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ABSTRACT

The Information-Bottleneck (IB) framework suggests a general characterization of
optimal representations in learning, and deep learning in particular. It is based on
the optimal trade off between the representation complexity and accuracy, both of
which are quantified by mutual information. The problem is solved by alternating
projections between the encoder and decoder of the representation, which can
be performed locally at each representation level. The framework, however, has
practical drawbacks, in that mutual information is notoriously difficult to handle
at high dimension, and only has closed form solutions in special cases. Further,
because it aims to extract representations which are minimal sufficient statistics
of the data with respect to the desired label, it does not necessarily optimize the
actual prediction of unseen labels. Here we present a formal dual problem to
the IB which has several interesting properties. By switching the order in the
KL-divergence between the representation decoder and data, the optimal decoder
becomes the geometric rather than the arithmetic mean of the input points. While
providing a good approximation to the original IB, it also preserves the form of
exponential families, and optimizes the mutual information on the predicted label
rather than the desired one. We also analyze the critical points of the dual IB and
discuss their importance for the quality of this approach.

1 INTRODUCTION

1.1 THE INFORMATION BOTTLENECK METHOD

The Information Bottleneck (IB) method (Tishby et al.l [1999), is an information-theoretic frame-
work for describing efficient representations of an “input” random variable X (input patterns), for
predicting an “output” variable Y (desired label). In this setting the joint distribution of X and Y,
p(x,y) defines the problem, or rule, and the training data are a finite sample from this distribution.
In general, we assume that p(y | x) is strictly stochastic, and hence bounded away from {0, 1}
The representation variable X is in general a stochastic function of X which forms a Markov chain
Y — X — X, and only depends on Y through the input X. We call the map p(X | x) the encoder of
the representation and denote by p(y | X) the Bayes optimal decoder for this representation; i.e., the
best possible prediction of the desired label Y from the representation X.

The IB trade off between the encoder and decoder mutual information values is defined by the
minimization of the Lagrangian:

Flps(x | x);ps(R);ps(y | X)] = 1(X:X) = BI(Y; X) , (D

independently over the convex sets of the normalized distributions, {ps(X | x)}, {ps(X)} and
{ps(y | X)}, given a positive Lagrange multiplier 5. As shown in (Tishby et al.,|1999; Shamir et al.,
2010), this is a natural generalization of the classical concept of Minimal Sufficient Statistics (Cover
& Thomas, [2006), where the estimated parameter is replaced by the output variable Y and exact
statistical sufficiency is characterized by the mutual information equality: I(X;Y) = I(X;Y). The
minimality of the statistics is captured by the minimization of I(X; X) due to the Data Processing
Inequality (DPI). However, non-trivial minimal sufficient statistics only exist for very special para-
metric distributions known as exponential families (Brown, |1986)). Thus in general, the IB relaxes

"This may seem like a limitation of the method, but it can be shown that in the deterministic limit the IB is
well defined. This stochastic assumption simplifies the analysis but does not pose any real limitation.
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the minimal sufficiency problem to a continuous family of representations X which are characterized
by the trade off between compression, I(X; )2) = Ix, and accuracy, I(Y; X) = Iy, along a convex
line in the Information-Plane (Iy vs. Ix). When the rule p(x, y) is strictly stochastic, the convex op-
timal line is smooth and each point along the line is uniquely characterized by the value of 5. We can
then consider the optimal representations X = X(5) as encoder-decoder pairs: (ps(x|X), pg (y|f<))E] -
a point in the continuous manifold defined by the Cartesian product of these distribution simplexes.
We also consider a small variation of these representations, X, as an infinitesimal change in this
(encoder-decoder) continuous manifold (not necessarily on the optimal line(s)).

1.2 IB AND RATE-DISTORTION THEORY

The 1B optimization trade off can be considered as a generalized rate-distortion problem (Cover,
& Thomas)| 2006) with the distortion function between a data point, x and a representation point X
taken as the KL-divergence between their predictions of the desired label y:

. 3) = Dlply | Dlpatri] = oty | 9 1og 2 @

The expected distortion {(dig(x,X)) ps(xx) for the optimal decoder is simply the label-information

loss: I(X;Y) — I(X;Y), using the Markov chain condition. Thus minimizing the expected IB dis-
tortion is equivalent to maximizing [ (X, Y), or minimizing equation |I} Minimizing this distortion
is equivalent to minimizing the log-loss or the cross-entropy loss, as done in most deep learning
applications, and it upper-bounds other loss functions such as the £;-loss (due to the Pinsker in-
equality, or (Painsky & Wornell, 2018))). The Pinsker inequality shows that the relative entropy
gives a symmetric upper bound to the £;-loss, or variation distance, D[p||q] > @ llp —ql? -

