
Under review as a conference paper at ICLR 2020

ENHANCING THE TRANSFORMER WITH EXPLICIT
RELATIONAL ENCODING FOR MATH PROBLEM SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

We incorporate Tensor-Product Representations within the Transformer in order
to better support the explicit representation of relation structure. Our Tensor-
Product Transformer (TP-Transformer) sets a new state of the art on the recently-
introduced Mathematics Dataset containing 56 categories of free-form math word-
problems. The essential component of the model is a novel attention mechanism,
called TP-Attention, which explicitly encodes the relations between each Trans-
former cell and the other cells from which values have been retrieved by attention.
TP-Attention goes beyond linear combination of retrieved values, strengthening
representation-building and resolving ambiguities introduced by multiple layers
of regular attention. The TP-Transformer’s attention maps give better insights
into how it is capable of solving the Mathematics Dataset’s challenging problems.
Pretrained models and code will be made available after publication.

1 INTRODUCTION

In this paper we propose a variation of the Transformer that is designed to allow it to better incorpo-
rate structure into its representations. We test the proposal on a task where structured representations
are expected to be particularly helpful: math word-problem solving, where, among other things, cor-
rectly parsing expressions and compositionally evaluating them is crucial. Given as input a free-form
math question in the form of a character sequence like Let r(g) be the second derivative of 2*g**3/3
– 21*g**2/2 + 10*g. Let z be r(7). Factor –z*s + 6 – 9*s**2 + 0*s + 6*s**2., the model must
produce an answer exactly matching the specified target character-sequence –(s + 3)*(3*s – 2). Our
proposed model is trained end-to-end and infers the correct answer for novel examples without any
problem-specific structural biases.

We begin by viewing the Transformer (Vaswani et al., 2017) as a kind of Graph Neural Network.
For concreteness, consider the encoder component of a Transformer with H heads. When the hth
head of a cell t of layer l issues a query and as a result concentrates its self-attention distribution on
another cell t′ in layer l, we can view these two cells as joined by an edge in an information-flow
graph: the information content at t′ in effect passes via this edge to affect the state of t. The strength
of this attention can be viewed as a weight on this edge, and the index h of the head can be viewed
as a label. Thus, each layer of the Transformer can be viewed as a complete, directed, weighted,
labeled graph. Prior NLP work has interpreted certain edges of these graphs in terms of linguistic
relations (Sec. 8), and we wish to enrich the relation structure of these graphs to better support the
explicit representation of relations within the Transformer.

Here we propose to replace each of the discrete edge labels 1, . . . ,H , with a relation vector: we cre-
ate a bona fide representational space for the relations being learned by the Transformer. This makes
it possible for the hidden representation at each cell to approximate the vector embedding of a sym-
bolic structure built from the relations generated by that cell. This embedding is a Tensor-Product
Representation (TPR, Smolensky (1990)). TPRs provide a general method for embedding symbol
structures in vector spaces. TPRs support compositional processing by directly encoding constituent
structure: the representation of a structure is the sum of the representation of its constituents. The
representation of each constituent is built from two vectors: one vector that embeds the content of
the constituent, the ‘filler’ — here, the vector resulting from attention — and a second vector that
embeds the structural role it fills — here, a relation conceptually labeling an edge of the attention
graph. The vector that embeds a filler and the vector that embeds the role it fills are bound together

1

Under review as a conference paper at ICLR 2020

by the tensor product to form the tensor that embeds the constituent that they define.1 The relations
here, and the structures they define, are learned unsupervised by the Transformer in service of a task:
post-hoc analysis is then required to interpret those roles.

In the new model, the TP-Transformer, each head of each cell generates a key-, value- and query-
vector, as in the Transformer, but additionally generates a role-vector (which we refer to in some
contexts as a ‘relation vector’). The query is interpreted as seeking the appropriate filler for that
role (or equivalently, the appropriate string-location for fulfilling that relation). Each head binds that
filler to its role via the tensor product (or some contraction of it), and these filler/role bindings are
summed to form the TPR of a structure with H constituents (details in Sec. 2.).

