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ABSTRACT

We examine how recently documented, fundamental phenomena in deep learn-
ing models subject to pruning are affected by changes in the pruning procedure.
Specifically, we analyze differences in the connectivity structure and learning
dynamics of pruned models found through a set of common iterative pruning
techniques, to address questions of uniqueness of trainable, high-sparsity sub-
networks, and their dependence on the chosen pruning method. In convolutional
layers, we document the emergence of structure induced by magnitude-based un-
structured pruning in conjunction with weight rewinding that resembles the effects
of structured pruning. We also show empirical evidence that weight stability can
be automatically achieved through apposite pruning techniques.

1 INTRODUCTION

Deep neural architectures have seen a dramatic increase in size over the years (Amodei & Hernan-
dezl |2018). Although not entirely understood, it is known that over-parametrized networks exhibit
high generalization performance, with recent empirical evidence showing that the generalization gap
tends to close with increased number of parameters (Zhang et al.| 2017} Belkin et al.| [2018; [Hastie
et al., 2019; |Allen-Zhu et al., 2018}; Du et al.} 2018; |Du & Lee, |2018)), contrary to prior belief, also
depending on the inductive bias and sensitivity to memorization of each base architecture (Zhang
et al.l[2019).

While advantageous under this point of view, the proliferation of parameters in neural architectures
may induce adverse consequences. The computational cost to train some state-of-the-art models has
raised the barrier to entry for many researchers hoping to contribute. Because of limited memory,
time, and compute, and to enable private, secure, on-device computation, methods for model com-
pression have seen a rise in popularity. Among these are techniques for model pruning, quantization,
and distillation.

Pruning, in particular, has been seen as an overfitting avoidance method since the early decision tree
literature (Breiman et al.| [1984), with work such as that of [Mingers| (1989) comparing the effects
of different tree pruning techniques. In analogy to this prior line of work, we provide an empirical
comparison of pruning methods for neural networks. As explicitly pointed out in |[LeCun et al.
(1990b)), there is no obvious, natural order in which neural network parameters should be removed.
Indeed, as|Schaffer|(1993) suggests, identifying the best network pruning technique should give way
to understanding what accounts for their success.

Revived by the recent observation of the existence of sub-networks with favorable training properties
within larger over-parametrized models (‘lottery’ or ‘winning tickets’ (Frankle & Carbin, 2018)),
and in the spirit of Zhou et al.| (2019)), this work investigates the dependence of the properties of
these sparse, lucky sub-networks on the choice of pruning technique. We set out to answer the
questions: do pruning methods other than magnitude-based unstructured pruning give rise to win-
ning tickets? If so, do they identify the same lucky sub-network, or are there many equiperforming
winning tickets within the same over-parametrized network? This allows us to categorize pruning
methods based on the similarity of masks they generate. We develop methods to further analyze
the nature of trainable sparse networks found through common iterative pruning techniques, and
provide new insight towards a deeper understanding of their properties and of the processes that
generate them. Without addressing issues related to scalability and emergence of lottery tickets in



Under review as a conference paper at ICLR 2020

large-scale domains, we focus instead on the empirical characterization of weight evolution and
emergence of distinctive connectivity patterns in small architectures, such as LeNet (LeCun et al.,
1990a), on simple datasets, such as MNIST (LeCun et al.| [1994)). This also helps develop analysis
techniques for sanity checks via visual inspection. We then apply the same techniques to larger
architectures and more complex tasks to explore whether findings hold in different regimes.

1.1 CONTRIBUTIONS
This work provides empirical evidence showing that:

1. there can exist multiple different lucky sub-networks (lottery tickets) within an over-
parametrized network;

2. itis possible to find a lucky sub-network through a variety of choices of pruning techniques;

3. lottery ticket-style weight rewinding, coupled with unstructured pruning, gives rise to con-
nectivity patterns similar to the ones obtained with structured pruning along the input di-
mension, thus pointing to an input feature selection type of effect. This is not the case when
rewinding is substituted by finetuning;

4. random structured pruning outperforms random unstructured pruning, meaning that net-
works are more resistant to the removal of random units/channels than to the removal of
random individual connections;

5. different iterative pruning techniques learn vastly different functions of their input, and sim-
ilarly performing networks make different mistakes on held-out test sets, hinting towards
the utility of ensembling in this setting;

6. weight stability to pruning correlates with performance, and can be induced through the
use of suitable pruning techniques, even without late resetting.