1.3 THE IB EQUATIONS

For discrete X and Y, a necessary condition for the IB (local) minimization is given by the three
self-consistent equations for the optimal encoder-decoder pairs, known as the IB equations:

(i) ppx|x)= %e—ﬂf’[?(ﬂx)ﬂpﬁ(ym)]

(i) ps(X) =2 ps(X | X)p(x) ~ 3)
(#i1)  pp(y | %) = 22 p(y [ X)ps(x | X)

Iterating these equations is a generalized, Blahut-Arimoto, alternating projection algorithm (Tus-
nady & Csiszar} [1984; |Cover & Thomas| [2006) and it converges to a stationary point of the La-
grangian, equation(Tishby et al.;{1999). Notice that the minimizing decoder, (equation (iz’i)), is
precisely the Bayes optimal decoder for the representation X(3), given the Markov chain conditions.

1.4 CRITICAL POINTS AND CRITICAL SLOWING-DOWN

One of the most interesting aspects of the IB equations is the existence of critical points along the
optimal line of solutions in the Information-Plane (i.e. the information curve). At these points the
representations change topology and cardinality (number of clusters) (Zaslavsky & Tishby, [2019;
Parker et al.| [2003) and they form the skeleton of the information curve and representation space.
Under the strict stochastic assumption, the information-curve is a smooth function of the Lagrange
multiplier 3, but its derivative may not be smooth. Critical points are bifurcations of the solutions,
which are values of S for which two different solutions (representations) co-exist. To identify such
points we perform a perturbation analysis of the IB equations, as in (Zaslavsky & Tishby} 2019).
Taking a small perturbation of the representation, denoted for brevity by 0%, the changes in the
log encoder and log decoder that satisfy equation [3| for a given § can be determined through the
nonlinear eigenvalues problems:

1 "X 1 ap
1 poi g PN g g ) ZEYIN g

’Here we use the inverse encoder, which is in the fixed dimension simplex of distributions over X.
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with the two square matrices C defined by:

A = oy | Nty X)L CE = Snty 192 BB 9. ©)

As shown in (Zaslavsky & Tishbyl 2019), these two matrices have the same eigenvalues and have
non-trivial eigenvectors (i.e., different co-existing optimal representations) precisely at the critical
values of (3, the bifurcation points of the IB solution. At these points the cardinality of the repre-
sentation X (the number of “IB-clusters”) changes due to splits of clusters, resulting in topological
phase transitions in the encoder. These critical points form the “skeleton” of the topology of the
optimal representations. Between critical points the optimal representations change continuously

(with B).

The important computational consequence of critical points is known as critical slowing down
(Tredicce et al.| 2004). For binary Y, near a critical point the convergence time, 73, of the iter-
ations of equatlonl 3| scales like: 75 ~ 1/(1 — BA2), where )y is the second eigenvalue of either
Cyy or Ci33. At criticality, A2(X) = S~" and the number of iterations diverges. This phenomenon
dommates any local minimization of equation [3| which is based on alternate encoder-decoder opti-
mization.

The discussed phenomenons of the IB are graphically demonstrated in Figure[I] The figure shows
the bifurcation diagram, the non-trivial eigenvalues of C y and convergence time of the IB itera-
tions, for a simple problem with 4 critical points.

Figure 1: An example of IB solutions presenting the critical points and the critical slowing down of
the alternating projection algorithm. (a) The algorithm’s solution to pg(y = 0 | X) as a function of
3. The black dots depict the input distribution p(y = 0 | x). (b) The second eigenvalue of Cy (X; 5),
A2(X), along with 371 as a function of 3. (¢) Convergence time of the algorithm as a function of 3.

1.5 CONTRIBUTION OF THIS WORK

Supervised learning is generally separated into two phases: the training phase, where the internal
representations are formed from the training data, and the prediction phase, where these represen-
tations are used to predict labels of new input patterns. In our Markov chain description we need
to add another variable, Y, the predicted label which obtains the same values as Y, but distributed
differently:
training
—_—
Y=>X—=>Xg—=Y. (6)
—————
prediction

The left-hand part of this chain describes the representation training, and the right-hand part is the
Maximum Likelihood (ML) prediction using these representations (Slonim et al., |2006). So far
the prediction variable Y has not been part of the IB optimization problem. It has been implicitly
assumed that the Bayes optimal decoder, ps(y | X), which minimizes the IB distortion at a given 3,
is also the best choice for making predictions of Y from the representation Xﬁ through the right-
hand Markov chain. That is, denoting pg(¥y | X) = pg(y | X) the ML decoder is the mixture over the
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internal representations:
ps( %) =) ps(¥ | R)ps(R | x). @)
3

This, however, is not necessarily optimal. For example due to finite sample, in which it can be very
different from the one obtained from the full distribution (Shamir et al.,[2010).

