
MANIFOLD FORESTS: CLOSING THE GAP ON NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision forests (DF), in particular random forests and gradient boosting trees, have demonstrated
state-of-the-art accuracy compared to other methods in many supervised learning scenarios. In
particular, DFs dominate other methods in tabular data, that is, when the feature space is unstructured,
so that the signal is invariant to permuting feature indices. However, in structured data lying on
a manifold—such as images, text, and speech—neural nets (NN) tend to outperform DFs. We
conjecture that at least part of the reason for this is that the input to NN is not simply the feature
magnitudes, but also their indices (for example, the convolution operation uses “feature locality”). In
contrast, naïve DF implementations fail to explicitly consider feature indices. A recently proposed
DF approach demonstrates that DFs, for each node, implicitly sample a random matrix from some
specific distribution. Here, we build on that to show that one can choose distributions in a manifold
aware fashion. For example, for image classification, rather than randomly selecting pixels, one can
randomly select contiguous patches. We demonstrate the empirical performance of data living on
three different manifolds: images, time-series, and a torus. In all three cases, our Manifold Forest
(MORF) algorithm empirically dominates other state-of-the-art approaches that ignore feature space
structure, achieving a lower classification error on all sample sizes. This dominance extends to the
MNIST data set as well. Moreover, both training and test time is significantly faster for manifold
forests as compared to deep nets. This approach, therefore, has promise to enable DFs and other
machine learning methods to close the gap with deep nets on manifold-valued data.

1 INTRODUCTION

Decision forests, including random forests and gradient boosting trees, have solidified themselves in the past couple
decades as a powerful ensemble learning method in supervised settings (Fernández-Delgado et al., 2014; Caruana &
Niculescu-Mizil, 2006), including both classification and regression (Hastie et al., 2001). In classification, each forest is
a collection of decision trees whose individual classifications of a data point are aggregated together using majority vote.
One of the strengths of this approach is that each decision tree need only perform better than chance for the forest to be
a strong learner, given a few assumptions (Schapire, 1990; Biau et al., 2008). Additionally, decision trees are relatively
interpretable because they can provide an understanding of which features are most important for correct classification
(Breiman, 2001). Breiman originally proposed decision trees that partition the data set using hyperplanes aligned to
feature axes (Breiman, 2001). Yet, this limits the flexibility of the forest and requires deep trees to classify some data
sets, leading to overfitting. He also suggested that algorithms which partition based on sparse linear combinations of
the coordinate axes can improve performance (Breiman, 2001). More recently, Sparse Projection Oblique Randomer
Forest (SPORF), partitions a random projection of the data and has shown impressive improvement over other methods
(Tomita et al., 2015).

Yet random forests and other machine learning algorithms frequently operate in a tabular setting, viewing an observation
~x = (x1, . . . , xp)

T ∈ Rp as an unstructured feature vector. In doing so, they neglect the indices in settings where the
indices encode additional information. For structured data, e.g. images or time series, traditional decision forests are
not able to incorporate known continuity between features to learn new features.

For decision forests to utilize known local structure in data, new features encoding this information must be manually
constructed. Prior research has extended random forests to a variety of computer vision tasks (Lepetit et al., 2005;
Gall et al., 2011; Bosch et al., 2007; Shotton et al., 2011) and augmented random forests with structured pixel label
information (Kontschieder et al., 2011). Yet these methods either generate features a priori from individual pixels, and

1

thus do not take advantage of the local topology, or lack the flexibility to learn relevant patches. Decision forests have
been used to learn distance metrics on unknown manifolds (Criminisi et al., 2012), but such manifold forest algorithms
are unsupervised and aim to learn a low dimensional representation of the data.

Inspired by SPORF, we propose a projection distribution that takes into account continuity between neighboring
features while incorporating enough randomness to learn relevant projections. At each node in the decision tree, sets of
random spatially contiguous features are randomly selected using knowledge of the underlying manifold. Summing the
intensities of the sampled features yields a set of projections which can then be evaluated to partition the observations.
We describe this proposed classification algorithm, Manifold Forests (MORF) in detail and show its effectiveness in three
simulation settings as compared to common classification algorithms. Furthermore, the optimized and parallelizable
open source implementation of MORF in R and Python is available. This addition makes for an effective and flexible
learner across a wide range of manifold structures.