2 RELATED WORK

Identifying important units in a neural network is an open challenge in machine learning, driven
by desires for interpretability and model reduction, among others. Various proxies for importance
have been proposed as a direct consequence of the lack of precise mathematical definition of this
term. Different objectives lead to different mathematical formulations of importance: concept cre-
ation, output attribution, conductance, saliency, activation, explainability, connectivity density, re-
dundancy, noise robustness, stability, and more (Berglund et al., |2013; |Amjad et al.| 2018; Zhou
et al., |2018; |Dhamdhere et al.,[2018; |[Shrikumar et al.,[2017).

State-of-the-art results in the field have seemed to strongly correlate with increased number of pa-
rameters, leading to the common use of vastly over-parametrized models, compared to the com-
plexity of the tasks at hand. In practice, however, most common neural network architectures can
be dramatically pruned down in size (Hanson & Pratt, |1989; |[LeCun et al., |[1990b; [Hassibi & Storkl,
1993; Han et al.,|2015;|Guo et al., 2016;|Yang et al., 2016} |Luo et al., 2017;[Tung et al., 2017} Zhang
et al.| 2018} |Ayinde et al.,2019; Mussay et al.,[2019).

Unlike pruned pre-trained and then finetuned models, smaller untrained models are, in general,
empirically harder to train from scratch. [Frankle & Carbin|(2018) conjecture that there exists at least
one sparse sub-network, a winning ticket, within an over-parametrized network, that can achieve
commensurate accuracy in commensurate training time with fewer parameters, if retrained from the
same initialization used to find the pruning mask. To find this lucky sub-network, they iteratively
prune the lowest magnitude unpruned connections after a fixed number of training iterations (LeCun
et al.,{1990b; |Han et al.,|2015). Interestingly, while pruned weights are set to zero, unpruned weights
are rewound to their initialization values, prior to the next iteration of training and pruning.

Researchers have encountered difficulties in scaling this method to larger models. |Liu et al.| (2018)
were unable to successfully train small sparse sub-networks found through this procedure, when
starting from VGG-16 (Simonyan & Zisserman, [2014) and ResNet-50 (He et al., 2015) trained
on CIFAR-10 (Krizhevsky, [2009), and instead observed that random initialization outperformed
weight rewinding. Similarly, Gale et al.| (2019) were unable to successfully find a sub-network
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with these properties within ResNet-50 trained on ImageNet (Russakovsky et al.l[2015) and Trans-
former (Vaswani et al., 2017) trained on WMT 2014 English—to—Germa

Slight modifications to the original procedure have been proposed in order to favor the emergence of
winning tickets in larger models and tasks. Zhou et al.| (2019) challenge the idea that unstructured,
magnitude-based pruning is necessary for the emergence of winning tickets. They instead prune
weights based on their change in magnitude between initialization and the end of training, and reset
the surviving weights to their sign at initialization times the standard deviation of all original weights
in the layer. |Frankle & Carbin|(2018) note that larger models such as ResNet-18 and VGG-19 require
selecting unimportant weights globally instead of layer by layer, and recommend the use of learning
rate warmup. |Frankle et al.| (2019) further add that late resetting of the unpruned parameters to
values achieved early in training appears to be superior to rewinding the weights all the way to their
initial values. [Morcos et al.| (2019) confirm the findings on the efficacy of global pruning and late
resetting.

Although hard to find in larger regimes, when found, lottery tickets have been shown to possess
generalization properties that allow for their reuse in similar tasks, thus reducing the computational
cost of finding task- and dataset-dependent sparse sub-networks (Morcos et al.,|2019).

On the contrary, alternative approaches to neural architecture optimization have taken a construc-
tionist approach, starting from a minimal set of units and connections, and growing the network
by adding new components (Stanley & Miikkulainen, 2002; |Xie et al., [2019). Finally, other meth-
ods combine both network growing and pruning, in analogy to the different phases of connection
formation and suppression in the human brain (Floreano et al.,|2008; |Dai et al.,[2019).

3 METHOD

All networks in this section are trained for 30 epochs using SGD with constant learning rate 0.01,
batch size of 32, without explicit regularization. The pruning fraction per iteration is held con-
stant at 20% of remaining connections/units per layer. All experiment and analysis code is publicly
availabld?]

3.1 PRUNING METHODS

This works explores a variety of pruning techniques that may differ along the following axes:

Neuronal Importance Definition: In magnitude-based pruning, units/connections are removed
based on the magnitude of synaptic weights. Usually, low magnitude parameters are removed. As a
(rarer) alternative, one can consider removing high magnitude weights instead (Zhou et al., [2019).
Non-magnitude-based pruning techniques, instead, can be based, among others, on activations, gra-
dients, or custom rules for neuronal importance.