An interpretation of an actual learned relation illustrates this (see Fig. 3 in Sec. 5.1). One head of
our trained model can be interpreted as partially encoding the relation second-argument-of. The top-
layer cell dominating an input digit seeks the operator of which the digit is in the second-argument
role. That cell generates a vector rt signifying this relation, and retrieves a value vector vt′ describ-
ing the operator from position t′ that stands in this relation. The result of this head’s attention is then
the binding of filler vt′ to role rt; this binding is added to the bindings resulting from the cells other
attention heads.

On the Mathematics Dataset (Sec. 3), the new model sets a new state of the art for the overall accu-
racy, and for all the individual-problem-type module accuracies (Sec. 4). Initial results of interpret-
ing the learned roles for the arithmetic-problem module show that they include a good approximation
to the second-argument role of the division operator and that they distinguish between numbers in
the numerator and denominator roles (Sec. 5).

2 THE TP-TRANSFORMER

The encoder network can be described as a 2-dimensional lattice of cells (t, l) where t = 1, ..., T are
the sequence elements of the input and l = 1, ..., L are the layer indices with l = 0 as the embedding
layer. All cells share the same topology and the cells of the same layer share the same weights. More
specifically, each cell consists of a TP-Multi-Head Attention (TPMHA) layer followed by a fully-
connected feed-forward (FF) layer, each preceded by layer normalization (LN) and followed by a
residual connection. The input into cellt,l is the output of the cellt,l−1 and doesn’t depend on the
state of any other cells of the same layer, which allows their outputs to be computed in parallel.

ht,l = zt,l + TPMHA(LN(zt,l))

zt,l+1 = LN(ht,l + FF(LN(ht,l)))
(1)

We represent the symbols of the input string as one-hot vectors x1, ...,xT ∈ Rdv where dv is the size
of the vocabulary and the respective columns of the matrix E ∈ Rdz×dv are the vector representation
of those symbols. We also include a positional representation pt using the same sinusoidal encoding
schema as introduced by (Vaswani et al., 2017). The input of the first cellt,1 is zt,0:

et = Ext

√
dz + pt

rt = W (p)et + b(p)

zt,0 = et � rt

(2)

where W (p) ∈ Rdz×dz , b(p) ∈ Rdz , � is elementwise multiplication (see Sec. 2.1), and rt is a
position- and symbol-dependent role representation.

2.1 TP-MULTI-HEAD ATTENTION

The TPMHA layer of the encoder consists of H heads that can be applied in parallel. Every head
h, 1 < h ≤ H applies separate affine transformations W h,(k)

l ,W
h,(v)
l ,W

h,(q)
l ,W

h,(r)
l ∈ Rdz×dk ,

b
h,(k)
l , b

h,(v)
l , b

h,(q)
l , b

h,(r)
l ∈ Rdk to produce key, value, query, and relation vectors from the hidden

1 The tensor product operation (when the role-embedding vectors are linearly independent) enables the sum
of constituents representing the structure as a whole to be uniquely decomposable back into individual pairs of
roles and their fillers, if necessary.

2

Under review as a conference paper at ICLR 2020

state zt,l, where dk = dz/H:

kh
t,l = W

h,(k)
l zt,l + b

h,(k)
l

vh
t,l = W

h,(v)
l zt,l + b

h,(v)
l

qh
t,l = W

h,(q)
l zt,l + b

h,(q)
l

rht,l = W
h,(r)
l zt,l + b

h,(r)
l

(3)

The filler of the attention head t, l, h is

v̄h
t,l =

T∑
i=1

vh
i,lα

h,i
t,l , (4)

i.e., a weighted sum of all T values of the same layer and attention head (see Fig. 1). Here αh,i
t,l ∈

(0, 1) is a continuous degree of match given by the softmax of the dot product between the query
vector at position t and the key vector at position i:

αh,i
t,l =

exp(qh
t,l · kh

i,l
1√
dk

)∑T
i′ exp(qh

t,l · kh
i′,l

1√
dk

)
(5)

The scale factor 1√
dk

can be motivated as variance reducing factor under the assumption that the
elements of qh

t,l and kh
t,l are uncorrelated variables with mean 0 and variance 1 in order to initially

keep the values of the softmax in a region with better gradients.

Finally, we bind the filler v̄h
t,l with our relation vector rht,l, followed by an affine transformation

W
(o)
h,l ∈ Rdk×dz , b

(o)
h,l ∈ Rdz before it is summed up to form the TPR of a structure with H con-

stituents: this is the output of the TPMHA layer.