Here we show that by merely switching the order of the arguments in the KL-divergence of the IB
distortion, namely:

davan (%, X) = Dlpa(y | D)|lp(y [ x)] =Y pa(y | ) log Poly | %) ; (8)
5 p(y | x)

which in geometric terms is known as the dual distortion problem (Felice & Ay, [2019), we obtain
several interesting results: (i) The decoder changes from the arithmetic to the geometric mean of
the cluster data distributions; (ii) it preserves exponential form of the original data distribution, if
one exists, for all values of [3; (iii) it preserves the low dimensional sufficient statistics of the data,
making the scaling to large problems much easier; (iv) it (variationally) optimizes the predicted label
information I(X;Y), and with it the desired and predicted label information I(Y;Y).

The remainder of the paper is organized as follows. We solve the duallB problem in §2| We discuss
the duallB’s critical points and provide a comparison to the original IB in §2.2| Next, in
we focus on the special case of data from exponential families. We conclude in §4{ with further
extensions and possible applications to deep learning.

2 THE DUALIB: MAXIMIZING THE PREDICTION INFORMATION

In the duallB framework we consider the “full” learning Markov chain, equation [6] That is, given
the “input” random variable X (input patterns), the ’output” random variable Y (desired label) and

the “representation” X, the ML optimal “predicted label” Y is given by the mixture distribution,
equation [7]f]

The duallB optimization can be written as the following rate-distortion problem:
Frlps(X | x); ps(R);pa(y | %) = 10 X) + B{dauais (X, %)) 1) 9)
with the average distortion given in terms of mutual information on Y, I(X; Y) and I(X; Y):
(s (%, 00} ) = 1K ¥) = 106 ¥) + (Dlps(§ 1 )10 1 %)) 0
(a) (b)

>I(X;Y) - I(X;Y). (10)

This is similar to the known IB relation: (dip (X, X))
term (b).

pixx) = 1Y X)—I(Y; X) with an extra positive

Both terms, (a) and (b), vanish precisely when X is a sufficient statistic for X with respect to Y,
since we can then reverse the order of X and X in the Markov chain (equation @) This replaces

the roles of Y and Y as the variable for which Xﬂ are approximately minimally sufficient statistics.
In that sense the duallB shifts the emphasis from the training phase to the prediction phase. This

implies that minimizing the duallB functional maximizes the mutual information between Y and Y,
I(Y;Y), as well as the mutual information I(X;Y). This is illustrated in figure a), ().

The next theorem states the form of the solutions of the Dual Information Bottleneck:

Theorem 1. The minima of equation[9} can be obtained by generalized Blahut-Arimoto iterations
between the encoder and the decoder as in the original 1B, with the following modifications: (i)
Replace the distortion by its dual in the encoder update; (ii) Update the decoder by the encoder’s
”geometric” mean of the data distributions p(y | X).

*We abuse the notation p(§ | X) = p(y | X), when there is no 3 subscript.
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The proof is given in

The alternating projections between the encoder and decoder, which converge to a solution of the
duallB at a given value of the Lagrange multiplier (3, are implemented by the following iterative
algorithnﬂ

Algorithm 1 duallB iterative algorithm

1: while ‘p“l y | X) = ph(y [ X)| > edo
5 ZiTxl( B) = S ph(R)e —BD[ph (¥I%)llp(y[x)]
3 PR X) = Z;I%E((t()ﬁ)e—BD[pB(y\X)Hp(y\X)}
4 ppt(x) =X pp (x| X) (x)

5: Zt+1( ) Z BZ P X|X) log p(y|x)

. t+1 1 32 P (xIR) log p(y[x)
6: (v [X) = Zy =B €

7: return pﬁ(x),pB(X | x),pa(y | X)

Here the Z’s are standard normalization factors (partition functions).
As in the IB, the encoder update (row 3) and decoder update (row 6) are the core of the algorithm.
Figure 2] illustrates the properties of the dualIB solutions on the same small problem as in Figure[I]

Figure 2: Same as Figurefor the duallB solutions with the C;,iy‘}aHB matrix. (a) The representations

bifurcate at the critical values of 3. (b) Critical points appear when an eigenvalue (color) crosses the
B~ (black) line. (c) Near these points there is critical slowing down and the numbers of iterations
of Algorithm|T]diverge.