Local vs. global: Local pruning consists of removing a fixed percentage of units/connections from
each layer by comparing each unit/connection exclusively to the other units/connections in the layer.
On the contrary, global pruning pools all parameters together across layers and selects a global frac-
tion of them to prune. The latter is particularly beneficial in the presence of layers with unequal
parameter distribution, by redistributing the pruning load more equitably. A middle-ground ap-
proach is to pool together only parameters belonging to layers of the same kind, to avoid mixing,
say, convolutional and fully-connected layers.

Unstructured vs. structured: Unstructured pruning removes individual connections, while struc-
tured pruning removes entire units or channels. Note that structured pruning along the input axis is
conceptually similar to input feature importance selection. Similarly, structured pruning along the
output axis is analogous to output suppression.

In this work, we compare: magnitude-based { L1, random} unstructured (US), {L1, Lo, L, ran-
dom} structured (S), and hybrid pruning. The hybrid techniques consists of pruning convolutional

!"Translation Task - ACL 2014 Ninth Workshop on Statistical Machine Translation (URL: https: //www .
statmt.org/wmtl4d/translation-task.html)
“in anonymized form, at/github.com/iclr-8dafb2ab/iterative-pruning-reinit
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Figure 1: Test accuracy on the MNIST test set Figure 2: Test accuracy on the MNIST test set
for SGD-trained LeNet models, pruned using for SGD-trained LeNet models, pruned using
six different pruning techniques, and rewound four different pruning techniques corresponding
to initial weight values after each pruning itera- to the four colors. The transparent curves corre-
tion. spond to finetuning; the dark ones to rewinding.

layers with L structured pruning and fully-connected layers with L; unstructured pruning. ‘fc-
only” identifies experiments in which only the fully-connected layers are pruned. Structured pruning
is performed along the input axis. All techniques are local. We implement these pruning techniques
and train our models using PyTorch (Paszke et al.,[2017).

3.2 FINETUNING VS. REINITIALIZING

A point of contention in the literature revolves around the necessity to rewind weights after each
pruning iteration, as opposed to simply finetuning the pruned model. Here we avoid performance-
based arguments in favor of a study of how this choice affects the nature of left-over connectivity
structure. For comparisons with alternative rewinding techniques, see Appendix [A] Note that when
rewinding the weights according to the strategies proposed in [Frankle & Carbin/(2018) and Zhou
et al.[(2019), all parameters in the network get affected by this procedure, including biases. On the
other hand, in this work, pruning is not applied to biases.

4 RESULTS

In all figures, unless otherwise specified, the error bars and shaded envelopes correspond to one
standard deviation (half up, half down) from the mean, over 5 experiments with seeds 0-4.

We begin by exploring the performance of sub-networks generated by different iterative pruning
techniques starting from a base LeNet architecture, where lottery tickets are known to uncontrover-
sially exist and be easy to find. Each point in Fig. |l| represents the test accuracy after exactly 30
epochs of training (not the best test accuracy achieved across the 30 epochs). Multiple techniques
are able to identify trainable sub-networks up to high levels of sparsity. For a note on how the
fraction of pruned weights is computed, see Appendix

Different types of magnitude-based structured pruning seem to perform only marginally better than
pruning random channels, leading us to conclude that either the channels learn highly redundant
transformations and are therefore equivalent under pruning, or there exists a hierarchy of importance
among channels but it is not correlated to any of the L,, norms tested in these experiments.

We quantify the overlap in sub-networks found by two different pruning methods started with
pairwise-identical initializations by computing the Jaccard similarity coefficient (also known as In-
tersection over Union, or IoU) between the masks (Jaccard, [1901]).