TPMHA(zt,l) =
∑
h

W
(o)
h,l (v̄h

t,l � rht,l) + b
(o)
h,l (6)

Note that, in this binding, to control dimensionality, we use a contraction of the tensor product,
pointwise multiplication �: this is the diagonal of the tensor product.

Figure 1: A simplified illustration of our TP-
Attention mechanism for one head. The main
difference with the regular Attention is the
additional role representation that is element-
wise multiplied with the filler/value repre-
sentation.

It is worth noting that the lth TPMHA layer returns
a vector that is quadratic in the inputs zt,l to the
layer: the vectors vh

i,l that are linearly combined to
form v̄h

t,l (4), and rht,l, are both linear in the zi,l (3),
and they are multiplied together to form the output
of TPMHA (6). This means that, unlike regular at-
tention, TPMHA can increase, over successive lay-
ers, the polynomial degree of its representations as
a function of the original input to the Transformer.
Although it is true that the feed-forward layer fol-
lowing attention (Sec. 2.2) introduces its own non-
linearity even in the regular Transformer, in the TP-
Transformer the attention mechanism itself goes be-
yond mere linear re-combination of vectors from the
previous layer. This provides further potential for the
construction of increasingly abstract representations
in higher layers.

2.2 FEED-FORWARD LAYER

The feed-forward layer of a cell consists of an affine transformation followed by a ReLU activation
and a second affine transformation:

FF(x) = W
(g)
l ReLU(W

(f)
l x + b

(f)
l) + b

(g)
l (7)

Here, W (f)
l ∈ Rdz×df , b

(f)
l ∈ Rdf ,W

(g)
l ∈ Rdf×dz , b

(g)
l ∈ Rdz and x is the function argument.

As in previous work, df is chosen to be 4 times larger than dz .

3

Under review as a conference paper at ICLR 2020

2.3 THE DECODER NETWORK

The decoder network is a separate network with a similar structure to the encoder that takes the
hidden states of the encoder and auto-regressively generates the output sequence. In contrast to the
encoder network, the cells of the decoder contain two TPMHA layers and one feed-forward layer.
We designed our decoder network analogously to Vaswani et al. (2017) where the first attention
layer attends over the masked decoder states while the second attention layer attends over the final
encoder states. During training the decoder network receives the shifted targets (teacher-forcing)
while during inference we use the previous symbol with highest probability (greedy-decoding). The
final symbol probability distribution is given by

ŷt̂ = softmax(ET ẑt̂,L) (8)

where ẑt̂,L the hidden state of the last layer of the decoder at decoding step t̂ of the output sequence
and E is the shared symbol embedding of the encoder and decoder.

3 THE MATHEMATICS DATASET

The Mathematics Dataset (Saxton et al. (2019)) is a large collection of math problems of various
types. Its main goal is to investigate the capability of neural networks to reason algebraically. Each
problem is structured as a general sequence-to-sequence problem. The input sequence is a free-
form math question or command like e.g. What is the first derivative of 13*a**2 – 627434*a +
11914106? from which our model correctly predicts the target sequence 26*a – 627434. Another
example from a different module is Calculate 66.6*12.14. which has 808.524 as its target sequence.

The dataset is structured into 56 modules which cover a broad spectrum of mathematics up to uni-
versity level. It is procedurally generated and comes with 2 million pre-generated training samples
per module. The authors provide an interpolation dataset for every module, as well as a few extrap-
olation datasets as an additional measure of algebraic generalization.

We merge the different training splits train-easy, train-medium, and train-hard from all modules into
one big train dataset of 120 million unique samples. From this dataset we extract a character-level
vocabulary of 72 symbols, including start-of-sentence, end-of-sentence, and padding symbols2.

4 EXPERIMENTAL RESULTS

We evaluate our trained model on the concatenated interpolation and extrapolation datasets of the
pre-generated files, achieving a new state of the art: see Table 1. For a more detailed comparison, we
include in the Appendix the interpolation and extrapolation performance of every module separately.
As Fig. 5 shows, in every module the TP-Transformer matches or out-performs the Transformer. Our
model never quite converged, and was stopped prematurely after 1.7 million steps. We trained our
model on one server with 4 V100 Nvidia GPUs for 25 days.

