze regularizations’ effect with different network width/depths in Figure 3. With the
increase of network width/depth, the baseline performance can be increasing as well as decreasing.
Certain regularizations can help with various widths or depths. Interestingly, L2 sometimes helps more
with thinner network (TRPO Ant), and sometimes more with wider network (PPO HumanoidStandup).
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6 POLICY AND VALUE NETWORK REGULARIZATION

Our experiments in previous sections only impose regularization on the policy network. To investigate
the relationship between policy and value network regularization, we evaluate four options: 1) no
regularization, and regularizing 2) policy network, 3) value network, 4) policy and value networks.
For 2) and 3) we tune the regularization strengths independently and then use the appropriate ones for
4) (more details in Appendix A). We evaluate all four algorithms on the six MuJoCo tasks and present
the percentage of tasks where we obtain improvement in Table 4. Note that entropy regularization is
not applicable to the value network. For detailed training curves, please refer to Appendix I.

Reg\Alg A2C TRPO PPO SAC TOTAL
Pol Val P+V Pol Val P+V Pol Val P+V Pol Val P+V Pol Val P+V

L2 50.0 0.0 16.7 50.0 16.7 33.3 66.7 16.7 66.7 66.7 33.3 33.3 58.3 16.7 37.5
L1 50.0 16.7 50.0 33.3 0.0 33.3 66.7 0.0 50.0 33.3 33.3 33.3 45.8 12.5 41.7

Weight Clip 16.7 0.0 16.7 50.0 33.3 16.7 66.7 0.0 66.7 33.3 16.7 16.7 41.7 8.3 29.2
Dropout 0.0 16.7 0.0 N/A 33.3 N/A 66.7 33.3 50.0 50.0 0.0 0.0 38.9 20.8 16.7

BatchNorm 16.7 16.7 16.7 0.0 16.7 0.0 16.7 0.0 50.0 33.3 16.7 0.0 16.7 12.5 16.7

Table 4: Percentage (%) of environments where the final performance ”improves” when applying
regularization on policy / value / policy and value networks.

It can be seen that only regularizing the policy network tends to be the most effective for almost all
algorithms and regularizations. For A2C, TRPO, and PPO, this phenomenon can be explained by the
fact that observations and rewards are already normalized using running mean filters. Thus, there
is less variance and the value network does not overestimate. For SAC, this could be because SAC
incorporates clipped double Q learning, which, as shown by Fujimoto et al. (2018), mitigates the
overestimation bias of the critic Q network, so further regularization is unnecessary.

7 DISCUSSION AND CONCLUSION

Why does regularization benefit policy optimization? In RL, we are typically training and eval-
uating on the same environment, i.e., there is no generalization gap across different environments.
However, there is still generalization between samples: the agents is only trained on the limited
trajectories it has experienced, which cannot cover the whole state-action space of the environment.
A successful policy needs to generalize from seen samples to unseen ones, which potentially makes
regularization necessary in RL. This might also explain why regularization could be more helpful on
harder tasks, which have larger state space. In this case, the portion of the space that have appeared in
training tends to be smaller, and overfitting to this smaller portion of space would cause more serious
issues, in which case regularizations may help.

Why do BN and dropout work only with off-policy algorithms? One major finding in our experi-
ments is BN and dropout can sometimes improve on the off-policy algorithm SAC, but mostly would
hurt on-policy algorithms. There are two possible reasons for this: 1) for both BN and dropout, train-
ing mode is used to train the network, and testing mode is used to sample actions during interaction
with the environment, leading to a discrepancy between the sampling policy and optimization policy
(the same holds if we always use training mode). For on-policy algorithms, if such discrepancy is
large, it can cause severe off-policy issues, which hurts the optimization process or even crashes it.
For off-policy algorithms, this discrepancy is not an issue since it naturally accepts off-policy data. 2)
In on-policy algorithms, we always use the samples generated from the latest policy; in off-policy
algorithms, the sample distributions are relatively slow-changing since we always draw from the
whole replay buffer which holds cumulative data. Thus, the batch statistics in BN can more smoothly
adapt to the change in input distribution. Previously, BN has also been shown effective in Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), an off-policy algorithm.