2.1 THE CRITICAL POINTS OF THE duallB

As discussed in the skeleton of the IB optimal bound (the information curve) is constituted
by the critical points in which the topology (cardinality) of the representation changes. A similar
stability analysis of the duallB equations reveals similar conditions for the critical points.

Theorem 2. The duallB critical points are detected by non-trivial solutions of the nonlinear eigen-

value problem:

11— pogee (s, g)) PR IR g o s, ) ZOBPYIN _yy

“Unless stated otherwise, we use the convention log = In = log,



Under review as a conference paper at ICLR 2020

with the matrices C"B given by:

(CduallB (3 1 p(y | i‘) . s 511 p(}: | x')
y% Py [ R)ps(X | X)log ey s (X [ )ps(§ | ) log o=

CdudlIB 1 p(y | X) . / 1 p(y/ ‘ )f) . 12
= ps(x [ )ps(3 | %) %% 5T pe(y | X)ps(x | X) %8 L TR) (12)

X X,y

The proof to theorem2)is given in §A.3]

Lemma 3. The matrices C’duaHB( 5) C’duaHB( ;B) have the same eigenvalues {\;}, with
A1(X) = 0. With binary Y, the critical points are obtained at \2(X) = 37L.

The proof of lemma 3| given in section §A.3.1]

As in the IB, at the critical points, Bg“aHB, the partial derivatives of the encoder and decoder with
respect to 3, Olog pg(x | X)/05, Ologps(y | X)/08, have multiple (at least two) values. This re-
sults in discontinuities (cusps) in the encoder and decoder mutual information values as functions of
[ along the optimal line, with an undefined second derivative.

2.2 THE INFORMATION PLANE OF THE duallB

The Information-Plane, Ix = I(X;X) vs. Iy = I(X;Y), is the standard visualization of the
compression-prediction trade off of the IB. It can be defined for any encoder once the decoder is
the Bayes optimal (equation (iii)), for which the Iy is the actual information of the representation
on the desired label (Tishby et al.,|1999).

/O'
0.84
o 1B, dip
! 051 duallB, dip
2 ) duallB, dguans
=
< 0.4 \
S % ‘
z Y : /\
0.2 \\ = —\f\
A 9
0.0 s 2y M X)/H(X)
0.00 0.25 0.oO 0.7u 1.00 0 2 4 6

(a) I(X; X)/H(X) (c) logy(B)

Figure 3: The IB’s and duallB’s Information Plane. (a) Iy vs. Ix for the two algorithms. The
black dots are the duallB critical points, 39"#!!B_and the grey triangles are the IB critical points,
BB, The corresponding distortion functions are shown in the inset. (b) The functions I32(3) and
I{walB(3). Both curves are monotonic and concave between the critical points. The inset indicates
the relative difference between the curves, where the alternating order of the critical points is clearly
observed. (c) Similarly, I3¥(3) and I$"*!'B(3) are monotonic and piece-wise concave. The relative
discrepancy between the information curves is clearly minimized at the duallB critical points (inset).
The functions approach each other for large 5.

Comparing the duallB information curve to the IB curve shows the quality of this approximation.
Figure la) depicts this comparison. While we know that I13(3) is always higher, the two curves are
almost indistinguishable. To better understand the relatlonshlp between these two curves, we look
at the values of Ix and Iy as functions of the corresponding 3 (Figure[3(b),(c)). The important role
of the critical points is revealed as the corresponding cusps along these curves. As we argue below,
the IB information values are strictly below those of the duallB, but the distance between them is
minimized precisely at the dual critical points.

Lemma 4. Ix(8) and Iv(3), along the optimal lines, are non-decreasing piece-wise concave, func-
tions of B. When their second derivative (with respect to [3) is defined, it is strictly negative.
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Lemma 5. For any sub-optimal information curve (Ix, Iv), L2 (8) < Ix(B) and I}B(B) < Iy(B),
for all values of B.

Proofs of the above are given in
The information plane properties are summarized by the following theorem.

Theorem 6. (i) The critical points of the two algorithms alternate: for each critical point, fI41B <
BB, (ii) The distance between the two information curves is minimized precisely at the duallB
critical points BB (jii) The two curves approach each other as 3 — co.

Proof. The proof follows from lemmas [4] and [5] together with the critical points analysis above,
and is only sketched here. As the encoder and decoder at the critical points, 3B and B4%a!B have
different left and right derivatives, they form cusps in the curves of the mutual information (Ix and
Iy) as functions of 8. These cusps can only be consistent with the optimality of the IB curves if
pduallB - BIB (this is true for any sub-optimal distortion), otherwise the curves intersect.

