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ABSTRACT

Learning Invariant Representations to adapt deep classifiers of a source domain
to a new target domain has recently attracted much attention. In this paper, we
show that the search for invariance favors the compression of representations. We
point out this may have a bad impact on adaptability of representations expressed
as a minimal combined domain error. By considering the risk of compression, we
show that weighting representations can align representation distributions without
impacting their adaptability. This supports the claim that representation invariance
is too strict a constraint. First, we introduce a new bound on the target risk that re-
veals a trade-off between compression and invariance of learned representations.
More precisely, our results show that the adaptability of a representation can be
better controlled when the compression risk is taken into account. In contrast,
preserving adaptability may overestimate the risk of compression that makes the
bound impracticable. We support these statements with a theoretical analysis illus-
trated on a standard domain adaptation benchmark. Second, we show that learning
weighted representations plays a key role in relaxing the constraint of invariance
and then preserving the risk of compression. Taking advantage of this trade-off
may open up promising directions for the design of new adaptation methods.

1 INTRODUCTION

In a standard Supervised Learning setup, we consider that training data is representative of test-
ing data. This ideal framework is often violated in practical applications since the data generative
process can be altered during the application phase e.g. different pre-processing, sample rejection,
imbalanced classes, condition of data collection, time evolving data... This so-called Distributional
Shift situation (Quionero-Candela et al. (2009); Kull & Flach (2014)) is recognized as a major chal-
lenge in Machine Learning (Amodei et al. (2016)). Domain Adaptation (DA) (Pan & Yang (2009)) is
a widely adopted strategy to mitigate its effects. It consists in leveraging unlabeled testing data (the
target domain) in order to transfer knowledge learned on labeled training data (the source domain).

A first line of study, named Importance Sampling (IS), assumes some stationarity in distributions
in order to approximate the risk in the target domain by weighting sample contribution (Shimodaira
(2000); Huang et al. (2007)). To be applied, IS needs statistical support sharing across domains
limiting its range of application when addressing high dimensional data. In that challenging con-
text, Ganin & Lempitsky (2014) have shown that deep classifiers can be adapted to a new target
domain by learning domain Invariant Representations (IR) and find theoretical support in the work
of Ben-David et al. (2007; 2010). It assumes that a classifier trained on representations of labeled
data sampled from both domains will achieve a negligible combined error (adaptability). However,
enforcing distribution invariance in the representation space can badly impact its adaptability, for
instance in the context of Target Shift (Zhao et al. (2019)) or when the support of the distributions
do not overlap enough (Johansson et al. (2019)). In the most general case of DA, it is not clear how
IR helps aligning domains and removing spurious correlations as pointed by Arjovsky et al. (2019).

In the present work, we show that the search of invariance favors learning representations with
a significant loss of information from the original features. We refer to this phenomenon as the
risk of Compression. In our understanding, this risk is not addressed in the original work from
Ben-David et al. (2007; 2010). We demonstrate that taking into account this risk has two major
advantages. First, it provides a better control on (non-trainable) terms involving the labels in the
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target domain. Second, it introduces a new trainable term which embodies a risk of Compression
and then may open-up the path to new learning methods. We provide a theoretical analysis illustrated
with experiments on a standard Domain Adaptation benchmark. We underline that a better control
on non-trainable terms may lead to an over-pessimistic risk of compression. This brings to light
an inherent trade-off when learning representations for domain adaptation: How much compression
risk is acceptable in order to obtain invariance? As a first try to answer to this question, we point
that Learning Weighted Representations plays a key role in aligning representation distributions in
order to obtain invariance. More precisely, we show that under a constraint of strong source risk
conservation, weighting representations does not impact its adaptability.

2 BACKGROUND

2.1 A DECADE OF DOMAIN ADAPTATION

The classical setup for modelling distributional shift is to introduce two domains: the source do-
main i.e. dataset where the model is trained with supervision and the target domain i.e. where the
model is tested or applied. Formally, for two random variables (X,Y ) of a given space X × Y ,
we introduce two distributions on X × Y: the source distribution Ps(X,Y ) and the target distri-
bution Pt(X,Y ). We use the exponent notation s and t to differentiate source and target terms.
We define the hypothesis space H as a subset of functions from X to Y . The distributional shift
situation is then characterized by the shift: Ps(X,Y ) 6= Pt(X,Y ). Learning under Distribu-
tional Shift (Quionero-Candela et al. (2009)) consists in minimizing the risk on the target domain
εt(h) = Et[`(h(X), Y )] for a given loss ` : Y × Y → R+ and an hypothesis function h ∈ H.
Assuming that w(X,Y ) = Pt(X,Y )/Ps(X,Y ) is tractable, it is straightforward to show that:

εt(h) = Es[w(X,Y )`(h(X), Y )] (1)

Roughly speaking, this equation shows that it is possible to minimize the target risk using data
(xsi , y

s
i )1≤i≤ns sampled from the source domain (i.e. (xi, yi) ∼ Ps(X,Y )) while re-weighting their

contribution in the source expectation with a factor w(xi, yi) (Importance Sampling). The difficulty
of Learning under distributional shift arises when w(xi, yi) is not tractable. The first reason is that
data sampled from Pt(X,Y ) is often not easily available. In order to get a reasonable estimation of
w, practitioners are used to reformulate the problem as Unsupervised Domain Adaptation.
Definition 1 (Unsupervised Domain Adaptation). Given a loss `, an hypothesis class H, a source
domain (X ×Y,Ps(X,Y )) and a target domain (X ×Y,Pt(X,Y )), Unsupervised Domain Adapta-
tion consists in minimizing the target risk (i.e. finding h? = arg minh∈H Et[`(h(X), Y )]) with finite
labeled sampling of (xsi , y

s
i ) ∼ Ps(X,Y ) of the source domain and a finite unlabeled sampling

(xtj) ∼ Pt(X) of the target domain.