2 BACKGROUND AND RELATED WORK

2.1 CLASSIFICATION

In the two-class classification setting, there is a data set D = {(xi, yi)}ni=1 of n pairs (xi, yi) drawn from an unknown
distribution FXY where xi ∈ X ⊂ Rp and yi ∈ Y = {0, 1}. Our goal is to train a classifier h(x;Dn) : X×(X×Y)n →
Y based on our observations that generalizes to correctly predict the class of an observed x. The performance
of this classifier is evaluated via the 0-1 Loss function L(h(x), y) = I[h(x) 6= y] to find the optimal classifier
h∗ = argminh E[L(h(x), y)], which minimizes the probability of an incorrect classification.

2.2 RANDOM FORESTS

Originally popularized by Breiman, the random forest (RF) classifier is empirically very effective (Fernández-Delgado
et al., 2014) while maintaining strong theoretical guarantees (Breiman, 2001). A random forest is an ensemble of
decision trees whose individual classifications of a data point are aggregated together using majority vote. Each decision
tree consists of split nodes and leaf nodes. A split node is associated with a subset of the data S = {(xi, yi)} ⊆ D
and splits into two child nodes, each associated with a binary partition of S. Let ej ∈ Rp denote a unit vector in the
standard basis (that is, a vector with a single one and the rest of the entries are zero) and τ a threshold value. Then S is
partitioned into two subsets given the pair θj = {ej , τ}.

SLθ = {(xi, yi) | eTj xi < τ}
SRθ = {(xi, yi) | eTj xi ≥ τ}

To choose the partition, the optimal θ∗ = (e∗j , τ
∗) pair is selected via a greedy search from among a set of d randomly

selected standard basis vectors ej . The selected partition is that which maximizes some measure of information gain. A
typical measure is a decrease in impurity, calculated by the Gini impurity score I(S), of the resulting partitions (Hastie
et al., 2001). Let p̂k = 1

|S|
∑
yi∈S I[yi = k] be the fraction of elements of class k in partition S, then the optimal split

is found as

I(S) =

K∑
k=1

p̂k(1− p̂k)

θ∗ = argmax
θ
|S|I(S)− |SLθ |I(SLθ)− |SRθ |I(SRθ).

A leaf node is created once the partition reaches a stopping criterion, typically either falling below an impurity score
threshold or a minimum number of observations (Hastie et al., 2001). The leaf nodes of the tree form a disjoint partition
of the feature space in which each partition of observations Sk is assigned a class label c∗k corresponding to the class
majority.

c∗k = argmax
ck

∑
yi∈S

I(yi = ck).

A decision tree classifies a new observation by assigning it the class of the partition into which the observation falls.
The forest averages the classifications over all decision trees to make the final classification (Hastie et al., 2001). For

2

good performance of the ensemble and strong theoretical guarantees, the individual decision trees must be relatively
uncorrelated from one another. Breiman’s random forest algorithm does this in two ways:

1. At every node in the decision tree, the optimal split is determined over a random subset d of the total collection
of features p.

2. Each tree is trained on a randomly bootstrapped sample of data points D′ ⊂ D from the full training data set.

Applying these techniques means that random forests do not overfit and lowers the upper bound of the generalization
error (Breiman, 2001).

2.3 SPARSE PROJECTION OBLIQUE RANDOMER FORESTS

SPORF is a recent modification to random forest that has shown improvement over other versions (Tomita et al., 2015;
Tomita et al., 2017). Recall that RF split nodes partition data along the coordinate axes by comparing the projection
eTj xi of observation xi on standard basis ej to a threshold value τ . SPORF generalizes the set of possible projections,
allowing for the data to be partitioned along axes specified by any sparse vector a.

