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ABSTRACT

Over the last few years deep multi-agent reinforcement learning (DMARL) has
become an increasingly active area of research with hundreds of papers submitted
to top machine learning conferences every year. However, so far there have been
few real world use cases that benefited from the progress in the field. We use
DMARL to develop a practical and flexible computational model of fake news
on social networks in which agents act according to learned best response func-
tions. We achieve this by extending an information aggregation game to allow for
fake news and by representing agents as recurrent deep Q-networks (DQN). In the
game, agents repeatedly guess whether a claim is true or false taking into account
an informative private signal and observations of actions of their neighbors on the
social network in the previous period. We incorporate fake news into the model by
adding an adversarial agent, the attacker, that either provides biased private signals
to, or takes over, a subset of agents. The attacker can follow either a hand-tuned
or trained policy. Our model allows us to tackle questions that are analytically
intractable in fully rational models, while ensuring that agents follow reasonable
best response functions. Our results highlight the importance of awareness, pri-
vacy and social connectivity in curbing the adverse effects of fake news and open
an entire new real world application area for DMARL.

1 INTRODUCTION

Problem setting At least since the 2016 US presidential election, fake news on social networks,
aimed at manipulating the users’ perception of facts, has been recognized as a major issue in open
societies. Yet, to date little is understood about how fake news spread on social networks, when a
piece of fake news is effective in swaying public opinion and what interventions might be successful
in mitigating the effect of fake news. Our lack of understanding of this important phenomenon is in
large part due to the difficulty of modeling complex decision making processes on social networks.
To tackle this issue, we extend a standard game of information aggregation on a social network, see
Mossel et al. (2015), to accommodate fake news and solve this, analytically intractable, game using
deep multi-agent reinforcement learning. This approach is flexible, practical, and allows us to work
towards answering the questions raised above.

Related work Our work relates to two main strands of literature: (i) models of information aggre-
gation in social networks and (ii) deep multi-agent reinforcement learning as a tool to solve games.
The standard information aggregation game, outlined in Section 2.1, involves agents (repeatedly)
guessing an unknown state of the world taking into account an informative private signal and ob-
servations of actions of their neighbors on the social network in the previous period. Note that this
model involves no fake news. There are two main approaches to studying this game. In the rational
agent approach, agents’ decision are best responses and the analysis focuses on the Nash equilibria
of the game. In an important contribution, Mossel et al. (2015) show that under certain conditions
on the social network, in the limit T → ∞ (number of periods) and n → ∞ (number of agents),
agents will converge and will agree on the correct state of the world. This approach is not tractable
for finite T and n and therefore does not allow, for example, the study of transient behavior. An al-
ternative approach to studying the game of information aggregation is heuristic, see Golub & Sadler
(2016) for a review of many important contributions. While heuristic approaches are more flexible
to changes in the model setup and allow the study of transient behavior, agent strategies can be too

1



Under review as a conference paper at ICLR 2020

simplistic. For example, agents may treat repeated observations of a neighbor’s guess as conveying
additional information, even when this is not the case (this occurs for example when this neighbor’s
only information is his private signal). Furthermore, heuristic behavior does not adapt to changing
circumstances and would therefore not allow us to study how agent behavior changes in the pres-
ence of fake news. Our deep multi-agent reinforcement learning approach combines both worlds.
Our approach is flexible since it does not require the model to be analytically tractable and finds
near-optimal policies through reinforcement learning.

Deep multi-agent reinforcement learning (DMARL) has been applied to solve games of differ-
ent structure. Policies or value functions are approximated by deep neural nets and trained via
backpropagation. Some recent examples are Letcher et al. (2018); Foerster et al. (2018); Lerer &
Peysakhovich (2017); Balduzzi et al. (2018). Often the focus is on methods that allow agents to
converge on a particular, socially desirable policy, such as cooperation in social dilemmas without
changing the payout structure. Since this is not an issue for most of our analyses, we make use of
Independent Q-learning, see Tampuu et al. (2017). However, for some of our more advanced anal-
yses, convergence does become an issue and applying more advanced DMARL methods provides a
promising avenue of future research.