If unlabeled samples in the target domain are available, a first idea is then to approximate w(X,Y )
by w(X) = Pt(X)/Ps(X). This is equivalent to assuming that conditional distributions are con-
served across domains (i.e. Ps(Y |X) = Pt(Y |X)), a situation known as Covariate Shift, that has
already been the subject of an extensive literature (Sugiyama et al. (2008); Huang et al. (2007)).
This formulation becomes ill-posed when feature domains (X ,Ps(X)) and (X ,Pt(X)) suffer from
non-overlapping support: w(X) is then undefined. To address this issue, Invariant Representa-
tions learning (Ganin & Lempitsky (2014)) performs adaptation by looking for a representation
Z = ϕ(X) whose distribution is conserved across domains Ps(Z) = Pt(Z). A common strategy
consists in extracting features Z to learn labels Y in the source domain while controlling represen-
tation invariance. That is formulated as follows:
Learning Objective 1 (Learning Invariant Representations for Domain Adaptation).

g?, ϕ? = arg min
(g,ϕ)∈G×Φ

(1− α) · εs(g ◦ ϕ) + α · D(s,t)(ϕ) (2)

where G is the set of classifiers and Φ is the set of representations. The hypothesis space is then
defined as H = {g ◦ ϕ : g ∈ G, ϕ ∈ Φ}. D(s,t)(ϕ) is a distance between distributions Ps(Z) and
Pt(Z) and α is a trade-off parameter.

The choice of D(s,t)(ϕ) has been the object of an extensive literature including f− divergence
measures such as domain adversarial learning (Ganin et al. (2016); Tzeng et al. (2014); Long et al.
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(2018)), Integral Probability Measures such as Maximum Mean Discrepancy (Long et al. (2015;
2016)) or Optimal Transport (Shen et al. (2017)). See Kouw & Loog (2019) for an extensive review.
Interestingly, learning invariant representations to perform adaptation finds theoretical support from
the work of Ben-David et al. (2007; 2010) that we recall in the next section.

2.2 THEORETICAL GUARANTEES OF DOMAIN ADAPTATION

We consider the set of representations Φ and classifiers G. The hypothesis space is denoted H =
{g ◦ ϕ : g ∈ G, ϕ ∈ Φ}. We introduce the loss ` : Y × Y → R+ which is assumed symmetric and
verifies the triangular inequality. We note the risk ε(h) = E[`(Y, h(X))] for h ∈ H and ε(h, h′) =
E[`(h(X), h′(X))] for (h, h′) ∈ H2. To emphasize the role of a representation Z = ϕ(X), we
introduce f̃(Z) = E[Y |Z] and H̃ = {g ◦ϕ : g ∈ G} ⊂ H. We underline that ·̃ quantities depend on
ϕ where, for the ease of reading, this dependence is omitted in notations when it is not ambiguous.
Ben-David et al. (2007; 2010) have derived a theoretical bound of the additional risk when using a
representation Z = ϕ(X) rather than raw features X:
Inequality 1 (Ben-David et al. (2007; 2010)). For a given ϕ ∈ Φ and g ∈ G, there is:

εt(g ◦ ϕ)︸ ︷︷ ︸
Target risk

≤ εs(g ◦ ϕ)︸ ︷︷ ︸
Source risk

+ sup
(h,h′)∈H̃

∣∣εs(h, h′)− εt(h, h′)∣∣︸ ︷︷ ︸
= 1

2 ·d(H̃∆H̃): Disagreement

+ inf
h∈H̃

εt(h) + εs(h)︸ ︷︷ ︸
=λ(H̃): Adaptability

(3)

The inequality 1 ensures that the target risk is bounded by the sum of the source risk, the disagree-
ment risk between two classifiers from representations (d(H̃∆H̃) named H̃∆H̃ distance), and a
third term (λ(H̃)) which quantifies the ability to perform well in both domains from representations.
In the rest of the paper, we refer to the latter as the adaptability. Since Et[Y |X] is unknown, λ(H̃) is
intractable in practical applications. By conveniently assuming that λ(H̃) is negligible, it is possible
to derive a Learning Objective 1 which minimizes ε̃s(g◦ϕ)+ 1

2d(H̃∆H̃). Indeed, minimizing D(s,t)

on ϕ leads to learn representations Z = ϕ(X) such that Ps(Z) = Pt(Z), where such situation is
sufficient to ensure that d(H̃∆H̃) = 0.