SLθ = {(xi, yi) | aTxi < τ}
SRθ = {(xi, yi) | aTxi ≥ τ}

Rather than partitioning the data solely along the coordinate axes (i.e. the standard basis), SPORF creates partitions
along axes specified by sparse vectors. In other words, let the dictionary A be the set of atoms {a}, each atom a
p-dimensional vector defining a possible projection aTxi. In axis-aligned forests, A is the set of standard basis vectors
{ej}. In SPORF, the dictionary D can be much larger, because it includes, for example, all 2-sparse vectors. At each
split node, SPORF samples d atoms from D according to a specified distribution. By default, each of the d atoms are
randomly generated with a sparsity level drawn from a Poisson distribution with a specified rate λ. Then, each of the
non-zero elements are uniformly randomly assigned either +1 or −1. Note that the size of the dictionary for SPORF is
3p (because each of the p elements could be −1, 0, or +1), although the atoms are sampled from a distribution heavily
skewed towards sparsity.

3 METHODS

3.1 RANDOM PROJECTION FORESTS ON MANIFOLDS

In the structured setting, the dictionary of projection vectors A = {a} is modified to take advantage of the underlying
manifold on which the data lies. We term this method the Manifold Forest (MORF).

Each atom a projects an observation to a real number and is designed with respect to prior knowledge of the data
manifold. Nonzero elements of a effectively select and weight features. Since the feature space is structured, each
element of a maps to a location on the underlying manifold. Thus, patterns of contiguous points on the manifold define
the atoms of A; the distribution of those patterns yields a distribution over the atoms. At each node in the decision tree,
MORF samples d atoms, yielding d new features per observation. MORF proceeds just like SPORF by optimizing the
best split according to the Gini index. Algorithm pseudocode, essentially equivalent to that of SPORF , can be found in
the Appendix.

In the case of two-dimensional arrays, such as images, an observation xi ∈ Rp is a vectorized representation of a
data-matrix Xi ∈ RW×H . To capture the relevance of neighboring pixels, MORF creates projections by summing the
intensities of pixels in rectangular patches. Thus the atoms of A are the vectorized representations of these rectangular
patches.

A rectangular patch is fully parameterized by the location of its upper-left corner (u, v), its height h, and width w.
To generate a patch, first the index of the upper left corner is uniformly sampled. Then its height and width are
independently sampled from separate uniform distributions. MORF hyperparameters determine the minimum and
maximum heights heights {hmin, hmax} and widths {wmin, wmax}, respectively, to sample from. Let unif{α, β}
denote the discrete uniform distribution. An atom a is sampled as follows. Note that the patch cannot exceed the

3

data-matrix boundaries.

u ∼ unif{0,W − wmin} v ∼ unif{0, H − hmin}
w ∼ unif{wmin,min(wmax,W − u)} h ∼ unif{hmin,min(hmax, H − v)}

The vectorized atom a yields a projection of the data aTxi, effectively selecting and summing pixel intensities in the
sampled rectangular patch.

aT = (0, . . . , 0︸ ︷︷ ︸
W×v

, 0, . . . , 0︸ ︷︷ ︸
u

,

(h−1)×W︷ ︸︸ ︷
1, . . . , 1︸ ︷︷ ︸

w

, 0, . . . , 0︸ ︷︷ ︸
W−w

, . . . , 1, . . . , 1︸ ︷︷ ︸
w

, 0, . . . , 0︸ ︷︷ ︸
W−w

, 1, . . . , 1︸ ︷︷ ︸
w

, 0, . . . , 0︸ ︷︷ ︸
W−w−u

, 0, . . . , 0︸ ︷︷ ︸
W×(H−h−v)

)

By constructing features in this way, MORF learns low-level features in the structured data, such as edges or corners in
images. The forest can therefore learn the features that best distinguish a class. The structure of these atoms is flexible
and task dependent. In the case of data lying on a cyclic manifold, the atoms can wrap-around borders to capture the
added continuity. Atoms can also be used in one-dimensional arrays, such as univariate time-series data, in which case
hmin = hmax = 1