Contribution To the best of our knowledge, we are the first to develop a practical and flexible
computational model of fake news on social networks in which agents act according to learned best
response functions. We achieve this by extending a standard information aggregation model to allow
for fake news and by representing agents as recurrent deep Q-networks (DQN). We incorporate fake
news into the model by adding an adversarial agent, the attacker, that either provides biased private
signals to or takes over a subset of agents. We conduct a number of experiments to answer three
main questions. (i) What determines the effectiveness of the attacker in reducing the accuracy of
information aggregation? (ii) How well can agents learn adapt to the presence of an attacker? (iii)
When attacker and agents learn simultaneously, how do policies evolve over time? Our results
suggest three potential interventions to curb the effectiveness of fake news on social networks. First,
“vaccinate” users of social networks by making them aware of the presence of fake news. Second,
keep private information on social networks private so that attackers cannot target poorly informed
or well connected users. Third, encourage the formation of “balanced” rather than clustered or
fragmented social networks, so that information can “flow” effectively across the network.

Lastly, we contribute to the MARL literature by providing an important and concrete real-world
application of methods that to date have found limited practical application.

2 BACKGROUND

2.1 AN INFORMATION AGGREGATION GAME ON A SOCIAL NETWORK

We consider a sequential game of information aggregation over T periods indexed by t = 1, . . . , T
with a set of agents N , see Mossel et al. (2015); Golub & Sadler (2016) for details. Agents interact
via a fixed, possibly directed, graph G(N,E), where E denotes the set of edges connecting the
nodes N ; see Figure 1 for an illustration of the networks used in this paper. For concreteness, one
can think of the agents as users of a social network, such as Twitter. A directed link from agent A to
agent B would then imply that A follows B on Twitter.

Agents are presented with a claim that is either true or false. Again, for concreteness, one can think
of the claim as a factual statement encountered in a piece of news that has been shared among the
agents on the social network.1 True claims are denoted as θ = 1 and false claims as θ = 0. True
and false claims occur with equal probability; that is, the unconditional probability of a claim being
true or false is P(θ = 0) = P(θ = 1) = 1/2. This choice simplifies our analysis without affecting
any of our qualitative results. Agents receive private signals si ∼ Fθ once at the beginning of an
episode. In the baseline Fθ is such that private signals are always informative but noisy. In each
period agents choose a binary action ait ∈ {0, 1}. Agents observe the actions of their neighbors on
the graph from the previous period. At the end of the episode, agents are rewarded for actions that

1 We restrict our analysis to the case when claims are factual statements that can be objectively verified as
true or false. Of course this prevents us from studying the dynamics of opinions. However, since we focus on
the effect of fake news on the social network, restricting our analysis to factual statements is natural.
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Figure 1: Left: Instance of a Barabsi-Albert random network with |N | = 10 that was used in our analyses
(unless otherwise stated). Middle: stereotypical clustered network with |N | = 12 with three (nc = 3) fully
connected clusters of four nodes (sc = 4) each. Right: the clustered network in balanced form produced by
random rewiring of link pairs (preserves degree distribution). These networks were used in our analysis of the
effectiveness of information aggregation and attack (i) in clustered vs. balanced networks and (ii) for spread
out vs. focused attack strategies.

matched the veracity of the claim presented. For a given claim θ and sequence of actions {ait}, an
agent’s total discounted reward is ri =

∑T
t γ

t1{ait = θ}.
Note that in this game, for t < T , it is not necessarily optimal to choose the action that matches the
maximum of the posterior likelihood of θ. This is because an agent wants to prevent others from
simply copying its action, since that reveals no information about the others’ private signal. Injecting
noise into actions may therefore be beneficial. Despite these concerns, it can be shown that, under
certain conditions on the network, in the limit T →∞ (number of periods) and n→∞ (number of
agents), agents will converge and will agree on the correct θ, see Mossel et al. (2015).

2.2 MULTI-AGENT REINFORCEMENT LEARNING: INDEPENDENT Q-LEARNING

In principle, reinforcement learning (RL) can be used to learn the agents’ policy (or response func-
tions) in any game. Many methods have been proposed to learn reasonable best response functions
in various multi-agent reinforcement learning (MARL) settings, see Foerster et al. (2016); Letcher
et al. (2018); Lerer & Peysakhovich (2017). In this paper, the agents’ response functions will be
learned via independent Q-learning (IQL) and Q functions will be approximated by deep recurrent
neural networks, see Tampuu et al. (2017); Foerster et al. (2016). We relegate a discussion of the RL
and IQL framework to Appendix A.1.