2.3 THE CURSE OF INVARIANCE IN DOMAIN ADAPTATION

Compressing representations is an easy way to achieve invariance. Assume Xs ∼ N (0, 1), Xt ∼
U(−1, 1) and Y = 1X>0 then a trivial way to obtain representations invariance while separating
source data is to consider ϕ : x 7→ 1x>0. The main drawback is a potential loss of information from
the original feature space. To explain this phenomenon, we first introduce formally the notion of
Hypothesis space compression:
Definition 2 (Hypothesis space compression). Let (ϕ1, ϕ2) ∈ Φ2, ϕ1 compresses more H if
H̃(ϕ1) ⊂ H̃(ϕ2). By language abuse, we will say that Z1 = ϕ1(X) is more compressed than
Z2 = ϕ2(X).

Second, we build two possible solutions (g1, ϕ1) and (g2, ϕ2) of Learning Objective 1 by consider-
ing the following compositions X →ϕ Z1 →ψ Z2 →g Ŷ such that ϕ and ψ ◦ ϕ are both in Φ and g
and g ◦ ψ are both in G. We set g1 = g ◦ ψ, ϕ1 = ϕ and g2 = g, ϕ2 = ψ ◦ ϕ. These solutions are
chosen to ensure that g1 ◦ ϕ1 = g2 ◦ ϕ2 and Z2 = ϕ2(X) is more compressed than Z1 = ϕ1(X).
In the case when D(s,t) is the Jensen divergence, the data processing inequality (see Lemma 4.6 in
Zhao et al. (2019)) implies that (g2, ϕ2) is a better optimum than (g1, ϕ1) according to Learning
Objective 1 since εs(g1 ◦ ϕ1) = εs(g2 ◦ ϕ2) and D(s,t)(ϕ2) ≤ D(s,t)(ϕ1). To conclude, learning
under objective 1 will favor compressed representations to enforce invariance. However, as noted in
Johansson et al. (2019); Zhao et al. (2019); Liu et al. (2019), more compressed representations will
degrade adaptability. Indeed,

λ(H̃(ϕ2)) = inf
h∈H̃(ϕ2)

εt(h) + εs(h) ≤ inf
h∈H̃(ϕ1)

εt(h) + εs(h) = λ(H̃(ϕ1)) (4)

since H̃(ϕ1) ⊂ H̃(ϕ2). A question which remains not addressed in the literature (except in Johans-
son et al. (2019) under the Covariate Shift assumption) is:

How compression may increase the risk of bad adaptability?
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Figure 1: We fix ϕ ∈ Φ and we noteDd = supp(Pd(X)) and D̃d = supp(Pd(ϕ(X))) with d = s, t.
Labels in domains are not necessary for the analysis but, for a better understanding, we drawϕwhich
separates well labels in the source domain since our analysis will consider representations trained
by unsupervised domain adaptation. (Left) Illustration of the source conservation where ϕ and ϕ′
are two source equivalent representations and h = g ◦ ϕ and h′ = g ◦ ϕ′ for a given g ∈ G. Since
x1 ∈ Ds ∩ Dt we have ϕ(x1) = ϕ′(x1). Note that ϕ(x3) may differ with ϕ′(x3) since x3 /∈ Ds.
This is also the case for x2 even if ϕ(x2) ∈ D̃s since x2 /∈ Ds. (Right) Illustration of the projected
hypothesis for a given h̃ ∈ H̃s with h = g ◦ ϕ′ and g ∈ G. ϕ embeds x1, x2 and x3 closely in the
representation space. The source risk conservation enforces to have h = h̃ on Ds. Since x1 and x2
are inDs∩Dt, ϕ and ϕ′ coincide on these points. ϕ′ modifies x3 and changes its output for g. Then
h̃ can not fit this switch of output for x3 without changing outputs of both x1 and x2 illustrating the
impact of compression of ϕ.

3 THEORETICAL ANALYSIS OF COMPRESSION

3.1 WORKING PLAN

Our strategy aims to compare a representation ϕ with representations ϕ′ which act similarly on the
source domain but differently on the target domain (source equivalence). First, by allowing to com-
pute the minimal combined error on source equivalent representations ϕ′, we limit the risk of bad
adaptability of a fixed representation. Through an inequality called Target Compression, we show
this new control of adaptability comes at the cost of a new risk which embodies the Compression.
This is done by studying the projection of an hypothesis defined as its best approximation from
representations in the target domain among those that conserve the source domain error (source
conservation). Second, we rely on the H̃∆H̃ inequality (Ben-David et al. (2007; 2010)) for stating
a new bound of the target risk (Invariant and Compressed Representations inequality). Finally, we
expose the particular interest of this bound: it allows a better control on adaptability by considering
compression. This is formulated by the Invariance - Compression trade-off.

3.2 NOTATIONS AND DEFINITIONS

In the following, we fix a given ϕ ∈ Φ. We restrict our analysis to the case of ` : (y, y′) ∈ Y2 7→
(y− y′)2 as a convenient choice for manipulating properly f̃(Z) = E[Y |Z]. Note that in the binary
classification case (Y = {0, 1}), ` is the accuracy. We define the set of representations which act
similarly on the source domain but differently in the target domain:

Definition 3 (Source equivalence). We introduce the set of source equivalent representations Φ̃s =
{ϕ′ ∈ Φ, ϕ′ = ϕ on Ds} (where Ds = supp(Ps(X))) and the source equivalent hypothesis space
H̃s = {g ◦ ϕ′ : g ∈ G, ϕ′ ∈ Φ̃s}. Two elements of Φ̃s are said source equivalent.