3.2 FEATURE IMPORTANCE

One of the benefits to decision trees is that their results are fairly interpretable in that they allow for estimation of the
relative importance of each feature. Many approaches have been suggested (Breiman, 2001; Lundberg & Lee, 2017)
and here a projection forest specific metric is used in which the number of times a given feature was used in projections
across the ensemble of decision trees is counted. A decision tree T is composed of many nodes k, each one associated
with an atom a∗k and threshold that partition the feature space according to the projection a∗k · xi. Thus, the indices
corresponding to nonzero elements of a∗k indicate important features used in the projection. For each feature j, the
number of times πj it is used in a projection, across all split nodes and decision trees, is counted.

πj =
∑
T

∑
k∈T

I(a∗kj 6= 0)

These normalized counts represent the relative importance of each feature in making a correct classification. Such a
method applies to both SPORF and MORF , although different results between them would be expected due to different
projection distributions yielding different hyperplanes.

4 SIMULATION RESULTS

To test MORF , we evaluate its performance in three simulation settings as compared to logistic regression (Log. Reg),
linear support vector machine (Lin. SVM), support vector machine with a radial basis function kernel (SVM), k-nearest
neighbors (kNN), random forest (RF), Multi-layer Perceptron (MLP), and SPORF (SPORF). For each experiment, we
used our open source implementation of MORF and that of SPORF . All decision forest algorithms used 100 decision
trees on the simulations. Each of the other classifiers were run from the Scikit-learn Python package (Pedregosa et al.,
2011) with default parameters. Additionally, we tested against a Convolutional Neural Network (CNN) built using
PyTorch (Paszke et al., 2017) with two convolution layers, ReLU activations, and maxpooling, followed by dropout and
two densely connected layers. The CNN results were averaged over 5 runs for the simulations and training was stopped
early if the loss plateaued.

4.1 SIMULATION SETTINGS

Experiment (A) is a non-Euclidean example inspired by Younes (2018). Each observation is a discretization of a circle
into 100 features with two non-adjacent segments of 1’s in two differing patterns: class 1 features two segments of
length five while class 2 features one segment of length four and one of length six. MORF chose one-dimensional
rectangles in this setting as the observations were one-dimensional in nature. These projection patches had a width
between one and fifteen pixels and each split node of SPORF and MORF considered 40 random projections. Figure
1(A) shows examples from the two classes and classification results across various sample sizes.

4

In experiment (B) consists of a simple 28× 28 binary image classification problem. Images in class 0 contain randomly
sized and spaced horizontal bars while those in class 1 contain randomly sized and spaced vertical bars. For each
sampled image, k ∼ Poisson(λ = 10) bars were distributed among the rows or columns, depending on the class. The
distributions of the two classes are identical if a 90 degree rotation is applied to one of the classes. Projection patches
were between one and four pixels in both width and height and each split node of SPORF and MORF considered 28
random projections. Figure 1(B) shows examples from the two classes and classification results across various sample
sizes.

Experiment (C) is a signal classification problem. One class consists of 100 values of Gaussian noise while the second
class has an added exponentially decaying unit step beginning at time 20.

x
(0)
t = εt

x
(1)
t = u(t− 20)e(t−20) + εt

εt ∼ N (0, 1)

Projection patches were 1D with a width between one and five timesteps. Each split node of SPORF and MORF
considered the default number of random projections, the square root of the number of features. Figure 1(C) shows
examples from the two classes and classification results across various sample sizes.

4.2 CLASSIFICATION ACCURACY

Algorithm
Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
SPORF
CNN
MORF

1 103

0.0

0.2

0.4

101 103 101 103

Number of training samples
10

M
is

cl
a
ss

if
ic

a
ti
on

 R
a
te

(A) Circle Segments (B) Orthogonal Bars

Class 0

Class 1

(C) Noisy Impulse

Signal
Impulse

Figure 1: MORF outperforms other algorithms in three two-class classification settings. Upper row shows examples of
simulated data from each setting and class. Lower row shows misclassification rate in each setting, tested on 10,000 test
samples. (A) Two segments in a discretized circle. Segment lengths vary by class. (B) Image setting with uniformly
distributed horizontal or vertical bars. (C) White noise (class 0) vs. exponentially decaying unit impulse plus white
noise (class 1).