Although the different structured pruning techniques find sub-networks that perform similarly
(Fig[T), a deeper investigation into the connectivity structure of the sub-networks they find shows,
as evident from the per-layer growth of the Jaccard distance with pruning iterations in Fig.[3] that
there exist multiple lucky sub-networks with similar performance, yet little to no overlap.
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Figure 3: Jaccard distance between the masks (i.e. connectivity structures) found by pruning LeNet
using Le-structured pruning, and those found by other pruning methods listed in the legend, con-
ditional on identical seed for meaningful comparison in light of neural network degeneracy. The
comparison is conducted for each layer individually. L;-structured pruning yields the most similar
masks to Lo-structured pruning, as expected.

layer: conv2
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Figure 4: Jaccard distance between the mask for the second convolutional layer found by pruning
LeNet using L;-unstructured pruning, and the mask found by other pruning methods listed in the
legend above, conditional on identical seed. Surprisingly, L;-unstructured behaves more like L;-
structured pruning than a random unstructured pattern. This behavior is further investigated in Fig. E}

The study of the Jaccard distance between masks surfaces another interesting phenomenon: as
shown in Fig. 4} the connectivity patterns obtained from magnitude-based unstructured pruning
are relatively more similar to those that one would expect from structured pruning along the in-
put dimension, especially in the convolutional layers, than to random unstructured patterns. This
suggests that a form of input (or, at times, especially in larger models, output) feature selection is
automatically being learned. This observation is further confirmed via visual inspection of the prun-
ing masks; the first two columns of Fig. [5]show the weights and masks in the second convolutional
layer of LeNet, obtained by applying structured and unstructured L, pruning. Unstructured pruning
ends up automatically removing entire rows of filters corresponding to unimportant input channels.
Structured pruning, instead, in this case, does so because, in these experiments, it is explicitly in-
structed to prune along the input dimension. This suggests that the low-magnitude weights pruned
by L;-unstructured pruning may be those that process low-importance hidden representations and
whose outputs contribute the least to the network’s output, which in turn results in lower gradients
and smaller weight updates, causing these weights to remain small, and thus be subject to pruning.

Not only do the different pruning methods lead to different masks, but they also lead to sub-networks
that learn partially complementary solutions, opening up the opportunity for the ensembling of dif-
ferent sparse sub-networks. Table [2] records the average accuracy (over the 5 experiment seeds) of
sub-networks obtained at each pruning iteration through a set of pruning techniques, as well as the
average accuracy obtained after simply averaging all their predictions, or the predictions of struc-
tured and unstructured L; pruning. Note that, after each pruning iterations, the levels of sparsity in
the sub-networks will be different as they depends on the type of pruning applied.

4.1 FINETUNING VS. REINITIALIZING

The “Lottery Ticket Hypothesis” [Frankle & Carbin|(2018) postulates that rewinding weights to the
initial (or early-stage (Frankle et al., 2019)) values after pruning is key to identifying lucky sub-
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Figure 5: Masked weights in the 2"¢ convolutional layer of LeNet at two different pruning iterations
(rows), and for four different pruning + weight treatments (columns).

networks. In this section, we attempt to test this hypothesis in the experimental setting of small
networks (LeNet) and simple tasks (MNIST), and we investigate, at the individual parameter level,
how the this procedure ends up differing from finetuning after pruning.

The emphasis here is not on performance, rather on understanding. Therefore, we decide not to
focus on extracting state-of-the-art performing lottery tickets, in favor, instead, of minimizing the
influence of exogenous choices and the reliance on ad-hoc heuristics, whose primary goal is last-mile
performance gains.

Finetuning is found to yield pruned networks that are comparable in performance with reinitialized
networks (at least in the simple-task-small-network regime) when given the same training budget,
and when the networks are pruned using the same technique. It is known, however, that higher
quality lottery tickets can be obtained by rewinding the weight values to their value after a small
number of training iterations (Frankle et al.,[2019). This was not experimented with in this work.

When finetuning with L -unstructured pruning, the magnitude of weights tends to continue growing,
achieving higher final values at later pruning iterations than their reinitialized counterparts.

Despite achieving similar average performance in this simplified scenario, the interesting observa-
tion lies in the stark difference between masks created by the same pruning technique when the
weights are rewound or finetuned. Fig. [5] shows that finetuning removes the natural tendency of
L;-unstructured pruning with reinitialization to approximate the behavior of L;-structured pruning.
We can therefore primarily attribute the emergence of that interesting connectivity pattern to the
choice of reinitializing the weights. In terms of mask structure, the difference between the effects
of finetuning and lottery-ticket reinitialization is observed to grow similarly across all layers and
logarithmically with the number of pruning iteration (see Appendix [A).

5 WEIGHT EVOLUTION AND STABILITY TO PRUNING

Frankle et al.| (2019) introduce the practice of late resetting, i.e. rewinding weights to their value
after a small number of training iterations, as opposed to their value at initialization, and claim that
its effectiveness is due to it enforcing a form of weight stability to pruning. In other words, weight
values after a few batches of training may be sufficiently informative to then drive the optimization
down the same promising direction, from which the high-quality solution found by the unpruned
model can be reached, even in high-sparsity scenarios. In practice, this would correspond to all
unpruned weights converging to approximately the same value after each training stint.