The source equivalent hypothesis space H̃s is an extension of H̃ adding hypothesis built using
representations which are source equivalent to ϕ. For a given h ∈ H̃s, we exhibit an interesting
subset of H̃ considering hypothesis with the same source error than h.

Definition 4 (Source conservation). For a given h ∈ H̃s, we note H̃h = {h′ ∈ H̃ : εs(h, h′) = 0}.
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It is worth noting that for all h ∈ H̃s, H̃h is not empty (see Appendix A for details). We are now
ready to introduce the projection of an hypothesis h ∈ H̃s and to this purpose, we note ϕ′ ∈ Φ̃s and
g′ ∈ G such that h = g′ ◦ ϕ′. Intuitively, the projection of h is defined as its best approximation
from ϕ in the target domain among those which verify the source conservation i.e. from hypothesis
g ◦ ϕ with g ∈ G such that εs(g ◦ ϕ, h) = 0.

Definition 5 (Projection). π : H̃s → H̃ is defined as follows: π(h) = arg minh′∈H̃h
εt(h, h′) for

h ∈ H̃s. π(h) is called the projected hypothesis. If there is no uniqueness of the minimum, any
solution works.

Illustrations of introduced definitions are provided in Figure 1. If h = g ◦ ϕ ∈ H̃, the projection
aims to map h to g′ ◦ϕ with g′ = g both in source and target L2 norms. If, h = g′ ◦ϕ′ with ϕ′ ∈ Φ̃,
the projection aims to map h to g ◦ ϕ such that g = g′ in source L2 norm while g ◦ ϕ achieves a
minimal distance with g′ ◦ ϕ′ in target L2 norm. We can observe that ∀h ∈ Hs, π ◦ π(h) = π(h) in
both source and target L2 norms hence the (abusive) analogy with projection.

3.3 OUR CONTRIBUTION

In the following, we fix a given H◦ such that H̃ ⊂ H◦ ⊂ H̃s. We are now ready to state a new
bound of the target risk:

Inequality 2 (Target Compression). Given g ∈ G and noting h̃ = π(h), we have:

εt(g ◦ ϕ) ≤ εt(g ◦ ϕ, f̃s ◦ ϕ) + sup
h∈H◦

εt(h, h̃)︸ ︷︷ ︸
γ̃(H◦): Compression

+ inf
h∈H◦

{εt(h) + εt(h̃, f̃s ◦ ϕ)}︸ ︷︷ ︸
λ̃t(H◦): Adaptability

(5)

Proof. See Appendix A.

This inequality introduces two interesting terms γ̃(H◦) and λ̃t(H◦) with opposite roles; the former
involves a supremum while the latter involves an infremum onH◦. The term λ̃t(H◦) is very similar
to the adaptability λ(H̃) from Inequality 1 and will be further investigated. Before, we focus on
the term γ̃(H◦) which reflects the possibility of finding hypotheses in H◦ that can not be well
approximated from target representations. The more information is lost from raw features, the higher
the risk, hence its name Compression. This can be formally stated as follows:

Theorem 1 (γ embodies the risk of compression). Let (ϕ1, ϕ2) ∈ Φ2 two source equivalent source
representations. If ϕ1 is more compressed than ϕ2, then γ(ϕ1,H◦) ≥ γ(ϕ2,H◦).

Proof. If ϕ1 is more compressed than ϕ2, there is H̃(ϕ1) ⊂ H̃(ϕ2) ⊂ H̃s then ∀h ∈ H̃s, H̃h(ϕ1) ⊂
H̃h(ϕ2). The projection involves an infremum then εt(h, h̃(ϕ2)) ≤ εt(h, h̃(ϕ1)) where h̃(ϕ) =
arg minh′∈H̃h(ϕ) ε

t(h, h′). The supremum on h ∈ H◦ conserves the inequality.

We now focus our attention on λ̃t(H◦). It differs with λ(H̃) in two ways. First, the source labelling
function is involved only with the intermediate f̃s(Z) = Es[Y |Z]. Second, the risk associated with
it (εt(h̃, f̃s◦ϕ)) involves a target expectation. In order to obtain a comparable bound with Inequality
1, we state a new bound of the target risk which is our main contribution:

Inequality 3 (Invariant and Compressed Representations). Given g ∈ G and noting h̃ = π(h),
β = 2 infh∈H̃ ε

s(h) + εt(h, f̃s), we have:

εt(g ◦ ϕ) ≤ εs(g ◦ ϕ) + d(H̃∆H̃) + β + sup
h∈H◦

εt(h, h̃)︸ ︷︷ ︸
γ̃(H◦): Compression

+ inf
h∈H◦

εt(h) + εs(h)︸ ︷︷ ︸
λ̃(H◦): Adaptability

(6)

Proof. See AppendixA. The main idea is to bound εt(h, f̃s ◦ϕ) and εt(h̃, f̃s) using H̃∆H̃ inequal-
ity. This introduces respectively εs(h, f̃s ◦ϕ) and εs(h̃, f̃s ◦ϕ) with residual terms 1

2d(H̃∆H̃)+ 1
2β
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(two times). We use the source risk conservation to bound εs(h̃, f̃s ◦ ϕ) ≤ εs(h, f̃s ◦ ϕ). Then we
bound εs(h, f̃s ◦ ϕ) ≤ εs(h) leveraging the Pythagorean theorem since ` is the L2 norm.