4.1 IMPLEMENTATION DETAILS

We initialize the symbol embedding matrix E from N (0, 1), W (p) from N (1, 1), and all other
matrices W (·) using the Xavier uniform initialization as introduced by Glorot & Bengio (2010).
The model parameters are set to dz = 512, df = 2048, dv = 72, H = 8, L = 6. We were not
able to train the TP-Transformer, nor the regular Transformer, using the learning rate and gradient
clipping scheme described by Saxton et al. (2019). Instead we proceed as follows: The gradients are
computed using PyTorch’s Autograd engine and their gradient norm is clipped at 0.1. The optimizer
we use is also Adam, but with a smaller learning rate = 1× 10−4, beta1 = 0.9, beta2 = 0.995. We
train with a batch-size of 1024 up to 1.7 million steps.

2Note that Saxton et al. (2019) report a vocabulary size of 95 which is misleading in that this figure encom-
passes characters that never appear in the pre-generated train and test data.

4

Under review as a conference paper at ICLR 2020

Table 1: Model accuracy averaged over all modules. A sample is correct if all elements of the target
sequence have been predicted correctly. The column “>95%” counts how many of the modules
achieve over 95% accuracy. Boldface marks the best-performing model up to 700k steps.

weights steps train interpolation extrapolation
acc >95% acc >95%

Simple LSTM 18M 500k - 57.00% 6 41.00% 1
Transformer (Saxton et al.) 30M 500k - 76.00% 13 50.00% 1

Transformer (ours) 44.2M 500k
700k

83.06%
85.01%

75.33%
77.42%

12
14

52.42%
52.00%

1
2

TP-Transformer (ours) 49.2M
500k
700k
1.7M

85.41%
87.25%
91.04%

78.30%
80.67%
84.24%

-
18
25

-
52.48%
55.40%

-
3
3

5 INTERPRETING THE LEARNED ROLES

We analyse the learned role representations of the last layer of the encoder network. To this end, we
sample 128 problems from the interpolation dataset of the arithmetic mixed module and collect the
role vectors from a randomly chosen head. We use k-means with k = 20 to cluster the role vectors
from different samples and different time steps of the final layer of the encoder. Interestingly, we
find separate clusters for digits in the numerator and denominator of fractions. When there is a
fraction of fractions we can observe that these assignments are placed such that the second fraction
reverses, arguably simplifying the fraction of fractions into a multiplication of fractions (see Fig. 2).

Figure 2: Samples from the arithmetic mixed module. “#” denotes the start-of-sentence symbol
and “%” the end-of-sentence symbol. The colored squares indicate the k-means cluster of the role-
vector assigned by one head in the final layer in that position. Blue rectangles show numerator
roles and golden rectangles denominator roles. They were discovered manually. Note how their
placement is swapped in rows 2, 3, and 4. Role-cluster 9 corresponds to the role ones-digit-of-a-
numerator-factor, and 6 to the role ones-digit-of-a-denominator-factor; other such roles are also
evident.

5.1 INTERPRETING THE ATTENTION MAPS

In Fig. 3 we display three separate attention weight vectors of one head of the last TP-Transformer
layer of the encoder. Gold boxes are overlaid to highlight most-relevant portions. The row above
the attention mask indicates the symbols that give information to the symbol in the bottom row. In
each case, they give to ‘/’. Seen most simply in the first example, this attention can be interpreted
as encoding a relation second-argument-of holding between the attended digits and the ‘/’ operator.
The second and third examples show that several numerals in the denominator can participate in
this relation. The third display shows how a numerator-numeral (−297) intervening between two
denominator-numerals is skipped for this relation.

5

Under review as a conference paper at ICLR 2020

Figure 3: TP-Transformer attention maps for three examples as described in section 5.1.

6 INTERPRETATION OF A TP-TRANSFORMER COLUMN

We analyse the attention maps for one difficult sample to gain insight into how the TP-Transformer
might be solving it. We will focus on the encoder part of the input sequence: Solve –3225 = –17*p
– 3480 for p. To this end, we visualize in Fig. 4 the attention maps from the perspective of position
t = 10 which is the column annotated by the second “2”.

Figure 4: The attention maps of all layers for
t = 10 from the 700k-steps TP-Transformer. Ev-
ery row is the softmax attention of an attention
head over the T positions. The input symbol of
every position is given by the x-axis. The # repre-
sents the start-of-sentence symbol and the % rep-
resents the end-of-sentence symbol. The layers
are ordered from the first layer at the top to the
last layer at the bottom.