Moreover, at the duallB critical points, the distance between the curves is minimized due to the
strict concavity of the functions segments between the critical points. As the critical points imply
discontinuity in the derivative, this results in a ”jump” in the information values. Therefore, at
any 34uallB the distance between the curves has a (local) minimum. This is depicted in Figure
comparing Ix((3) and Iy(() and their differences for the two algorithms.

The two curves approach each other for large (5 since the two distortion functions become close in
the low distortion limit (as long as p(y | x) is bounded away from 0). O

3 THE duallB FOR EXPONENTIAL FAMILIES

Distributions of exponential families form the elegant theoretical core of parametric statistics and
often emerge as maximum entropy (Jaynes, |1957) or stochastic equilibrium distributions, subject
to observed constraints. They also form the class of parametric distributions for which exact, finite
dimensional and additive, Minimal Sufficient Statistics exist (Kullback,|1959). One of the key prop-
erties of the dualIB is that it preserves the exponential form of the original data distribution, p(x,y)
for all values of f3.

Assuming that the data distribution is of the form:

d
) = e~ Thoo M)A (&) — @A) AR08 Zy1x(6) — T e~ 0400 (13)

r=0

p(y | x

where A,.(x) are d linearly independent functions of the input x and A" (y) are functions of the label
y, or the parameters of this exponential family. The A(y) can also be considered Lagrange multipli-

ers associated with the constraints conditional expectations (A,.(x)) p(xly) in entropy maximization.

The normalization factors, Zy|x(x), are written, for brevity, as A} = log(>_, Hle e~ N AR
with Ag(x) = 1. We do not constrain the marginal p(x).

The important fact about the exponential form is that all the mutual information, I(X;Y), is fully
captured by the d conditional expectations, (A;(x)),, ). since these are the (minimal) sufficient
statistics for the parameters. This means that all the relevant information (in the training sample)
is captured solely by d-dimensional empirical expectations. This can lead to a huge reduction in
computational complexity (from dim(X) to d).

We next show that for the duallB, this dimension reduction is preserved or improved along the dual
information curve, for all values of /3.

Theorem 7. For data from an exponential family, equation the optimal decoder of the duallB,
at a given f3, is given by:

pe(y | %) =e” S M (WA (R)=AF(®) , )\%(g) = IOg(Z e~ im1 A WAs®)y o (14)
y
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and the respective encoder:

R)eBrs(®)
. pa(X)e” ™ gsd (1A, (0—Ar s (®)]
X | X) = —————¢€ r=1"8 4 B , (15)
p %) Zzx(x; 8)
with the constraints and multipliers expectations,
Arp(R) =D pp(x [R)A(), AR) =D psly [RN(y), 1<r<d. (16)
X y

The complete derivations for this section are given in

This defines a simplified iterative algorithm to solve the dualExpIB problem, since we can replace
the decoders’ update rule at each iteration in the duallB algorithm (Algorithm [} row 6) with the
simplified expression given in equation The dualExpIB algorithm is more efficient because
decoders’ update amounts to estimating the d dimensional constraints expectation A, g(X).

One would expect that as we decrease 3 the dimensionality of the constraints expectation, Ag(X),
should reduce as well. This is the most natural implication of the dimensionality reduction of x. Fig-
ureff(c) indeed shows that this is the case. A(X) follows the same bifurcation pattern as ps(y | X).

L
1.0 5
0.3 1
08 1.0 N
= 0.6 = 0.24 . 0.5
= = & S S|
= = :
04 B > B < 00
= duallB é 0.14 duallB
T o2 BB e ~0.51
o [dualB o Bdualb \¥
0.01 0.0 ~1.04
000 025 050 075 100 000 025 050 075  1.00 0 2 4 6
(a) 1(X; X)/H(X) (b) I(X; X)/H(X) (¢) logy(B)

Figure 4: The two left plots present the Information Planes with respect to Y, in both the duallB
appears above the IB. (a) I(X;Y) vs. I(X;X). (b) I(Y;Y) vs. I(X;X). (c) The constraint
expectation, Ag(X) as a function of 3 for a problem with a single constraint (d = 1). The relevant
dimension of the representation decreases at the critical points.