We are now ready to show the better control of the adaptability of the representation ϕ:

Theorem 2 (Better control of adaptability). λ̃(H◦) ≤ λ(H̃).

The proof is given by the infremum on H◦ ⊃ H̃. Compression γ̃(H◦) and adaptability λ̃(H◦) have
an opposite behavior. This reflects an interesting trade-off:

Theorem 3 (Invariance and Compression trade-off). With H1
◦ and H2

◦ such that H̃ ⊂ H1
◦ ⊂ H2

◦ ⊂
H̃s, there is λ̃(H1

◦) ≥ λ̃(H2
◦) and γ̃(H1

◦) ≤ γ̃(H2
◦).

The proof is obtained by observing that H1
◦ ⊂ H2

◦. Even if invariance may have a bad impact on
adaptability, our bound shows it is possible to have a better control of the adaptability while con-
serving the same degree of invariance. This control comes at the cost of an additional term involving
compression of representations. The trade-off between invariance and compression emphasizes than
the more control there is over adaptability, the higher the risk associated with compression. Further-
more, this new bound has a particular interest in providing theoretical support for the construction
of new learning objectives. The difficulty in DA comes from in the fact that the adaptability is not
trainable since it uses the labelling function in the target domain. Our study shows that better control
of adaptability (i.e. making the adaptation more reliable) is possible. The two additional terms β
and γ̃(H◦) can indeed be trained in an Unsupervised Domain Adaptation setting1.

4 EXPERIMENTS

We are now conducting an experimental analysis on a widely used DA benchmark of digits recog-
nition (MNIST, USPS). We study two tasks M→U and U→M under the Learning Objective 1. The
representation ϕ is a convolutional neural network with a LeNet architecture (LeCun et al. (1998)).
We set the dimension of representations to 50 and G is the set of linear classifiers from the represen-
tation space to classes (with a softmax layer on top) and the Domain Adversarial Neural Network
(DANN Ganin & Lempitsky (2014)) for D(s,t). We use the implementation from Long et al. (2018)
for good reproductibility. Models are trained during 30 epochs and we note ϕ̂ the learned repre-
sentation. In the following, we note CE the cross-entropy. To enforce the constraint h ∈ H◦,
we introduce a loss L◦ we will detail later. For the estimation of λ̃(H◦), the source equivalence
leads to a regularized objective Λ(g, ϕ) = CEt(g ◦ ϕ(X), Y ) + CEs(g ◦ ϕ(X), Y ) + λ◦ · L◦(ϕ)

with λ◦ = 102. For a given h, the projected hypothesis h̃ = ĝ ◦ ϕ̂ where ĝ is obtained by min-
imizing on g: Π(g, h) = λπ · CEs(g ◦ ϕ̂(X), h(X)) + (1 − λπ) · CEt(g ◦ ϕ̂(X), h(X)) with
λπ = 0.9 for enforcing the source conservation. γ̃(H◦) is obtained with an adversarial training
alternating between maximizing an objective Γ(g, ϕ) on h = g ◦ ϕ ∈ H◦ (sup step) and com-
puting the projected hypothesis (inf step). During experimentation, we have observed that simply
setting Γ(g, ϕ) = −Π(ĝ ◦ ϕ̂, g ◦ ϕ) + λ◦L◦(ϕ) (where ĝ ◦ ϕ̂ is an estimation of the projected
hypothesis) leads to learn noisy labels. We suggest to prevent such pathological solutions by en-
forcing a low entropy adding to Γ a regularizer λent · CE(h(X), Ŷ ) with (Ŷ = y) = 1(h(X) = y)
with λent = −1. Furthermore, for a fair comparison, we correct γ by comparing it with a base-
line. This baseline is allowed to train representations to fit the adversary. We suggest to study
the trade-off between compression and invariance with the family of target adversarial attacks
Hη◦ = {g ◦ϕ′ ∈ H̃s : Et||ϕ′(X)−ϕ(X)|| ≤ ηEt||ϕ(X)||}. We can see this choice as a method for
testing robustness in the target domain of the learned representation. Then, we define the regularizer
L◦ as follows:

L◦(ϕ) =
Es||ϕ(X)− ϕ̂(X)||

Es||ϕ̂(X)|| + ReLU

(
Et||ϕ(X)− ϕ̂(X)||

Et||ϕ̂(X)|| − η
)

(7)

We build new target domains modifying the label distribution which is known to badly impact λ(H̃)
(Johansson et al. (2019); Zhao et al. (2019)). For a given target dataset D with classes balanced,
we define D1 ⊂ ... ⊂ D6 as follows: for 1 ≤ i ≤ 6, Di is obtained by removing half of digit < i