.5The heatmaps are the TP-Attention of 8 dif-
ferent heads (rows) over the different positions
it can attend to (columns). The figure displays
6 heatmaps for the 6 layers from 1 to 6 or-
dered from top to bottom. The attention maps
of the TP-Transformer are surprisingly instruc-
tive while the Transformer equivalent remains
difficult to interpret (see Fig. 6).

In the first layer we can see one attention head
that very strongly attends to the “=” position.
While not shown here, it turns out that the ac-
tivation of that head is shared among all other
positions. We argue that it might demarcate the
problem type and set the stage for the following
layers because the “=” representation has been
incorporated into every cell state.

The second layer is also striking because
it again shares a common activation pattern
among all cells. In this case, three attention
heads capture the region surrounding cell t for
every t. The final result is three parallel and
slightly offset convolutions over the states of
the previous layer. This allows every cell to col-
lect representations from neighbouring cells.

The third layer follows a similar pattern: every
cellt attends to cellt−1, though some additional
spurious attentions exist.

The fourth layer is harder to interpret. How-
ever, we want to point out that most of the cells
seem to attend to the same number. At other
positions the conclusion is similar: the focus is
on local pattern, roughly clustered around the
different numbers.

The fifth layer is where we observe for the first
time a strong attention across the three main
numbers of the problem. We believe this is
where the network divides in all cells the cur-
rent number representations by ”-17”.

6

Under review as a conference paper at ICLR 2020

The last layer is where we believe the TP-Transformer performs the last step of the computation.
It is here where it subtracts the third number from the first. If you observe closely you will notice
that column 10 is the tens digit of the first number which only attends to the tens digit of the third
number. It turns out that the cell at position 25 with input “8” symmetrically attends to column 10,
i.e., the tens digit cell of the first number attends to the tens digit cell of the third number. This
symmetry holds for all 4 digit positions and might be a direct consequence of Eq. 13.

7 INSIGHTS AND DEFICITS OF MULTIPLE MULTI-HEAD ATTENTION LAYERS

7.1 MULTI-HEAD ATTENTION SUBSPACES CAPTURE VIRTUALLY ALL INFORMATION

In this section we make an argument against the common misconception that Multi-Head Attention
projections access only a small part of the full information content.

Let us consider a toy example where the attention layer of a cellt,l only attends to the cellt′,l. In this
setting, the post-attention representation becomes

AttentionHead(zt,l) = zt,l + W
(o)
l (W

(v)
l zt′,l + b

(v)
l) + b

(o)
l

= zt,l + o(v(zt′,l))

≈ zt,l + f(zt′,l)

(9)

where o, v, f are the respective affine maps. Note that even though W
(o)
l and W

(v)
l induce a projec-

tion into an 8 times smaller vector space, it remains in our setting highly unlikely that h is surjective
and loses information about zt′,l. This is due to the fact that our input zt′,l is a discrete and finite set
of vectors. Consider the embedding representation zt′,0 which can only represent 73 unique vectors
for the 73 unique symbols in our vocabulary. For this setting it is trivial to find a map that is bijective
even for just a single dimension. With more layers or a bigger vocabulary, the number of unique
representations will grow but remains discrete and finite and can, at least theoretically, always be
mapped into an unlimited real number representation.

We empirically test to what extent the trained Transformer and TP-Transformer lose information.
To this end, we randomly select n = 100 samples and extract the hidden state of the last and most
“populated” layer of the encoder zt,6, as well as the value representation v(zt,6) for every head. We
then train an affine model to reconstruct zt,6 from v(zt,6):

ẑt,6 = Whvh(zt,6) + bh

e =
1

n
(ẑt,6 − zt,6)2

(10)

For both trained models, the TP-Transformer and the regular Transformer, the mean squared error
e averaged across all heads is only 0.017 and 0.009 respectively. This indicates that the attention
mechanism does not only incorporate a subspace of the vectors it attends to but affine transforma-
tions that preserve almost the full information content of the cell that had high attention.