4 CONCLUSION

We presented a new, dual formulation of the Information Bottleneck framework, based on switch-
ing the arguments in the original IB distortion function. This simple change has several interesting
consequences: (i) it provides a good approximation to the original IB while keeping the algorithm
in the low relevant dimension of the original data. This can significantly reduce the complexity of
finding good IB representations; (ii) it optimizes the information between the representation and the
predicted label rather than the desired label as in the original IB. This can improve the generalization
error when trained on small samples since the predicted label is the one used in practice. (iii) It pre-
serves the exponential form of data from exponential families, while reducing the dimensionality of
the compressed representations. This important property was known to be satisfied by the Gaussian
IB (Chechik et al., [2005) but not known for other distributions. The Gaussian case is self-dual in
that sense. Generalizing this property to other exponential families was an open problem for many
years. (iv) The exponential form of the optimal encoder-decoder pairs allows for the application to
distributions with special symmetries, which can be naturally expressed in this form.

The topology of the reduced representations is determined by the critical points, where the cardinal-
ity of the representation changes. The critical points form the skeleton of the optimal solutions and
most of the computation time is spent near the critical points. We analyzed the critical points of the
duallB and their analytic relations to those of the original IB.

This paves the way for completely new applications of the IB to representation learning, in particular
deep learning of data with low internal dimensionality or special symmetries.
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A APPENDIX

A.1 DUALIB MATHEMATICAL FORMULATION

As presented in §I.5]the duallB is solved with respect to the full Markov chain (equation[6) in which
we introduce the new variable, Y, the predicted label. Thus, in analogy to the IB we want to write
the optimization problem in term of Y.

Developing the expected distortion we find:

X
<dduaHB(X X)>p5(x X) — Zpﬁ = X Zpﬂ y | X) Ingﬁ((yy||))
X,X

TR »:6)
e 1Y
+§;p( )ps(3 | x)log I

= I(X;Y) = I(X:Y) + (Dlps (3 [ 9)[Ip(5 [ 0))) -
Allowing the dual optimization problem to be written as:

Frp(x [ x);p(R);p(y | X)) = 1(X:X) — B{I(X;?) —I(X:Y) = (Dlps(3 | %) lp(¥ | X)DP(X)}~

A.2 THE DUALIB SOLUTIONS

To prove theorem [1| we want to obtain the normalized distributions minimizing the duallB rate-
distortion problem.

Proof. (i) Given that the problem is formulated as a rate-distortion problem the encoder’s update
rule must be the known minimizer of the distortion function (Cover & Thomas| |2006)). Thus the
IB encoder with the dual distortion is plugged in. (i¢) For the decoder, by considering a small
perturbation in the distortion dguas(X,X), with «(X) the normalization Lagrange multiplier, we

obtain:
o v pely [ %) A _
ddguans(X,X) =0 Zpg(y | X)log =———— +a(X) ZPB y[x)—1
y

p(y | x)

ddauanB (X, X) 1 p(y | X)
S = log
pa(y [ %) p(y %)
Hence, minimizing the expected distortion becomes:

0= ps(x|%) [bgm + 1] +a(X)

= logpa(y | %) = > _ps(x [ X)logp(y | x) + 1+ (%),

+ 1+ a(x).

which yields Algorithm [T} row 6. O

Considering the duallB encoder-decoder, Algorithm |1} we find that (dgyans (X, X)) pa(0R) reduces
to the expectation of the decoder’s log partition function:

X pply | X
<dduaIIB(X7X)>pﬂ(x,X) Zpﬁ % X Zpﬁ y | X log ﬁ((y |X))

= —(log Zy x(%; o+ Zpa > pp(x [ R)logp(y | X') = > pa(x | %) logp(y | x)

= —(log Zyx(X; B))

pa(R)°

10
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A.3 STABILITY ANALYSIS

Here we provide the detailed stability analysis allowing the definition of the matrices
CduallB ngaHB (equation and which allows us to claim that they obey the same rules as the C'

matrices (equation[3)) in equation[d] Considering a variation in X we get:

Ologps(x | %) =53 psly | ) <log p(y ) 1) dlogps(y | X)
y

Ox pa(y [ X) ox
- : _ <14 2| Qlogpsly [ %)
=8> pa(y | %) [logp(y | x) Zpﬁ(x | %) log p(y | X) PR

55 e, LTI

=53 paly | Dps(% | %) log EOL12) 2loapsly | X), an
= ply %) %
1 & 0Zy 5 (%; . 1 X
0 ogzg;(y %) _ : } — y|8gx B) +Zpﬂ (x | %) log ply | x) 21082 %)
yx

0x
Ologps(x | X
:—ZPBY|XZPﬁX|X10gP [ %) %

+3 pe(x | R)loga(y | x) 220822 & [ 1)