1The trainability of β is shown in Appendix A
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Figure 2: Up: We report the ∆(λ) = λ(H̃) − λ̃(Hη◦) with η = 1. ∆(λ) ≥ 0 which supports
Theorem 2. More the adversary is strong in LO 1 (α → 1), more ∆(λ) increases (similar analysis
for D1 to D5). Down: Illustration of the trade-off from Theorem 3 in the particular case of D4

with α = 0.75 on U → M. Both γ and its correction are reported. When η increases, the risk of
compression increases while the adaptability assumption is better controlled. Better in color.

from Di−1 and setting D0 = D. Main results are reported in Figure 2. The stronger the adversary is
(α → 1) (and the more the target shift (i → 6 for Di)), the more significant the difference between
λ(H̃) and λ̃(H◦). This demonstrates a better control over adaptability especially when IR fails to
perform adaptation. By playing with the value of η, we see that the better control on adaptability is
paid to the cost of a higher γ. In our example, the risk of compression is estimated to a potential
drop of performances from ∼12.5% to ∼27.5% of accuracy in the target domain while the gain on
adaptability is marginal by reducing it of ∼4%.

5 WEIGHTS FOR INVARIANCE RELAXATION

The fact that compression and invariance are conflicting objectives supports the point from Wu et al.
(2019) which claims that invariance is too strict a constraint. In this section, we show that invariance
can be relaxed leveraging Weighted Representations. More specifically, we show that taking into
account the risk of compression leads to introduce an adaptability term which does not depend on
learned weights. Then, weighting representations can reduce the discrepancy between the source
and the target distributions without impacting the adaptability. We introduce the set of weightsW ,
a subset of functions w : X → R+ such that Es[w(X)] = 1 and we note for w ∈ W,Pw·s(X) :=
w(X)Ps(X). The condition Es[w(X)] = 1 ensures that Pw·s(X) is a distribution. We state a
similar result than Inequality 1.

Inequality 4 (Weighted version of Inequality1). For a given ϕ ∈ Φ and g ∈ H̃,

εt(g ◦ ϕ) ≤ εw·s(g ◦ ϕ) +
1

2
dw(H̃∆H̃) + λw(H̃) (8)

with dw(H̃∆H̃) = sup(h,h′)∈H̃ |εw·s(h, h′)− εt(h, h′)| and λw = infh∈H̃ ε
t(h) + εw·s(h).

Interestingly, w and ϕ play similar role in inequality 4 since they are actionable parameters to min-
imize εw·s(g ◦ ϕ) + 1

2dw(H̃∆H̃) while we can not quantify their impact on λw(H̃). We show that
taking advantage of compression leads to an adaptability which does not depend on weights. This
needs to introduce some definitions:
Definition 6 (Strong source conservation). For a given h ∈ H̃s, we note H̃h = {h′ ∈ H̃ : h =
h′ on Ds} where Ds = supp(Pt(X)).

Definition 7 (Strong projection). Π : H̃s → H̃ is defined as follows π(h) = arg minh′∈H̃h
εt(h, h′)

for h ∈ H̃s. If there is no uniqueness of the minimum, any solution works.
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We are now ready to state the role of weights as a relaxed invariance for a lower compression:
Inequality 5 (Weighting Invariant and Compressed Representations). Given g ∈ G and noting
h = Π(h), βw = 2 infh∈H̃ ε

w·s(h) + εt(h, f̃s), we have:

εt(g◦ϕ) ≤ inf
w∈W

{
εw·s(g ◦ ϕ) +

1

2
dw(H̃∆H̃) +

1

2
βw

}
+ sup
h∈H◦

εt(h,h)+ inf
h∈H◦

εt(h)+εt(h, f̃s◦ϕ)

Proof. This is a straightforward extension of inequality 2 applied to Pw·s. Furthermore,
infh∈H◦ ε

t(h) + εt(h, f̃s ◦ ϕ) does not depend on w due to strong risk conservation (risk con-
servation would have been dependent on w through the constraint εw·s(h, h̃) = 0).

6 RELATED WORK

Generalization bounds for DA have been the object of an extensive literature for both Importance
Sampling Cortes et al. (2010) and Invariant Representations Ben-David et al. (2007; 2010); Mansour
et al. (2009). It has attracted a lot of attention in order to understand failure cases observed when
using IR (Zhao et al. (2019); Johansson et al. (2019)). The theoretical analysis in Johansson et al.
(2019) is the work closest to ours. They introduce a loss information metric which quantifies the
risk of using non-invertible representations. The present work differs in three ways. First, our work
follows the formalism introduced in Ben-David et al. (2007) which is widely adopted in the commu-
nity. Second, contrary to the information loss, our theory provides a tractable risk of compressing
representations. Finally, we do not rely on the Covariate Shift assumption which gives our work a
broader range of applications.