While there exists a multitude of good solutions for convergence, the one initially found by the
unpruned network is certainly a high-quality one that we know should be reachable from the initial
conditions. In a way, being able to find this solution even in the sparse regime hints at the fact that
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Figure 6: Weight values (y-axis) after 30 epochs of training at various consecutive sparsity levels
(x-axis), for weights in the 2"9 convolutional layer in the LeNet architecture (seed: 0).
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Figure 7: Weight values (y-axis) after 30 epochs of training at various consecutive sparsity levels
(x-axis), for weights in the 3rd fully-connected layer in the LeNet architecture (seed: 0).

the adopted pruning strategy has not interfered with and modified the optimization landscape to the
point that this solution is no longer easy to reach.

We therefore ask whether weight stability to pruning is indeed advantageous, in terms of pruned
network performance, and, if so, whether this property can be induced in more natural ways than
by manual late resetting. To answer this, we track individual and group weight evolution over time
in over-parameterized and under-parameterized networks (i.e. unpruned and pruned, with increas-
ing sparsity). We look for differences in weight value after training when the weight is part of a
large/small pool of unpruned weights.

As shown in Fig. [f] [7]and [§] we empirically find a correlation between weight stability and perfor-
mance, and observe that the most competitive pruning techniques also exhibit the highest degree of
weight stability, even when weights are reset to their true initial value (no late resetting).

In general, pruning techniques with an unstructured component tend to exhibit higher weight sta-
bility over pruning iterations. These weights tend to converge to solutions in which their ordinality
varies only minimally from one pruning iteration to the next. This is especially true for the ‘hybrid’
pruning technique, in which weights in convolutional layers seem to converge to approximately the
same value after each set of 30 allotted epochs of training from rewinding.

In fully-connected layers, even when using “stable” pruning techniques, the magnitude of unpruned
weights at the end of training (with constant training budget of 30 epochs from the initial conditions)
grows as sparsity grows, likely to compensate for the contribution of missing signal from pruned
connections to the output of downstream units. As a parallel to the familiar decrease in the standard
deviation of the weight distribution of common initialization schemes as the number of incoming
and/or outgoing connections increases, here we confirm that, as we prune individual connections,
the ideal, final weight configuration is composed of values with higher overall magnitude and higher
standard deviation. We hypothesize, but do not get to test in this work, that, when pruning with
rewinding, rescaling the initial weights by a factor that accounts for the decrease in the number of
incoming and/or outgoing connections could be beneficial to achieve better, faster convergence in
sparsified networks.

5.1 DO THESE OBSERVATIONS HOLD IN LARGER NETWORKS AND DOMAINS?

These empirical results have been observed to hold in AlexNet and VGG-11 architectures on MNIST
and CIFAR-10 (see Appendix [E). In even larger models, the nature of lottery tickets is still con-
tended, and special care is required in designing ad-hoc training and pruning procedures to facilitate
their discoverability. These larger regimes are not subject to study in this current work.
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Figure 8: Absolute difference between weight values at pruning iteration ¢ and ¢ — 1, averaged over
all iterations and all weights in each layer. The lower, the more stable.

6 CONCLUSION

We show evidence against the uniqueness of winning tickets in a variety of networks and tasks, by
identifying different lucky sub-networks of competitive performance within the same parent net-
work, while controlling for degeneracy by fixing experimental seeds.

We also provide empirical results showing that rewinding weights to the original values at initializa-
tion after each pruning iteration yields sparsified networks that may not only be superior to finetuned
sparse models from a performance perspective, but also, in practice, appear to possess structural
advantages that might make them more suitable for hardware-level implementations with inference-
time speed-up effects.

With the explicit intent not to adopt any special training tricks suggested in the literature to induce the
emergence of lottery tickets in state-of-the-art deep architectures, this work intentionally restricts its
action to smaller models and domains, to begin a more thorough investigation of the phenomenology
of pruned networks.

We offer methods to experimentally analyze and compare the effects of different pruning techniques
on the performance of neural networks and on the nature of the masks generated by each. This can
be further extended in the future to better understand the role of late resetting, learning rate warm-up,
and any new pruning method or related training trick, in terms of the similarity of masks obtained
through each pruning procedure modification.