In summary, we conducted the first comprehensive study of regularization methods with multiple
policy optimization algorithms on continuous control benchmarks. We found that L2 regularization,
despite being largely ignored in prior literature, is effective in improving performance, even more than
the widely used entropy regularization. BN and dropout could also be useful but only on off-policy
algorithms. Our findings were confirmed with multiple hyperparameters. Further experiments have
shown that generally the best practice is to regularize the policy network without the value network.
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APPENDIX

A IMPLEMENTATION AND TUNING FOR REGULARIZATION METHODS

As mentioned in the paper, in Section 4 we only regularize the policy network; in Section 6, we
investigate regularizing both policy and value networks.

For L1 and L2 regularization, we add λ|̇|θ||1 and λ
2 |̇|θ||

2
2, respectively, to the loss of policy network

or value network of each algorithm (for SAC’s value regularization, we apply regularization only
to the V network instead of also to the two Q networks). L1 and L2 loss are applied to all the
weights of the policy or value network. For A2C, TRPO, and PPO, we tune λ in the range of
[1e− 5, 5e− 5, 1e− 4, 5e− 4] for L1 and [5e− 5, 1e− 4, 5e− 4, 1e− 3] for L2. For SAC, we tune
λ in the range of [5e− 4, 1e− 3, 5e− 3, 1e− 2] for L1 and [1e− 3, 5e− 3, 1e− 2, 5e− 2] for L2.

For weight clipping, the OpenAI Baseline implementation of the policy network of A2C, TRPO,
and PPO outputs the mean of policy action from a two-layer fully connected network (MLP). The
log standard deviation of the policy action is represented by a standalone trainable vector. We find
that when applied only to the weights of MLP, weight clipping makes the performance much better
than when applied to only the logstd vector or both. Thus, for these three algorithms, the policy
network weight clipping results shown in all the sections above come from clipping only the MLP
part of the policy network. On the other hand, in the SAC implementation, both the mean and the
log standard deviation come from the same MLP, and there is no standalone log standard deviation
vector. Thus, we apply weight clipping to all the weights of the MLP. For all algorithms, we tune the
policy network clipping range in [0.1, 0.2, 0.3, 0.5]. For value network, the MLP produces a single
output of estimated value given a state, so we clip all the weights of the MLP. For A2C, TRPO, and
PPO, we tune the clipping range in [0.1, 0.2, 0.3, 0.5]. For SAC, we only clip the V network and do
not clip the two Q networks for simplicity. We tune the clipping range in [0.3, 0.5, 0.8, 1.0] due to its
weights having larger magnitude.

For Batch Normalization/dropout, we apply it before the activation function of each hidden
layer/immediately after the activation function. When the policy or the value network is performing
update using minibatches of trajectory data or minibatches of replay buffer data, we use the train
mode of regularization and update the running mean and standard deviation. When the policy is
sampling trajectory from the environment, we use the test mode of regularization and use the exist-
ing running mean and standard deviation to normalize data. For Batch Normalization/dropout on
value network, only training mode is applied since value network does not participate in sampling
trajectories. Note that adding policy network dropout on TRPO causes the KL divergence constraint
Es∼ρθold [DKL (πθold(·|s)‖πθ(·|s))] ≤ δ to be violated almost every time during policy network
update. Thus, policy network dropout causes the training to fail on TRPO, as the policy network
cannot be updated.

For entropy regularization, we add −λLH to the policy loss. λ is tuned from [5e− 5, 1e− 4, 5e−
4, 1e − 3] for A2C, TRPO, PPO and [0.1, 0.5, 1.0, 5.0] for SAC. Note that for SAC, our entropy
regularization is added directly on the optimization objective (equation 12 in Haarnoja et al. (2018)),
and is different from the original maximum entropy objective inside the reward term.

The optimal policy network regularization strength we selected for each algorithm and environment
used in Section 4 can be seen in the legends of Appendix I. In addition to the environment-specific-
strength regularization results presented in Section 4, we also present the results when the regular-
ization strength is fixed across all environments for the same algorithm. The results are shown in
Appendix F.

In Section 6, to investigate the effect of regularizing both policy and value networks, we combine the
tuned optimal policy and value network regularization strengths. The detailed training curves are
presented in Appendix I.

As a side note, when training A2C, TRPO, and PPO on the HalfCheetah environment, the results
have very large variance. Thus, for each regularization method, after we obtain the best strength, we
rerun it for another five seeds as the final result in Table 1 and 2.
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B ADDITIONAL TRAINING CURVES
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Figure 4: Reward vs. timesteps, for four algorithms (columns) and three environments (rows).

As a complement with Figure 1 in Section 4, we plot the training curves of the other five environments
in Figure 4.