7 CONCLUSION

By addressing domain generalization under the perspective of compression, we have bounded the
target risk by a sum of trainable terms (εs(g ◦ ϕ) + d(H̃∆H̃) + β + γ̃(H◦)) and a term λ̃(H◦)
which embeds a new adaptability criterion of representations. We have shown that λ̃(H◦) can be
better controlled by enriching the hypothesis class H◦. This control comes at a cost of a higher risk
of compression underlying a trade-off between invariance and compression when learning IR for
DA. Through an empirical study on a standard benchmark, we have exhibited the better control of
adaptability. Furthermore, we have shown how our framework can be applied for studying adapta-
tion robustness to adversarial attacks. Finally, as an attempt to obtain representation distributions
invariance with a lower compression, we have emphasized the role of weighted representations for
relaxing the constraint of invariance. We believe a better understanding of γ̃(H◦) may open-up new
directions for designing better DA models:

Promising directions (1) Our analysis is restricted to the comparison among source equivalent
representations of a given representation ϕ ∈ Φ. Then, for two given representations ϕ1 and
ϕ2 of Φ which does not verify the source equivalence, our analysis does not allow to state if ϕ1

presents, or not, better guarantees on the success of the adaptation. Understanding how the source
equivalence can be relaxed can provide to the present work a broader range of applications. (2)
Obtaining a robust estimation of γ̃(H◦) by following an adversarial training procedure appeared
to be challenging in practice. Finding fast and robust estimations of γ̃(H◦) (or a proxy of it) may
help to derive new learning objectives or policy for model selection. For instance, Information
Theory gives better suited devices for modelling the phenomenon of compression. (3) A strategy
may to enforce invariance directly in the target domain by transporting source samples. Formally,
assuming Ds ∩ Dt = ∅, we set ϕ such that ϕ(X) = X on Dt and ϕ(Ds) ⊂ Dt. If ϕ is fixed
in the source domain (i.e. ϕ|Ds is fixed) the optimal representation from the compression per-
spective is ϕ|Dt(X) = X . This consideration is connected with two recent trends which perform
adaptation by generating cross domain samples (Sankaranarayanan et al. (2018); Hoffman et al.
(2017); Bousmalis et al. (2016)) or by finding Optimal Transport between the source and the tar-
get domains (Courty et al. (2016; 2017)). (4) The Covariate Shift assumption can be stated as
H◦ = {h ∈ H, εs(h, ĥ) = 0 with ĥ = arg minh∈H εs(h)}. Such H◦ may provide a new frame-
work for addressing the case of non-overlapping supports in Covariate Shift adaptation.
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A MAIN PROOFS

Proposition 1 (The source conservation hypothesis is not empty). For a given ϕ ∈ Φ and h ∈ H̃s,
H̃h is not empty.

Proof. If h ∈ H̃s, it exists g ∈ G and ϕ′ ∈ Φ such that h = g ◦ ϕ′. We set h′ = g ◦ ϕ ∈ H̃, there is
εs(h, h′) = εs(g ◦ ϕ′, g ◦ ϕ) = εs(g ◦ ϕ, g ◦ ϕ) = 0 since ϕ = ϕ′ on Ds then h′ ∈ H̃h.

Inequality 6 (Target Compression). Given ϕ ∈ Φ, g ∈ G and noting h̃ = π(h), there is for anyH◦
such that H̃ ⊂ H◦ ⊂ H̃s:

εt(g ◦ ϕ) ≤ εt(g ◦ ϕ, f̃s ◦ ϕ) + sup
h∈H◦

εt(h, h̃) + inf
h∈H◦

{εt(h) + εt(h̃, f̃s ◦ ϕ)} (9)

Proof. Let ϕ ∈ Φ, g ∈ G and h ∈ H◦:

εt(g ◦ ϕ) ≤ εt(f̃s ◦ ϕ) + εt(f̃s ◦ ϕ, g ◦ ϕ) (10)

≤ εt(h) + εt(h, f̃s ◦ ϕ) + εt(f̃s ◦ ϕ, g ◦ ϕ) (11)

≤ εt(h) + εt(h, h̃) + εt(h̃, f̃s ◦ ϕ) + εt(f̃s ◦ ϕ, g ◦ ϕ) (12)

≤ εt(f̃s ◦ ϕ, g ◦ ϕ) + εt(h, h̃) + εt(h) + εt(h̃, f̃s ◦ ϕ) (13)

This is a succession of triangular inequalities which involve respectively f̃s ◦ ϕ, h and h̃. The
last inequality is a convenient arrangement of terms. We bound εt(h, h̃) by its supremal value for
h ∈ H◦, then εt(g ◦ ϕ) ≤ εt(f̃s ◦ ϕ, g ◦ ϕ) + suph∈H◦{εt(h, h̃)} + εt(h) + εt(h̃, f̃s ◦ ϕ). Since
this holds for all h ∈ H◦, we bound εt(g ◦ ϕ) by the infremum for h ∈ H◦.