We also conjecture that early monitoring of weight stability after a small number of pruning itera-
tions (as opposed to, or in addition to the monitoring of the spectrum of the Hessian) might serve as
a powerful indicator of the likelihood of the iterative pruning procedure to result in the discovery of
a lottery ticket.

Valuable extensions would target machine learning applications beyond image classification, and
study the interplay of different optimization strategies and pruning techniques in the evolution of
weights and emergence of connectivity structure.

We hope these experimental results will guide theoretical work in this sub-field to match observa-
tions. An open dialog between the theoretical and experimental communities can lead to faster and
more robust understanding of deep learning phenomena, and allow practitioners to select the most
suitable methodology for their application based on more grounded understanding rather that mere
performance.
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Figure 9: Jaccard distance between the masks found by pruning LeNet and rewinding weights, and
those found by finetuning after pruning, conditional on identical pruning techniques and seeds. The
comparison is conducted for each layer individually. Note the logarithmic scale on the x-axis.

A FINETUNING VS. REINITIALIZING (CONTINUED)

The Jaccard distance, or any other similarity measure among masks (e.g., the Hamming distance),
can be adopted to quantify the effects of the choice of finetuning or reinitializing weights after
pruning. As expected, the nature of the connectivity structure that emerges in an iterative series of
pruning and weight handling steps depends not only on the pruning choice but also on how weights
are handled after pruning. Finetuning yields significantly different masks from rewinding, for all
pruning techniques, and the difference (quantified in terms of the Jacccard distance) appears to grow
logarithmically in the number of pruning iterations (Fig. [9).

A.1 SIGN-BASED REINITIALIZION

Does the exact weight value at initialization carry any significance, or is all we care about its sign?

As proposed by [Zhou et al.| (2019), we experiment with reinitializing the pruned sub-network by
resetting each unpruned parameter ¢ to o, - sign(w; ), where w; is the weight value of parameter ¢ at
initialization, and o, is the empirical standard deviation of the weights in layer L that contains the
parameter ¢. This is in contrast to rewinding to the initial weight values w;, as originally suggested
by [Frankle & Carbin|(2018), or finetuning without weight resetting.

The overall test accuracy of our experiments (Fig. [T0) seems to support the observation of [Zhou
et al. (2019) that, as long as the sign matches the sign at initialization (and special care is taken
in re-scaling the standard deviation), resetting the weights to different values won’t affect the sub-
networks trainability and performance. Removing the factor of o causes the network not to converge;
as expected, keeping the weights within a numerically favorable range is important, and naively
focusing on the sign alone leads to poor performance.

Adopting mask similarity to test for equivalence among reinitialization techniques, the method
of Zhou et al.[(2019) is found to induce structure that differs more substantially from the connectiv-
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Figure 10: Test accuracy comparison on the MNIST test set for SGD-trained LeNet models, pruned
using four different pruning techniques corresponding to the four colors, and reinitialized using three
different techniques corresponding to the line styles.

0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.97 0.98 0.99
LeNet 60 48 36 30 24 18 12 6 3 2 1 0.6
AlexNet 61,100 48,880 36,660 30,550 24,440 18,330 12,220 6,110 3,055 1,833 1,222 611

VGGI11 132,863 106,290 79,718 66,431 53,145 39,859 26,572 13,286 6,643 3,985 2,657 1,328

Table 1: Number of parameters (in thousands) left in each model at each pruning fraction.

ity patterns generated by the method of |[Frankle & Carbin|(2018) than simple finetuning does, across
most layers and a set of common choices of magnitude-based pruning techniques (Fig. [LT).

B EFFECTIVE PRUNING RATE

A subtle implementation detail involves the way in which the fraction of pruned weights is com-
puted, especially in convolutional layers pruned with structured pruning techniques. Take, for ex-
ample, the LeNet architecture used in this work. When applying pruning to produce results like
the ones displayed in Fig. [T} there are two ways to define the number of weights that get pruned
(displayed along the x-axis). The definition used in the main portion of the paper uses the fraction
of weights explicitly pruned by the decision rule that produces the mask for each layer. However,
this doesn’t account for the implicitly pruned weights, i.e. those weights that, due to downstream
pruning in following layers, are now disconnected from the output of the neural network. For this
reason, they receive no gradient and their value never changes from that at initialization. They can
technically take on any value, including 0, without affecting the output of the neural network. In
other words, they could effectively be pruned without any loss of performance. If we include these
weights in the effective fraction of pruned weights, Fig.[T] (now converted into Fig. [[2(a)| for visual
coherence) is modified into Fig.[T2(b)] When looking at effective sparsity, structure pruning appears
to be competitive, especially at high pruning fractions, because its effective sparsity naturally tends
to be higher. This also suggests that since the effective pruning rate per iteration is higher than
20% for structured pruning techniques, one could experiment with lowering it, to avoid aggressive
pruning and consequent loss in performance.