C DEFAULT HYPERPARAMETER SETTINGS FOR BASELINES

Training timesteps. For A2C, TRPO, and PPO, we run 5e6 timesteps for Hopper, Walker, and
HalfCheetah; 2e7 timesteps for Ant, Humanoid (MuJoCo), and HumanoidStandup; 5e7 timesteps for
Humanoid (RoboSchool); and 1e8 timesteps for AtlasForwardWalk and HumanoidFlagrun. For SAC,
since its simulation speed is much slower than A2C, TRPO, and PPO (as SAC updates its policy and
value networks using a minibatch of replay buffer data at every timestep), and since it takes fewer
timesteps to converge, we run 1e6 timesteps for Hopper and Walker; 3e6 timesteps for HalfCheetah
and Ant; 5e6 timesteps for Humanoid and HumanoidStandup; and 1e7 timesteps for the RoboSchool
environments.

Hyperparameters for RoboSchool. In the original PPO paper (Schulman et al., 2017), hyperpa-
rameters for the Roboschool tasks are given, so we apply the same hyperparameters to our training,
except that instead of linear annealing the log standard deviation of action distribution from −0.7 to
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−1.6, we let it to be learnt by the algorithm, as implemented in OpenAI Baseline (Dhariwal et al.,
2017). For TRPO, due to its proximity to PPO, we copy PPO’s hyperparameters if they exist in both
algorithms. We then tune the value update step size in [3e− 4, 5e− 4, 1e− 3]. For A2C, we keep the
original hyperparameters and tune the number of actors in [32, 128] and the number of timesteps for
each actor between consecutive policy updates in [5, 16, 32]. For SAC, we tune the reward scale from
[5, 20, 100].

The detailed hyperparameters used in our baselines for both MuJoCo and RoboSchool are listed in
Tables 5-8.

Hyperparameter Value
Hidden layer size 64× 2

Sharing policy and value weights False
Number of hidden layers 2

Rollout timesteps per actor 5
Number of actors 1

Step size 7e− 4, linear decay
Max gradient norm 0.5
Discount factor (γ) 0.99

Hyperparameter Value
Hidden layer size 64× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 32

Number of actors 32 (Humanoid, Atlas)
128 (Flagrun)

Step size 7e− 4, linear decay
Max gradient norm 0.5
Discount factor (γ) 0.99

Table 5: Hyperparameter setting for A2C MuJoCo and RoboSchool tasks

Hyperparameter Value
Hidden layer size 32× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 1024
Number of actors 1

Value network step size 1e− 3, constant
Max KL divergence 0.01
Discount factor (γ) 0.99
GAE parameter (λ) 0.98

Conjugate gradient damping 0.1
Conjugate gradient iterations 10

Value network optimization epochs 10
Value network update minibatch size 64

Probability ratio clipping range 0.2

Hyperparameter Value
Hidden layer size 64× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 512

Number of actors 32 (Humanoid, Atlas)
128 (Flagrun)

value network step size 1e− 3, constant
Max KL divergence 0.01
Discount factor (γ) 0.99
GAE parameter (λ) 0.98

Conjugate gradient damping 0.1
Conjugate gradient iterations 10

Value network optimization epochs 15
Value network update minibatch size 4096

Probability ratio clipping range 0.2

Table 6: Hyperparameter setting for TRPO Mujoco and RoboSchool tasks. The original OpenAI
implementation does not support multiple actors sampling trajectories at the same time, so we
modified the code to support this feature and accelerate training.

Hyperparameter Value
Hidden layer size 64× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 2048
Number of actors 1

Number of minibatches 32
Step size 3e− 4, linear decay

Max gradient norm 0.5
Discount factor (γ) 0.99
GAE parameter (λ) 0.95

Number of optimization epochs 10
Probability ratio clipping range 0.2

Hyperparameter Value
Hidden layer size 64× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 512

Number of actors 32 (Humanoid, Atlas)
128 (Flagrun)

Minibatch size 4096
Step size 3e− 4, linear decay

Max gradient norm 0.5
Discount factor (γ) 0.99
GAE parameter (λ) 0.95

Number of optimization epochs 15
Probability ratio clipping range 0.2

Table 7: Hyperparameter setting for PPO MuJoCo and RoboSchool tasks

Hyperparameter Value
Hidden layer size 256× 2

Number of hidden layers 2
Samples per batch 256
Replay buffer size 106

Learning rate 3e− 4 constant
Discount factor (γ) 0.99

Target smoothing coefficient (τ ) 0.005
Target update interval 1

Reward Scaling
5 (Hopper, Walker, HalfCheetah, Ant)