0x
- x| ps(§ | %) log 2O
—XE& pa(x | X)ps(y | )lgp(y

Substituting equation[T8]into equation[T7]and vice versa one obtains:

a1 X

ply | x )310gpﬁ( x| X)
(v [x) ox
dlogps(y %) _ x| pa( | $)log Y1)

o ﬂx’y%pa( | X)ps (¥ | )1gp(y|x)

p(y’ | x) dlogps(y’ [ %)
p(y" [ X) ox

ol
; ogzgax(x %) (18)

pa(X' | X)ps(¥ | X) log

pa(y’ | X)ps(X | X) log

We now define the C9"a1B matrices as follows:

duallB Dl | 9 1o (Y|X). < | % 1910 ply | X))
C™ 7 (% Eﬁpﬁﬂ X)pg(X | )1gp(y|x) pa(X" | X)ps(y | )lgp(wx,)
duallB ¢ < % o POIX) i % 1 %) 10w PO X)
Cyy §7ypﬂ [ %)ps(3 | %) log ey - pa (Y [ Rps(X [ %) log =5

Using the above definition we have an equivalence to equation[din the form of:

u . Ologpg(x’ | x u dlogps(y’ | X
[I fx/aIIB(X7ﬁ)] aﬂé | ) =0, [I Bcd alIB( B)] 5{5 ‘ ) —0.
Note that for the binary case, the matrices may be simplified to:

/
CdyallB (g, p(y | X)pg(X xlog ply ‘~)~p X" [ X)(1 —pgly | x logip(y“()
yZX:B | X)ps(X [ %) P R s(X %) = pp(y %)) T ply [ )
OB (5 8) = Y | 9)(1 — sy | ) o T2y )| 10 21X
= STy %) p(y" [ %)

11
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Repeating the above steps considering a small change in 5 we see that the above obey the same, up
to an additive constant, non-linear eigenvalue problem as the X derivatives. Therefore, we conclude
that they appear at the same critical points as the variation w.r.t X (the solutions to the non-linear
eigenvalue problem depend solely on the derivative coefficients).

A.3.1 PROOF OF LEMMA[3]

We show that the C4"2!"™® matrices share the same eigenvalues with \; (X) = 0.

Proof. The matrices, C3321B(x; 3), C’d“aHB( ; B), are given by:

C)?xliaHB( 75) = Axy ()A(a B)Byx’ (5(7 ﬂ) ) C;:iy‘%aHB ()A(a B) = Byx (5(7 ﬂ)Axy/ ()A(a ﬂ)v

with:

4s538) =y |9 & | log S35 B(58) =pax | )ity | Dlow D

Given that the matrices are obtained by the multiplication of the same matrices, it follows that they
have the same eigenvalues {\;(X; 3)}.

To prove that A1 (X; 3) = 0 we show that det(C\#*'®) = 0. We present the exact calculation for a
binary label Y € {y,,y, } (the argument for general Y follows by encoding the label as a sequence
of bits and discussing the first bit only, as a binary case.):

det(cdualIB( ;pﬁ X | X)p,@()ﬁ | X) ]Ogm pﬁ(}’o ‘ )A()pﬁ()hi | )A() lOgm
Z ps(x" | X)ps(yo | X) 10g p(yo | X) pa(yy | )pﬂ( | )1 gp(y1 | f(')

X/ ,X/,

N N p(y1 | %) o S e p(¥o [ X)
=D ps(x | R)pa(yo | X)log —=——ps(yo | R)ps(X | %) log —="——
Z e O p(¥% | %)
> (X [ )psly, | %) log Pl | x ,) -ps(y; | X)ps (X' | %) tog 201L1X)
X/ X! p(Yl ‘ ) p(yl ‘ X)
= 3 palx [ 0ms(X [ 203030 | A0y, | s | %) 1o VLX) ) ) 10g LX)
o AT p(¥o | X) p()ﬁ | x)
I /
[log P(yo | x) log Py | X/) ~log P(yo | x) log p(yy | X/) —0.
p(yy [ x) 7 p(yo [ X) p(yy [ %) 7 p(yo [ X)
Given that the determinant is 0 implies that \; (X) = 0. O

For a binary problem we can describe the non-zero eigenvalue using A2(X) = Tr(C’}‘,iy‘faHB (X;0)).
That is:

(0= L malx | sl | 9o B0 53 malyo | ool | £ 1o 220
ETNE log BV (s | 0 (R )l £ 0

. . ik - p(¥o | X) p(yo | X) _ p(y; | x)

=ps(yy [ X)ps(ye [ X)) D pa(x | X)ps(X | %) log 2 0 %) 10gp(y0|i) 10gp(y1 %)

XX
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A.4 INFORMATION PLANE ANALYSIS

We rely on known results for the rate-distortion problem and the information plane:
Lemma 8. 1(X;X) is a non-increasing convex function of the distortion (d(x, X))

of —p.