The number of parameters corresponding to various fractions of pruned weights in the models in-
vestigated in this work is listed in Table[I]

C PRUNING AFTER 1 TRAINING EPOCH

Is it necessary to train for many epochs before pruning to find high quality masks?
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(a) First convolutional (b) First convolutional (c) First convolutional (d) First convolutional
layer layer layer layer

(e) Second convolutional (f) Second convolutional (g) Second convolutional (h) Second convolutional
layer layer layer layer

(1) First fully-connected (j) First fully-connected (k) First fully-connected (1) First fully-connected
layer layer layer layer

(m)  Second fully- (n)  Second fully- (o) Second fully- (p) Second fully-
connected layer connected layer connected layer connected layer

(q) Third fully-connected (r) Third fully-connected (s) Third fully-connected (t) Third fully-connected
layer layer layer layer

Figure 11: Growth of the Jaccard distance between the mask found by rewinding after pruning and
three other techniques of handling weights (in order from highest to lowest opacity in the figures:
finetuning, rewinding to o - sign(w; ), and rewinding to sign(w; ). Each column of sub-figures cor-
responds to a pruning technique (same color code as in the rest of the paper); each row corresponds
to a layer in LeNet. Note the logarithmic scale on the x-axis.
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Figure 12: Test accuracy achieved after 30 training iterations by LeNet models trained with SGD
and pruned with the methods listed in the legend. Each dot corresponds to a version of the model
at the end of training. Each line connects models obtained by iterative pruning from the same seed.
The two plots differ in the way the fraction of pruned weights is computed.

(a) 5*" iteration of L;-US pruning (b) 5" iteration of L;-US pruning
with rewinding (1 epoch) with rewinding (30 epochs)

] . wa"a . ="ag "1 “a ¥ a -y
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ing with rewinding (1 epoch) ing with rewinding (30 epochs)

Figure 13: Difference in mask structure in the second convolutional layer that emerges when pruning
after a single epoch (left) versus 30 epoch (right) of training (seed: 0).

To speed up the winning ticket search, we evaluate the option of shortening the training phases to
only 1 epoch of training per iteration.

We compare the masks obtained with this quicker method to the masks found after training the
network at each pruning iteration for 30 epochs (Fig. [[3). After a single epoch of training, the
ordinality of weight magnitudes has not yet settled to the solution corresponding to the values after
30 epochs of training. Although the majority of ranking swaps among weights, which can bring
parameters from the lowest magnitude quartile all the way to the top one, and vice versa, happen in
the first few epochs of training, minor movements later on in training might still be highly relevant
in obtaining a robust ranking for magnitude-based pruning.

D COMPLEMENTARITY OF LEARNED SOLUTIONS

Pruning the same network using different pruning techniques gives rise to sparse sub-networks that
differ not only in structure but also in the learned function that they compute. Given sufficient com-
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Figure 14: Number of examples in the MNIST test set over which the sub-networks obtained through
each pruning technique agree on the prediction, on average (over 5 experimental seeds).

Pruning lieration Lo S L1 S L1 US  hybrid  randomUS  randomS  L_ooS  fe-only Ly US | an  fybrid+fe-only+

L, US
1 97.4 975 97.8 97.8 97.4 97.3 97.1 97.9 982 98.1
2 972 97.0 97.7 97.6 97.0 96.9 96.9 97.8 982 97.9
3 9.5 9.6 97.8 975 9.1 96.4 96.2 97.7 98.1 97.9
4 95.8 95.6 97.9 97.6 95.6 95.1 95.4 97.8 97.9 97.9
5 95.0 95.1 97.6 975 93.8 94.0 94.1 97.8 977 97.9
6 942 93.8 97.6 97.4 922 929 933 97.6 97.6 97.7
7 91.7 927 97.4 975 89.2 91.0 91.3 97.6 974 97.8
8 89.5 90.9 973 97.4 458 882 88.9 975 972 97.7
9 87.6 86.9 97.0 973 14.0 83.7 86.2 975 972 975
10 82.0 82.2 9.5 96.9 113 79.2 81.3 973 96.8 973
11 772 711 95.9 96.8 113 60.1 763 97.0 96.6 97.1
12 725 725 945 96.4 113 455 74.1 96.9 9.3 97.0
13 69.0 65.1 902 95.8 113 41.1 65.6 96.1 957 96.4
14 65.4 583 835 953 113 320 584 959 95.1 96.3
15 557 547 7.7 94.4 113 185 483 947 94.6 95.7
16 471 437 69.5 925 113 113 247 933 94.0 947
17 459 416 479 883 113 113 21.9 90.7 91.9 928
18 36.7 37.8 324 81.8 113 113 145 87.4 91.0 91.6
19 30.2 35.9 23.0 76.4 113 113 119 84.3 89.3 90.3
20 294 33.1 21.2 719 113 113 117 78.6 85.0 86.0