20 (MuJoCo Humanoid and all RoboSchool tasks)
100 (HumanoidStandup)

Table 8: Hyperparameter setting for SAC
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D HYPERPARAMETER SAMPLING DETAILS

In Section 5, we present results based on five hyperparameter settings. To obtain such hyperparameter
variations, we consider varying the learning rates and the hyperparameters that each algorithm is very
sensitive to. For A2C, TRPO, and PPO, we consider a range of rollout timesteps between consecutive
policy updates by varying the number of actors or the number of trajectory sampling timesteps for
each actor. For SAC, we consider a range of reward scale and a range of target smoothing coefficient.

More concretely, for A2C, we sample the learning rate from [2e− 4, 7e− 4, 2e− 3] linear decay, the
number of trajectory sampling timesteps (nsteps) for each actor from [3, 5, 16, 32], and the number
of actors (nenvs) from [1, 4]. For TRPO, we sample the learning rate of value network (vf_stepsize)
from [3e− 4, 5e− 4, 1e− 3] and the number of trajectory sampling timesteps for each actor (nsteps)
in [1024, 2048, 4096, 8192]. The policy update uses conjugate gradient descent and is controlled by
the max KL divergence. For PPO, we sample the learning rate from [1e− 4 linear, 3e− 4 constant],
the number of actors (nenvs) from [1, 2, 4, 8], and the probability ratio clipping range (cliprange) in
[0.1, 0, 2]. For SAC, we sample the learning rate from [1e− 4, 3e− 4, 1e− 3] the target smoothing
coefficient (τ ) from [0.001, 0.005, 0.01], and the reward scale from small, default, and large mode.
The default reward scale of 5 is changed to (3, 5, 20); 20 to (4, 20, 100); 100 to (20, 100, 400) for
each mode, respectively. Sampled hyperparameters 1-5 for each algorithms are listed in Table 9a-9d.

Learning rate Nsteps Nenvs
Baseline 7e− 4 5 1

Hyperparam. 1 2e− 3 32 4

Hyperparam. 2 2e− 3 32 1

Hyperparam. 3 7e− 4 16 1

Hyperparam. 4 7e− 4 32 4

Hyperparam. 5 2e− 4 3 4

(a) Sampled hyperparameter settings for A2C

Vf_stepsize Nsteps
Baseline 1e− 3 1024

Hyperparam. 1 5e− 4 8192

Hyperparam. 2 1e− 3 4096

Hyperparam. 3 3e− 4 2048

Hyperparam. 4 5e− 4 1024

Hyperparam. 5 5e− 4 4096

(b) Sampled hyperparameter settings for TRPO

Learning rate Nenvs Cliprange
Baseline 3e− 4 linear 1 0.2

Hyperparam. 1 3e− 4 linear 8 0.2

Hyperparam. 2 1e− 4 constant 8 0.2

Hyperparam. 3 3e− 4 linear 4 0.1

Hyperparam. 4 1e− 4 constant 2 0.2

Hyperparam. 5 3e− 4 linear 1 0.1

(c) Sampled hyperparameter settings for PPO

Learning rate τ Mode
Baseline 3e− 4 0.005 default

Hyperparam. 1 3e− 4 0.005 small
Hyperparam. 2 1e− 4 0.001 large
Hyperparam. 3 1e− 3 0.005 small
Hyperparam. 4 3e− 4 0.01 small
Hyperparam. 5 1e− 3 0.005 default

(d) Sampled hyperparameter settings for SAC

Table 9: Sampled hyperparameter settings for Section 5
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E HYPERPARAMETER EXPERIMENT IMPROVEMENT PERCENTAGE

We provide the percentage of improvement result in Table 10 as a complement with Table 3.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 20.0 40.0 32.0 0.0 26.7 16.0 10.0 33.3 24.0 60.0 13.3 32.0 22.5 28.3 26.0
L2 20.0 60.0 44.0 10.0 40.0 28.0 20.0 86.7 60.0 10.0 40.0 28.0 15.0 56.7 40.0
L1 10.0 53.3 36.0 10.0 46.7 32.0 10.0 86.7 56.0 20.0 26.7 24.0 12.5 53.3 37.0

Weight Clip 0.0 46.7 28.0 40.0 46.7 44.0 10.0 73.3 48.0 0.0 33.3 20.0 12.5 50.0 35.0
Dropout 20.0 0.0 8.0 N/A N/A N/A 0.0 40.0 24.0 0.0 20.0 12.0 6.7 20.0 14.7

BatchNorm 0.0 0.0 0.0 10.0 0.0 4.0 10.0 33.3 24.0 20.0 20.0 20.0 10.0 13.3 12.0

Table 10: Percentage (%) of environments where the final performance ”improves” when using
regularization, under five randomly sampled training hyperparameters for each algorithm.