7.2 THE BINDING PROBLEM OF STACKED ATTENTION LAYERS

The binding problem refers to the problem of binding features together into objects while keeping
them separated from other objects. It has been studied in the context of theoretical neuroscience (v.d.
Malsburg (1981); Von Der Malsburg (1994)) but also with regards to connectionist machine learning
models (Hinton et al. (1984)). The purpose of a binding mechanism is to allow the fully distributed
representation of symbolic structure (like a hierarchy of features) which has recently resurfaced as
an important research direction for recent neural network research Tang et al. (2018); Palangi et al.
(2017); Schlag & Schmidhuber (2018); Schmidhuber (1993); van Steenkiste et al. (2019).

In this section, we describe how the regular Attention mechanism is ill suited to capture complex
nested representations and provide an intuitive understanding of the benefit of our TP-Attention. We
understand the attention layer of a cell as the means by which the subject (the cell state) queries
all other cells for an object. We then show how a hierarchical representation of multiple queries
becomes ambiguous in multiple layers of regular attention layer.

7

Under review as a conference paper at ICLR 2020

Consider the string “(a/b)/(c/d)”. A good neural representation captures the hierarchical structure
of the string such that it not be confused with the similar-looking but structurally different string
“(a/d)/(c/b)”. Our TP-Attention makes use of a binding mechanism in order to explicitly support
complex structural relations by binding together the object representations with high attention with
a subject-specific role representation.

Let us continue with a more technical example: consider a Transformer network where every cell
only consists of a Multi-Head Attention layer with a residual connection. In this setting, assume that
cella,l only attends to cellb,l, and cellc,l only attends to celld,l where a, b, c, d are distinct positions
of the input sequence. For simplicity, we will only consider one head of the Multi-Head Attention
layer. In this case

za,l+1 = za,l + ol(vl(zb,l))

zc,l+1 = zc,l + ol(vl(zd,l))
(11)

where o and v are affine maps introduced in the previous section. Consider now the next layer
celle,l+1 that attends over cella,l+1 and cellc,l+1 in a hierarchical manner. This results in the repre-
sentation

ze,l+2 = ze,l+1 + ol+1(vl+1(za,l+1 + zc,l+1))

= ze,l+1 + ol+1(vl+1(za,l + zc,l + ol(vl(zb,l)) + ol(vl(zd,l))))
(12)

Note that the final representation is ambiguous in the sense that it is unclear by looking only at Eq.
12 if cella,l has picked cellb,l or celld,l. Either scenario would have lead to the same outcome which
means that the network would not be able to distinguish between these two different structures. In
order to resolve this ambiguity the regular Transformer must recruit other attention heads or find
suitable non-linear maps in-between attention layers but it remains uncertain how the network might
achieve a clean separation.

Our TP-Attention mechanism, on the other hand, specifically removes this ambiguity. Just like in
the previous paragraph, we can simplify the representation of our TP-Attention using the syntax in
Eq. 9. In this case, the respective representations are

za,l+1 = za,l + ol(ra,l ∗ vl(zb,l)),
zc,l+1 = zc,l + ol(rc,l ∗ vl(zd,l)),
ze,l+2 = ze,l+1 + ol+1(vl+1(za,l + zc,l + ol(ra,l ∗ vl(zb,l)) + ol(rc,l ∗ vl(zd,l)))).

(13)

Note that the final representation is not ambiguous anymore. Binding the filler symbols vl(zb,l)
(our objects) with a subject-specific role representation r as described in Eq. 6 breaks the structural
symmetry we had with regular attention. It is now simple for the network to specifically distinguish
the two different structures.

8 RELATED WORK

Several recent studies have shown that the Transformer-based model BERT (Devlin et al., 2018)
captures linguistic relations such as those expressed in dependency-parse trees. This was shown for
BERT’s hidden activation states in (Hewitt & Manning, 2019; Tenney et al., 2019) and, most directly
related to the present work, for the graph implicit in BERT’s attention weights (Coenen et al., 2019;
Lin et al., 2019). Future work applying the TP-Transformer to language tasks (like those on which
BERT is trained) will enable us to study the connection between the explicit relations {rht,l} the
TP-Transformer learns and the implicit relations that have been extracted from BERT.

9 CONCLUSION

We have introduced the TP-Transformer which combines the Transformer architecture with Tensor-
Product Representations. On the novel and challenging Mathematics Dataset, TP-Transformer beats
the previously published state of the art by 8.24%. Our initial analysis of the final TPMHA layer
indicates that the TP-Transformer naturally learns to cluster symbol representations based on their
structural position and relation to other symbols.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda Viégas, and Martin Wat-
tenberg. Visualizing and measuring the geometry of BERT. arXiv preprint arXiv:1906.02715,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, 2019.