In all three simulation settings, MORF outperforms all other classifiers, doing especially better at low sample sizes,
except the CNN for which there is no clear winner. The performance of MORF is particularly good in the discretized
circle simulation for which most other classifiers perform at chance levels. MORF also performs well in the signal

5

classification problem although all the classifiers are close in performance. This may be because the exponential signal
is prevalent throughout most of the time-steps and so perfect continuity is less relevant.

10 2

100

102

T
ra

in
 T

im
e
 (

s)

Circle Segments Orthogonal Bars Noisy Impulse

Algorithm
Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
SPORF
CNN
MORF

101 103

10 2

100

102

T
e
st

 T
im

e
 (

s)

101 103 101 103

Number of training samples

Algorithm Runtimes

Figure 2: Algorithm train times (above) and test times (below). MORF runtime is not particularly costly and well below
CNN runtime in most examples.

4.3 RUN TIME

All experiments were run on a single core CPU. MORF has train and test times on par with those of SPORF and
RF and so is not particularly more computationally intensive to run. The CNN, however, took noticeably longer to
run—especially in terms of training, but also in testing—in two of the three simulations. Thus its strong performance in
those settings comes at an added computational cost, a typical issue for deep learning methods (Livni et al., 2014).

5 REAL DATA RESULTS

5.1 CLASSIFICATION ACCURACY

MORF’s performance was evaluated on the MNIST dataset, a collection of handwritten digits stored in 28 by 28 square
images (Lecun et al.), and compared to the algorithms used in the simulations. 10,000 images were held out for testing
and a subset of the remaining images were used for training. The results are displayed in Figure 3. All three forest
algorithms were composed of 500 decision trees and MORF was restricted to use patches up to only 3 pixels in height
and width. MORF showed an improvement over the other algorithms, especially for smaller sample sizes. Thus, even
this trivial modification can improve performance by several percentage points. Specifically, MORF achieved a better
(lower) classification error than all other algorithms besides CNNs for all sample sizes on this real data problem.

6

102 103

n

0.0

0.1

0.2

0.3

0.4
Te

st
 e

rro
r

MNIST Classification Results
Algorithm

Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
SPORF
CNN
MORF

Figure 3: MORF improves classification accuracy over all other non-CNN algorithms for all sample sizes, especially in
small sample sizes.

5.2 FEATURE IMPORTANCE

To evaluate the capability of MORF to identify importance features in manifold-valued data as compared to SPORF and
RF. All methods were run on a subset of the MNIST dataset: we only used threes and fives, 100 images from each class.

The feature importance of each pixel is shown in Figure 4. MORF visibly results in a smoother pixel importance, a
result most likely from the continuity of neighboring pixels in selected projections. Although Tomita et al. (2015)
demonstrated empirical improvement of SPORF over RF on the MNIST data, its projection distribution yields scattered
importance of unimportant background pixels as compared to RF. Since projections in SPORF have no continuity
constraint, those that select high importance pixels will also select pixels of low importance by chance. This may be
a nonissue asymptotically, but is a relevant problem in low sample size settings. MORF , however, shows little or no
importance of these background pixels by virtue of the modified projection distribution.

7

Average 3 Average 5

MORF ImportanceSPORF Importance

Absolute Difference

RF Importance

Figure 4: Averages of images in the two classes and their difference (above). Feature importance from MORF (bottom
right) shows less noise than SPORF (bottom middle) and is smoother than RF (bottom left).

6 DISCUSSION

The success of sparse oblique projections in decision forests has opened up many possible ways to improve axis-aligned
decision forests (including random forests and gradient boosting trees) by way of specialized projection distributions.
Traditional decision forests have already been applied to structured data, using predefined features to classify images or
pixels. Decision forest algorithms like that implemented in the Microsoft Kinect showed great success but ignore pixel
continuity and specialize for a specific data modality, namely images (Shotton et al., 2011).