F REGULARIZATION WITH A SINGLE STRENGTH

In previous sections, we tune the strength of regularization for each algorithm and environment,
as described in Appendix A. Now we restrict the regularization methods to a single strength for
each algorithm, across different environments. The results are shown in Table 11 and 12, and the
selected strength are presented in Table 13. We see that the L2 regularization is still generally the
best performing one, but SAC is an exception, where BN is better. This can be explained by the fact
that in SAC, the reward scaling coefficient is different for each environment, which potentially causes
the optimal L2 and L1 strength to vary a lot across different environments, while BN does not have a
strength parameter.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 33.3 66.7 55.6 0.0 33.3 22.2 0.0 16.7 11.1 0.0 16.7 11.1 8.3 33.3 25.0
L2 0.0 50.0 33.3 0.0 50.0 33.3 33.3 66.7 55.6 33.3 33.3 33.3 16.7 50.0 38.9
L1 0.0 33.3 22.2 0.0 50.0 33.3 33.3 50.0 44.4 33.3 33.3 33.3 16.7 41.7 33.3

Weight clipping 0.0 0.0 0.0 33.3 33.3 33.3 33.3 50.0 44.4 33.3 0.0 11.1 25.0 20.8 22.2
Dropout 0.0 0.0 0.0 N/A N/A N/A 33.3 50.0 44.4 66.7 16.7 33.3 33.3 22.2 25.9

BatchNorm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 11.1 33.3 50.0 44.4 8.3 16.7 13.9

Table 11: Percentage (%) of environments that, when using a regularization, ”improves”. For each
algorithm, one single strength for each regularization is applied to all environments.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 1.67 2.17 2.00 3.33 2.83 3.00 4.00 4.50 4.33 5.00 4.50 4.67 3.50 3.50 3.50
L2 2.00 2.00 2.00 3.33 2.50 2.78 3.00 2.33 2.55 4.67 4.00 4.22 3.25 2.71 2.89
L1 3.33 3.83 3.66 4.00 2.17 2.78 3.00 3.33 3.22 4.33 4.00 4.11 3.67 3.33 3.44

Weight clipping 5.00 3.33 3.89 2.00 3.83 3.22 2.67 3.17 3.00 4.00 5.50 5.00 3.42 3.96 3.78
Dropout 6.00 6.00 6.00 N/A N/A N/A 5.33 4.17 4.56 2.00 3.50 3.00 4.44 4.56 4.52

BatchNorm 7.00 7.00 7.00 6.00 6.00 6.00 7.00 5.33 5.89 4.33 2.33 3.00 6.08 5.17 5.47

Table 12: The average rank in the mean return for different regularization methods. For each
algorithm, one single strength for each regularization is applied to all environments.
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Reg \ Alg A2C TRPO PPO SAC
Entropy 5e− 4 5e− 4 5e− 4 1.0
L2 1e− 4 5e− 4 5e− 4 5e− 2

L1 1e− 4 1e− 4 1e− 4 5e− 3

Weight clipping 0.2 0.2 0.2 0.3
Dropout 0.05 0.05 0.05 0.2

BatchNorm True True True True

Table 13: The fixed single regularization strengths that are used in each algorithm to obtain results in
Table 11 and Table 12.

G REGULARIZING WITH BOTH L2 AND ENTROPY

We also investigate the effect of combining L2 regularization with entropy regularization, given that
both cases of applying one of them alone yield performance improvement. We take the optimal
strength of L2 regularization and entropy regularization together and compare with applying L2

regularization or entropy regularization alone. We find that the performance increases for PPO
HumanoidStandup, approximately stays the same for TRPO Ant, and decreases for A2C Humanoid-
Standup. Thus, the regularization benefits are not always addable. This phenomenon is possibly
caused by the fact that the algorithms already achieve good performance using only L2 regulariza-
tion or entropy regularization, and further performance improvement is restrained by the intrinsic
capabilities of algorithms.
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Figure 5: The effect of combining L2 regularization with entropy regularization. For PPO Humanoid-
Standup, we use the second randomly sampled hyperparameter setting. For A2C HumanoidStandup
and TRPO Ant, we use the baseline as in Section 4.
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H TRAINING CURVES FOR HYPERPARAMETER EXPERIMENTS