Inequality 7 (Invariant and Compressed Representations). Given ϕ ∈ Φ, g ∈ G and noting h̃ =
π(h), β = 2 infh∈H̃ ε

s(h) + εt(h, f̃s), there is for anyH◦ such that H̃ ⊂ H◦ ⊂ H̃s:

εt(g ◦ ϕ) ≤ εs(g ◦ ϕ) + d(H̃∆H̃) + β + sup
h∈H◦

εt(h, h̃)︸ ︷︷ ︸
γ̃(H◦): Compression

+ inf
h∈H◦

εt(h) + εs(h)︸ ︷︷ ︸
λ̃(H◦): Adaptability

(14)

Proof. First of all, we recall the H̃∆H̃ inequality from Ben-David et al. (2007; 2010), for any fs
and f t, there is:

∀h ∈ H̃, εt(h, f t) ≤ εs(h, fs) +
1

2
d(H̃∆H̃) + inf

h∈H̃
εt(h, f t) + εs(h, fs) (15)

A particular case of that inequality applied to fs = f t = f̃s ◦ ϕ leads to bound:

εt(g ◦ ϕ, f̃s ◦ ϕ) ≤ εs(g ◦ ϕ, f̃s ◦ ϕ) +
1

2
d(H̃∆H̃) + inf

h∈H̃
εs(h, f̃s ◦ ϕ) + εt(h, f̃s ◦ ϕ)

≤ εs(g ◦ ϕ) +
1

2
d(H̃∆H̃) + inf

h∈H̃
εs(h) + εt(h, f̃s ◦ ϕ) (16)

where bounding εs(g ◦ ϕ, f̃s ◦ ϕ) ≤ εs(g ◦ ϕ) is a direct property of `(y, y′) = (y − y′)2 and
f̃s(Z) = Es[Y |Z]: εs(g ◦ ϕ) = εs(g ◦ ϕ, f̃s ◦ ϕ) + εs(f̃s ◦ ϕ). Note that, it is not possible
to do so for εt(g ◦ ϕ, f̃s ◦ ϕ) since the expectation is computed in the target domain. We define
β = 2 infh∈H̃ ε

s(h) + εt(h, f̃s ◦ ϕ). We apply a second time H̃∆H̃ inequality, there is for any
h ∈ H◦:

εt(h̃, f̃s ◦ ϕ) ≤ εs(h̃, f̃s ◦ ϕ) +
1

2
d(H̃∆H̃) + inf

h∈H̃
εt(h, f̃s ◦ ϕ) + εs(h, f̃s ◦ ϕ)

≤ εs(h̃) +
1

2
d(H̃∆H̃) + inf

h∈H̃
εt(h, f̃s) + εs(h) (17)
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which is licit since h̃ ∈ H̃. Relying on the projected hypothesis h̃ allows us to preserve the invari-
ance: even if h ∈ H◦, d(H̃∆H̃) is involved, not d(H◦∆H◦). Then, we use the property of source
risk conservation h ∈ H which enforces εs(h̃, h) = 0 for noting that εs(h̃) ≤ εs(h) + εs(h, h̃) =
εs(h) then:

εt(h̃, f̃s ◦ ϕ) ≤ εs(h) +
1

2
d(H̃∆H̃) + inf

h∈H̃
εt(h, f̃s) + εs(h)

Finally, taking the infremum:

inf
h∈H◦

εt(h) + εt(h̃, f̃s ◦ ϕ) ≤ 1

2
β +

1

2
d(H̃∆H̃) + inf

h∈H◦
εt(h) + εt(h) (18)

Combining all inequalities leads to the stated one.

Theorem 4 (Better control on the adaptability). λ̃(H◦) ≤ λ(H̃).

Proof. We simply use the fact that H̃ ⊂ H◦ then using the property of the infremum:

λ̃(H◦) = inf
h∈H◦

εt(h) + εs(h) ≤ inf
h∈H̃

εt(h) + εs(h) = λ(H̃) (19)

Theorem 5 (γ embodies the risk of compression). Let (ϕ1, ϕ2) ∈ Φ2 two source equivalent repre-
sentations. If ϕ1 is more compressed than ϕ2, then γ(ϕ1,H◦) ≥ γ(ϕ2,H◦) for H̃ ⊂ H◦ ⊂ H̃s.

Proof. If ϕ1 and ϕ2 are two equivalent representations, there is H̃(ϕ1) ⊂ H̃(ϕ2) ⊂ H̃s then

∀h ∈ H̃s, (H̃(ϕ1) ∩ {h′ ∈ H : εs(h, h′) = 0}) ⊂ (H̃(ϕ2) ∩ {h′ ∈ H : εs(h, h′) = 0})

which guarantees H̃h(ϕ1) ⊂ H̃h(ϕ2). Finally

εt(h, h̃(ϕ2)) ≤ εt(h, h̃(ϕ1))

invoking the property of the infremum where h̃(ϕ) = arg minh′∈H̃h(ϕ) ε
t(h, h′). The supremum on

h ∈ H◦ conserves the inequality.

Proposition 2 (β is trainable from the data). Let (gn, ϕn)n∈N a sequence such that α · ε̃s(gn ◦ϕn)+
(1− α) · D(ϕn)→ 0 then βn → 0.

Proof. First of all, since D(ϕn)→ 0 then Pt(ϕn(X))→ Ps(ϕn(X)). We note that for any n ∈ N,
β ≤ 2·(εs(gn◦ϕn)+εt(gn◦ϕn, f̃sn◦ϕn)) ≤ 2·(2·εs(gn◦ϕn)+(εt(gn◦ϕn, f̃sn◦ϕn)−εs(gn◦ϕn)))

Since εs(gn ◦ϕn)→ and (εt(gn ◦ϕn, f̃s)−εs(gn ◦ϕn))→ 0 (because Pt(ϕn(X))→ Ps(ϕn(X)))
there is βn → 0.
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