We expanded upon sparse oblique projections and introduced a structural projection distribution that uses prior
knowledge of the topology of a feature space. The open source implementation of SPORF has allowed for a relatively
easy implementation of MORF, creating a flexible classification method for a variety of data modalities. We showed
in various simulated settings that appropriate domain knowledge can improve the projection distribution to yield
impressive results that challenge the strength of deep learning techniques on manifold-valued data. On the MNIST data
set MORFshowed modest improvements over the other algorithms besides CNNs and smoother importance plots than
the other decision forest algorithms. This is in spite of the the data set’s low resolution images which are harder for the
modified projection distributions to take advantage of.

Research into other, task-specific convolution kernels may lead to improved results in real-world computer vision tasks.
Such structured projection distributions, while incorporated into SPORF here, may also be incorporated into other state
of the art algorithms such as XGBOOST (Chen & Guestrin, 2016).

REFERENCES

Gérard Biau, Luc Devroye, and Gábor Lugosi. Consistency of random forests and other averaging classifiers. J. Mach.
Learn. Res., 9:2015–2033, June 2008. ISSN 1532-4435.

8

A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In 2007 IEEE 11th
International Conference on Computer Vision, pp. 1–8, Oct 2007. doi: 10.1109/ICCV.2007.4409066.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001. ISSN 1573-0565. doi: 10.1023/A:
1010933404324.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning algorithms. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 161–168, New York, NY,
USA, 2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/1143844.1143865.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.

Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. Decision forests: A unified framework for classification,
regression, density estimation, manifold learning and semi-supervised learning. Found. Trends. Comput. Graph. Vis.,
7(2–3):81–227, February 2012. ISSN 1572-2740. doi: 10.1561/0600000035.

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hundreds of classifiers to
solve real world classification problems? Journal of Machine Learning Research, 15:3133–3181, 2014.

J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking, and action
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11):2188–2202, Nov 2011. ISSN
0162-8828. doi: 10.1109/TPAMI.2011.70.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer Series in
Statistics. Springer New York Inc., New York, NY, USA, 2001.

P. Kontschieder, S. R. Bulò, H. Bischof, and M. Pelillo. Structured class-labels in random forests for semantic image
labelling. In 2011 International Conference on Computer Vision, pp. 2190–2197, Nov 2011. doi: 10.1109/ICCV.
2011.6126496.

Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. The MNIST Database of Handwritten Digits.

V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pp. 775–781 vol. 2, June 2005. doi:
10.1109/CVPR.2005.288.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training neural networks. In
Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1, NIPS’14,
pp. 855–863, Cambridge, MA, USA, 2014. MIT Press.

Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions. ArXiv, abs/1705.07874, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Robert E. Schapire. The strength of weak learnability. Mach. Learn., 5(2):197–227, July 1990. ISSN 0885-6125. doi:
10.1023/A:1022648800760.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time
human pose recognition in parts from single depth images. In CVPR 2011, pp. 1297–1304, June 2011. doi:
10.1109/CVPR.2011.5995316.

Tyler M. Tomita, James Browne, Cencheng Shen, Jesse L. Patsolic, Jason Yim, Carey E. Priebe, Randal Burns, Mauro
Maggioni, and Joshua T. Vogelstein. Random Projection Forests. arXiv e-prints, art. arXiv:1506.03410, Jun 2015.

9

Tyler M. Tomita, Mauro Maggioni, and Joshua T. Vogelstein. Roflmao: Robust oblique forests with linear matrix
operations. In Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 498–506, 2017. doi:
10.1137/1.9781611974973.56.

Laurent Younes. Diffeomorphic learning. ArXiv, abs/1806.01240, 2018.