3 METHODS

Graphs We consider three types of undirected graphs, see Figure 1 for an illustration. An instance
of a Barabasi-Albert random graph with |N | = 10, see Barabási & Albert (1999); a clustered graph
with three clusters (nc = 3) of fully connected nodes with four nodes each (sc = 4) such that
|N | = 12; and a balanced graph (|N | = 12) that is obtained by randomly rewiring the clustered
graph. Random rewiring involves repeatedly selecting two edges uniformly at random and swapping
the terminal nodes of these edges. This preserves the degree sequence, i.e. the number of neighbors
of each node, but removes the clusters such that the rewired graph is “balanced”. The Barabasi-
Albert random graph is often used to model social networks and is therefore a natural choice for our
application. The clustered graph is a stereotypical example of a social network which is comprised
of cliques that are weakly connected. It thereby represents a more “fragmented” or “polarized”
social network. The balanced graph removes these clusters from the graph while maintaining the
degree sequence and can thus help isolate the effect of clusters on information aggregation.

Fake news We extend the model of information aggregation in order to study the effects of fake
news on information aggregation. We introduce an adversary, the so called attacker, who wants to
reduce the other agents’ total reward

∑
i ri. To disambiguate between the attacker and other agents,

we often refer to these other agents as citizens. The attacker wants to persuade citizens to support
false claims and dissuade them from supporting true claims. The attacker can achieve this in one
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of two ways. First, in the biased signal attack, he can distribute a fixed budget of bias β =
∑
i β

i

across a subset of the agents such that citizen i’s private signal is drawn from si ∼ Fθ(βi). We
choose si ∼ N (θ + βi(1− 2θ), σ2). We set σ2 = 1 throughout. In this case the choice of {βi}i∈N
is hand-tuned, i.e. set by the experimenter and not optimized. Second, in the agent takeover attack,
he can directly take over an agent and act on his behalf. In this case the attacker optimizes his attack
policy by IQL.

Learning to aggregate information We hold the network fixed across episodes. At the beginning
of each episode θ and all private signals are drawn at random according to the distributions given
above. For citizens we train a single DQN. In period t, the citizen observes the episode private
signal si, his and the actions of his neighbors in the previous period {ajt−1}j∈Bi

(Bi is the set
of neighbors of agent i augmented by i) and the agent id i which identifies the agent’s network
position. To maintain a constant length input vector, unobserved actions are encoded as −1. Thus,
the corresponding DQN is a function Q : R× {−1, 0, 1}|N | ×N × {0, 1} 7→ R.

In the agent takeover attack, the attacker is represented by a DQN. This DQN is distinct from the
citizen DQN. At the beginning of each episode the attacker chooses a citizen uniformly at random
from N and acts on his behalf. In period t, the attacker observes θ without noise, his and the actions
of his neighbors in the previous period {ajt−1}j∈Bi

and the agent id i. Thus, the corresponding DQN
is a function Q : {0, 1}×{−1, 0, 1}|N |×N ×{0, 1} 7→ R. In the biased signal attack, the attacker
is not represented by a DQN. Instead, the biases are hand-tuned. At the beginning of each episode
the attacker chooses a set of citizens uniformly at random from N and delivers biased signals to
them as outlined above.

Measuring information aggregation Intuitively, agents should be able learn to extract informa-
tion from their private signals and their neighbors’ actions, such that at the end of an episode their
expected reward (E[riT ]) should be significantly higher than at the beginning of an episode (E[ri0]).
That is, agents should aggregate information over time. In the following, we give a formal definition
of information aggregation for finite N and T that is useful in our case.
Definition 1 (Information aggregation). Let F = {si}i∈N denote the set of all realized signals in a
given episode. Let θ̂ = argmaxθP[θ | F ] denote the maximum-a-posteriori estimator of θ given F .
Then information is aggregated if for all i ∈ N , we have aiT = θ̂.

That is, under this definition information is aggregated if agents act as if they had seen all private
signals. In reality, it is not reasonable to expect perfect information aggregation with actions learned
via independent Q-learning. We therefore define the following measure of information aggregation.
Definition 2 (Accuracy of information aggregation). The accuracy of information aggregation at
time step t is At = E[1{ait = θ}].

A useful benchmark to compare At to is of course E[1{θ̂ = θ}]. Another useful benchmark
is E[1{θ̃ = θ}], where θ̃ = argmaxθP[θ | si] is the MAP estimator given only a single pri-
vate signal. AT can never exceed E[1{θ̂ = θ}] and A1 can never exceed E[1{θ̃ = θ}] and of
course E[1{θ̂ = θ}] > E[1{θ̃ = θ}] provided |N | > 1. Once we have trained the agents via
Q-learning it is easy to estimate At by evaluating a set of batches of games B and computing
Ât = 1/|B|1/|N |

∑
b∈B,i∈N 1{ait,b = θ}, where ait,b is the action taken by agent i in batch b ∈ B.