Geoffrey E Hinton, James L McClelland, David E Rumelhart, et al. Distributed representations.
Carnegie-Mellon University Pittsburgh, PA, 1984.

Yongjie Lin, Yi Chern Tan, and Robert Frank. Open sesame: Getting inside BERT’s linguistic
knowledge. arXiv preprint arXiv:1906.01698, 2019.

Hamid Palangi, Paul Smolensky, Xiaodong He, and Li Deng. Deep learning of grammatically-
interpretable representations through question-answering. arXiv preprint arXiv:1705.08432,
2017.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=H1gR5iR5FX.

Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order tensor products. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 9981–9993, 2018.

J. Schmidhuber. On decreasing the ratio between learning complexity and number of time-varying
variables in fully recurrent nets. In Proceedings of the International Conference on Artificial
Neural Networks, Amsterdam, pp. 460–463. Springer, 1993.

P. Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artif. Intell., 46(1-2):159–216, November 1990. ISSN 0004-3702. doi: 10.
1016/0004-3702(90)90007-M. URL http://dx.doi.org/10.1016/0004-3702(90)
90007-M.

Shuai Tang, Paul Smolensky, and Virginia R de Sa. Learning distributed representations of symbolic
structure using binding and unbinding operations. arXiv preprint arXiv:1810.12456, 2018.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Sjoerd van Steenkiste, Klaus Greff, and Jürgen Schmidhuber. A perspective on objects and system-
atic generalization in model-based rl. arXiv preprint arXiv:1906.01035, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

C. v.d. Malsburg. Technical Report 81-2, Abteilung für Neurobiologie, Max-Planck Institut für
Biophysik und Chemie, Göttingen, 1981.

Christoph Von Der Malsburg. The correlation theory of brain function. In Models of neural networks,
pp. 95–119. Springer, 1994.

9

https://openreview.net/forum?id=H1gR5iR5FX
http://dx.doi.org/10.1016/0004-3702(90)90007-M
http://dx.doi.org/10.1016/0004-3702(90)90007-M

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 ACCURACY PER-MODULE

Figure 5: 1.7M-steps TP-Transformer (ours) and 700k-steps Transformer (ours) accuracies for every
module of the Mathematics Dataset.

10

Under review as a conference paper at ICLR 2020

A.2 TP-TRANSFORMER VS TRANSFORMER ATTENTION MAPS

Figure 6: Attention map for all layers comparing the 700k-steps TP-Transformer (left) against the
700k-steps regular Transformer (right). Layers are ordered 1 to 6 from top to bottom. The input is
”Solve -3225 = -17*p - 3480 for p.” and both models correctly predicts ”-15”.

11

Under review as a conference paper at ICLR 2020

Figure 7: Attention map for all layers comparing the 700k-steps TP-Transformer (left) against the
700k-steps regular Transformer (right). Layers are ordered 1 to 6 from top to bottom. The input is
”Evaluate 2/3*((1/7)/(1/11))” and the TP-Transformer correctly predicts ”22/21” whereas the regular
Transformer is wrong and predicts ”2/3”.

12

Under review as a conference paper at ICLR 2020

Figure 8: Attention map for all layers comparing the 700k-steps TP-Transformer (left) against the
700k-steps regular Transformer (right). Layers are ordered 1 to 6 from top to bottom. The input is ”-
85.7*19.8” and the TP-Transformer correctly predicts ”-1696.86” whereas the regular Transformer
is wrong and predicts ”-1708.86”.

13

	Introduction
	The TP-Transformer
	TP-Multi-Head Attention
	Feed-forward Layer
	The Decoder Network

	The Mathematics Dataset
	Experimental results
	Implementation Details

	Interpreting the learned roles
	Interpreting the attention maps

	Interpretation of a TP-Transformer column
	Insights and deficits of multiple multi-head attention layers
	Multi-Head Attention subspaces capture virtually all information
	The Binding Problem of stacked Attention layers

	Related work
	Conclusion
	Appendix
	Accuracy per-module
	TP-Transformer vs Transformer Attention Maps