10

7 APPENDIX

Algorithm 1 Learning a Manifold Forest decision tree.
Input: (1) Dn: training data (2) d: dimensionality of the projected space, (3) fA: distribution of the atoms, (4) Θ: set

of split eligibility criteria
Output: A MORF decision tree T

1: function T = GROWTREE(X,y, fA,Θ)
2: c = 1 . c is the current node index
3: M = 1 . M is the number of nodes currently existing
4: S(c) = bootstrap({1, ..., n}) . S(c) is the indices of the observations at node c
5: while c < M + 1 do . visit each of the existing nodes
6: (X′,y′) = (xi, yi)i∈S(c) . data at the current node
7: for k = 1, . . . ,K do n(c)k =

∑
i∈S(c) I[yi = k] end for . class counts (for classification)

8: if Θ satisfied then . do we split this node?
9: A = [a1 · · ·ad] ∼ fA . sample random p× d matrix of atoms

10: X̃ = ATX′ = (x̃i)i∈S(c) . random projection into new feature space
11: (j∗, t∗) = findbestsplit(X̃,y′) . Algorithm 2
12: S(M+1) = {i : aj∗ · x̃i ≤ t∗ ∀i ∈ S(c)} . assign to left child node
13: S(M+2) = {i : aj∗ · x̃i > t∗ ∀i ∈ S(c)} . assign to right child node
14: a∗(c) = aj∗ . store best projection for current node
15: τ∗(c) = t∗ . store best split threshold for current node
16: κ(c) = {M + 1,M + 2} . node indices of children of current node
17: M = M + 2 . update the number of nodes that exist
18: else
19: (a∗(c), τ∗(c), κ∗(c)) = NULL
20: end if
21: c = c+ 1 . move to next node
22: end while
23: return (S(1), {a∗(c), τ∗(c), κ(c), {n(c)k }k∈Y}

m−1
c=1)

24: end function

11

Algorithm 2 Finding the best node split. This function is called by growtree (Alg 1) at every split node. For each
of the p dimensions in X ∈ Rp×n, a binary split is assessed at each location between adjacent observations. The
dimension j∗ and split value τ∗ in j∗ that best split the data are selected. The notion of “best” means maximizing
some choice in scoring function. In classification, the scoring function is typically the reduction in Gini impurity or
entropy. The increment function called within this function updates the counts in the left and right partitions as the split
is incrementally moved to the right.
Input: (1) (X,y) ∈ Rp×n × Yn, where Y = {1, . . . ,K}
Output: (1) dimension j∗, (2) split value τ∗

1: function (j∗, τ∗) = FINDBESTSPLIT(X,y)
2: for j = 1, . . . , p do
3: Let x(j) = (x

(j)
1 , . . . , x

(j)
n) be the jth row of X.

4: {mj
i}i∈[n] = sort(x(j)) . mj

i is the index of the ith smallest value in x(j)

5: t = 0 . initialize split to the left of all observations
6: n′ = 0 . number of observations left of the current split
7: n′′ = n . number of observations right of the current split
8: if (task is classification) then
9: for k = 1, . . . ,K do

10: nk =
∑n
i=1 I[yi = k] . total number of observations in class k

11: n′k = 0 . number of observations in class k left of the current split
12: n′′k = nk . number of observations in class k right of the current split
13: end for
14: end if
15: for t = 1, . . . , n− 1 do . assess split location, moving right one at a time
16: ({(n′k, n′′k)}, n′, n′′, ymj

t
) = increment({(n′k, n′′k)}, n′, n′′, ymj

t
)

17: Q(j,t) = score({(n′k, n′′k)}, n′, n′′) . measure of split quality
18: end for
19: end for
20: (j∗, t∗) = argmax

j,t
Q(j,t)

21: for i = 0, 1 do ci = mj∗

t∗+i end for
22: τ∗ = 1

2 (x
(j∗)
c0 + x

(j∗)
c1) . compute the actual split location from the index j∗

23: return (j∗, τ∗)
24: end function

12

	Introduction
	Background and Related Work
	Classification
	Random Forests
	Sparse Projection Oblique Randomer Forests

	Methods
	Random Projection Forests on Manifolds
	Feature Importance

	Simulation Results
	Simulation Settings
	Classification Accuracy
	Run Time

	Real Data Results
	Classification Accuracy
	Feature Importance

	Discussion
	Appendix