Table 2: Sub-network accuracies at each pruning iteration. Ensembling of sub-networks obtained
through different pruning techniques can yield higher performance, hinting at the complementarity
of information learned by each sub-network.

pute and memory budget, one can consider combining the predictions made by each sub-network to
boost performance. On the left side of Table[2} for each pruning iteration, the average accuracy of a
pruned LeNet model is listed, along with, on the right, the accuracies obtained by simply averaging
the predictions of all eight individual sub-networks (“all”’) and by averaging the predictions obtained
from the three most promising pruning techniques (last column).

The similarity of solutions can also be explored by looking at the heat maps of the agreement in
average class prediction across sub-networks obtained through different pruning techniques. For
reference, Fig. [14{ provides these visualizations for the 18" and 20*" pruning iterations.

E ALEXNET AND VGG oN MNIST AND CIFAR-10

In this section, we confirm qualitative observations, previously reported on LeNet models, on the
structure of connectivity patterns that emerge from the application of L; unstructured pruning in the
context of AlexNet and VGG-11 architectures.
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Figure 15: Binary weight masks for the first four convolutional layers of AlexNet trained on MNIST
(left) and VGG-11 trained on CIFAR-10 (right), at the 20th and last pruning iteration for L; unstruc-
tured pruning (seed: 0). Despite the unstructured nature of the pruning technique, structure emerges
along the input and output dimensions, which resembles the effect of structured pruning.

We train two individual sets of experiments starting from the base AlexNet model, one on MNIST,
one on CIFAR-10. VGG models are trained on CIFAR-10 exclusively.

Fig.[I5]shows the binary masks obtained in the first four convolutional layers of the two models after
20 pruning iterations, with pruning rate of 20% of remaining connections at each iteration. Here,
the reported AlexNet properties refer to the MNIST-trained version. Preferential structure along the
input and output dimensions (in the form of rows or columns of unpruned filters) is visible across the
various layers, although visual inspection becomes hard and inefficient as the number of parameters
per layer grows.

Qualitative visualizations of weight values at convergence over the series of 20 pruning iterations
(Fig. [T6) support arguments around weight stability as an indicator of the likelihood of identify-
ing a competitive sub-network. In this small set of experiments, in which L; unstructured pruning
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appears to remain competitive even at high sparsity levels, weights remain more likely to preserve
their ordinality when subject to L; unstructured pruning. On the other hand, hybrid pruning, while
exhibiting weight evolution characteristics that bridge the behavior of structured and unstructured
pruning, is dominated by the effects of L; structured pruning of the convolutional layers. We sus-
pect that too high a pruning fraction in the pruning techniques with a structured components may
be responsible for the associated drop in performance. Regardless, the claim that weight stability is
sufficient (though perhaps not necessary) for sub-network performance at high sparsity appears to
hold in these architectures and tasks. As in previous experiments with smaller models, we want to
shy away from performance-based comparisons that attempt to determine the “best” pruning tech-
nique, and instead reiterate that, irrespective of its value, performance seem to correlate positively
with weight stability. However, this is not yet sufficient to determine a direct causal link between
the two properties.
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Figure 16: Weight values (y-axis) after 30 epochs of training at various consecutive sparsity levels
(x-axis), for weights in the 1¢ convolutional layer (first row) and last fully-connected layer (second
row) in the AlexNet architecture, and the 15* convolutional layer (third row) and last fully-connected
layer (fourth row) in the VGG-11 architecture (seed: 0). Each column corresponds to one of the
following pruning techniques: L1 structured pruning, hybrid L; structured (in conv layers) and L
unstructured (in fully-connected layers) pruning, and L; unstructured pruning.
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