We emphasis that this is a general result of rate-distortion thus holds for the duallB as well.

s (%) with a slope

Lemma 9. For a fixed encoder pg(X | X) and the Bayes optimal decoder pg(y | X):
(diB(x, X)), x5 = (X Y) — I(X;Y).

Thus, the information curve, Iy vs. Ix, is a non-decreasing concave function with a positive slope,
B7L. The concavity implies that B increases along the curve.

(Cover & Thomas, 2006}, \Gilad-bachrach et al.| 2003).

A.4.1 PROOF OF LEMMA[4]

In the following section we provide a proof to lemma 4] for the IB and duallB problems.

Proof. We want to analyze the behavior of Ix (), Iy(/3), that is the change in each term as a function
of the corresponding 3. From lemma(9] the concavity of the information curve, we can deduce that
both are non-decreasing functions of 3. As the two [ derivatives are proportional it’s enough to
discuss the first one.

Next, we focus on their behavior between two critical points. That is, where the cardinality of X is
fixed (clusters are “static”). For “static” clusters, the S derivative of Ix, along the optimal line is
given by:

I(X;X)

a . ~
o5~ 9B > pa(x,%) (log Zxjx(x; 8) + Bd(x, %))

_ _ﬂ<d(x’ﬁ)8logp5(f( | x)>
pp(x.X)

op

o alOg Zﬁ\x(x;ﬁ) A
s [P )
9B ps(x.%)

~ B<<d2(xa i)>pﬁ(g|x) - <d(X, i)>12;ﬁ(ix)>

Var(d(x))

p(x)

This first of all reassures that the function is non-decreasing as Var(d(x)) > 0.

The piece-wise concavity follows from the fact that when the number of clusters is fixed (between the
critical points) - increasing /3 decreases the clusters conditional entropy H (X | X), as the encoder

becomes more deterministic. The mutual information is bounded by H (X) and it’s § derivative

decreases. Further, between the critical points there are no sign changes in the second 3 derivative.
O

A.4.2 PROOF OF LEMMA[3

Proof. The information curve has a positive slope, 371, with 3 increasing along it, lemma |9 That
is, given a value of 3, there exists a pair 12 (3), 12 () such that OILB(3) /01 (8) = B3~1. Now,
consider a sub-optimal information curve, I5, I;. There exist values 5’, 3" such that:

IK(B) = I(B) . Iy(B") = P (B).

The optimality of the IB implies that sub-optimal curves lie below it; i.e, the IB slope is steeper:

B—l > 5/—1 , B—l > 5//—1.

13
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Thus, given that 3 increases along the information curve, it holds that:

I(B) > Ix(8) = L (B) . Iy(B) > I3(8") = I° (B).

A.5 DERIVATION OF THE DUALEXPIB

We provide elaborate derivations to theorem that is, we obtain the duallB optimal encoder-decoder
under the exponential assumption over the data. We use the notations defined in

e The decoder, equation|[T4]
Substituting the exponential assumption into the duallB log-decoder yields:

logps(y | X) =Y pa(x | %) logp(y | x) — log Zyx(X; B)

d
=D pp(x [ RN (Y)Ar(x) — log Zyx(%; B)

x r=0

d
=D N AR — (L), e — 108 Zyix(: ).

Taking a closer look at the normalization term:

Zyx(%; Z 2 pe(xR) logp(ylx) — o pg(xm Ze r=1 A (V) A (R)

y
oo R) — 0 — > AT () A s (X
log Zy(x(%; B) = —(A%),,, () T 108 <Ze AW ﬂ(x))
y
From which it follows that )\% (%) is given by:
log<Ze r= 1 Y)ATﬁ( )>’
and we can conclude that the dualExpIB decoder takes the form:

logps(y | X) = ZA

e The encoder, equation[T3]
The core of the encoder is the dual distortion function which may now be written as:

psly | X)
dduats (X, X) pa(y | X) log ——=——=
= 2 ply IR 1og "1

d
=Y ps(y [0 (AL = AF(R)) + DN (9)(Ar(x) = Arp(R))
y r=1

d
= A = AR+ D AR (Ar(x) — 4rp(R)),

substituting this into the encoder’s definition we obtain:

. ps(X) —BAL=AS R+ AR [Ar () —Ar s (R)]]
po(R | x) = S e P O (0=
Zﬂ|x(x;5)
R)ePAs(®)
_ Meﬁ S AR O ()~ Ar ()]
Zf(\x X3
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