In this section, we plot the full training curves of the experiments in Section 5 with five sampled hyper-
parameter settings for each algorithm from Figure 6 to Figure 9. The strength of each regularization
is tuned according to the range in Appendix A.
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Figure 6: Training curves of A2C regularizations under five randomly sampled hyperparameters.
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Figure 7: Training curves of TRPO regularizations under five randomly sampled hyperparameters.
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Figure 8: Training curves of PPO regularizations under five randomly sampled hyperparameters.

20



Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

H
op

pe
r

1e3 Param 1

baseline
entropy=5.0
L2=5e-2
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.5

1.0

1.5

2.0

2.5

3.0
1e3 Param 2

baseline
entropy=1.0
L2=1e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1e3 Param 3

baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.05
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1e3 Param 4

baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e3 Param 5

baseline
entropy=5.0
L2=1e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

W
al

ke
r

1e3
baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.5

1.0

1.5

2.0

2.5

1e3
baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

1

2

3

4

1e3

baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
1e3

baseline
entropy=1.0
L2=5e-3
L1=1e-4
wclip=0.3
dropout=0.2
batchnorm

0.0 0.2 0.4 0.6 0.8 1.0
1e6

1

2

3

4

5
1e3

baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3
1e6

1

2

3

4

5

6

An
t

1e3
baseline
entropy=0.5
L2=1e-2
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3
1e6

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
1e3

baseline
entropy=1.0
L2=5e-2
L1=5e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3
1e6

1

2

3

4

5

6

7
1e3

baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.05
batchnorm

0 1 2 3
1e6

1

2

3

4

5

6

1e3
baseline
entropy=1.0
L2=1e-2
L1=5e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3
1e6

1

2

3

4

5

6

7
1e3

baseline
entropy=0.5
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3 4 5
1e6

4.0

4.5

5.0

5.5

6.0

6.5

H
um

an
oi

d

1e3
baseline
entropy=0.5
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3 4 5
1e6

4.0

4.5

5.0

5.5

6.0

6.5

7.0
1e3

baseline
entropy=5.0
L2=1e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3 4 5
1e6

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

1e3

baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.05
batchnorm

0 1 2 3 4 5
1e6

4.0

4.5

5.0

5.5

6.0

6.5

1e3
baseline
entropy=1.0
L2=1e-3
L1=5e-4
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3 4 5
1e6

4.0

4.5

5.0

5.5

6.0

6.5

7.0

1e3
baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3 4 5
1e6

1.0

1.2

1.4

1.6

1.8

2.0

2.2

H
um

an
oi

dS
ta

nd
up

1e5
baseline
entropy=1.0
L2=5e-3
L1=1e-3
wclip=0.3
dropout=0.2
batchnorm

0 1 2 3 4 5
1e6

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1e5

baseline
entropy=1.0
L2=1e-3
L1=1e-2
wclip=0.3
dropout=0.05
batchnorm

0 1 2 3 4 5
1e6

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50 1e5

baseline
entropy=1.0
L2=5e-2
L1=5e-2
wclip=0.3
dropout=0.05
batchnorm

0 1 2 3 4 5
1e6

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
1e5

baseline
entropy=1.0
L2=1e-2
L1=5e-2
wclip=0.3
dropout=0.05
batchnorm

0 1 2 3 4 5
1e6

0.8

1.0

1.2

1.4

1.6

1.8

2.0 1e5

baseline
entropy=1.0
L2=1e-2
L1=5e-2
wclip=0.3
dropout=0.05
batchnorm

Figure 9: Training curves of SAC regularizations under five randomly sampled hyperparameters.
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I TRAINING CURVES FOR POLICY VS. VALUE EXPERIMENTS

We plot the training curves with our study in Section 6 on policy and value network regularizations
from Figure 10 to Figure 13.
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Figure 10: The interaction between policy and value network regularization for A2C. The optimal
policy regularization and value regularization strengths are listed in the legends. Results of regu-
larizing both policy and value networks are obtained by combining the optimal policy and value
regularization strengths.
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Figure 11: The interaction between policy and value network regularization for TRPO.
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Figure 12: The interaction between policy and value network regularization for PPO.
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Figure 13: The interaction between policy and value network regularization for SAC.
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