In the following we will simply refer to Ât as the accuracy.

4 EXPERIMENTS

Our objective is to improve our understanding of the propagation of fake news in social networks
and discover potential interventions to curb its effectiveness. This goal translates into three main
questions. (i) What determines the effectiveness of the attacker in reducing the accuracy of informa-
tion aggregation? In particular, how does the network structure and the choice of the attacked agent
affect attack effectiveness? (ii) How well can agents learn adapt to the presence of an attacker? (iii)
When attacker and citizen learn simultaneously (agent takeover attack), how do policies change over
time? To study these questions we set up a series of training and testing scenarios.
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Training scenarios: We implement the following training scenarios. (i) Baseline: We train citi-
zens in the absence of any attack, i.e. all citizens receive unbiased signals and no citizen is taken over
by the attacker. We train baseline models for the Barabasi-Albert, clustered and balanced graphs.
This scenario establishes a benchmark for the ability of IQL agents to learn to aggregate informa-
tion in the absence of attack. (ii) Biased signal attack: We train citizens in the presence of a biased
signal attack where a single, randomly chosen citizen receives a biased signal (β = 3). We train this
model for the Barabasi-Albert graph only. This scenario allows us to evaluate whether citizens can
learn to adapt to the presence of a biased signal attack and thereby mitigate the adverse effects of
the attack. (iii) Agent takeover attack: We train citizens and attacker simultaneously. We train this
model for the Barabasi-Albert graph only. This scenario allows us to understand the effectiveness
of attack as it co-evolves with the citizen’s effort to mitigate the attacker’s ability to manipulate cit-
izens. Note that IQL may not converge to stable policies in such a game. It is interesting however,
to understand the action dynamics that emerge under IQL as they can help us understand the co-
evolution of fake news attack and defense in real social networks. (iv) Random action attack: We
train citizens in the presence of an attacker that selects a single citizen uniformly at random and then,
in each period, picks an action uniformly at random. We train this model for the Barabasi-Albert
graph only. This scenario serves as a benchmark for the agent takeover attack. The accuracy under
the random action attack should exceed the accuracy under the agent takeover attack.

Testing scenarios: Given the models obtained for these different training scenarios we conduct a
number of testing scenarios. First, for each attack training scenario, we evaluate accuracy, as defined
above, both in the presence of the corresponding attack (as trained) and in the absence of any attack.
For the baseline scenario we consider two testing scenarios in addition to testing in the absence of
any attack (as trained). First, we evaluate accuracy in the baseline model for the Barabasi-Albert
graph in the presence of a biased signal attack with a single attacked agent and β = 3. Second,
we evaluate accuracy in the baseline model for the clustered and balanced graphs under two biased
signal attack scenarios. In the focused scenario, a single, randomly chosen citizen receives a biased
signal with βi = 3. In the spread scenario, two, randomly chosen citizens receive biased signals
with βi = 1.5 each.

5 RESULTS

Our experiments yield four main results, which we will discuss in turn.

Baseline information aggregation: In the absence of attack, citizens learn to aggregate informa-
tion with an accuracy close to the optimal benchmarks E[1{θ̂ = θ}] as t → T and E[1{θ̃ = θ}]
for t = 0. This highlights the appropriateness of IQL to solve the standard information aggregation
game. In the presence of an attack, information aggregation is severely disrupted. These results are
illustrated in Figure 2 (A).

Determinants of effectiveness of attack: Our experiments allow us to study the following de-
terminants of attack effectiveness: network position of the attacked agent, signal strength of the
attacked agent, network structure (clustered vs balanced) and distribution of bias across agents (fo-
cus vs spread). Let us consider each in turn.

To study the effect of network position, we compute the accuracy in the final time step (t = T )
conditional on the network position of the attacked agent when evaluating the baseline model under
the biased signal attack in the Barabasi-Albert network. Denote this conditional accuracy by ÂT (i),
where i is the attacked agent. Let ÂT denote the baseline accuracy in the absence of attack. We
then define the decline in accuracy relative to baseline as ∆A(i) = ÂT − ÂT (i). We plot ∆A(i)
as a function of i in Figure 2 (C). It is clear that there is substantial heterogeneity in the attack
effectiveness. As the tight correlation between ∆A(i) and the degree of i in Figure 2 (C) shows, the
heterogeneity in ∆A(i) arises from the network structure which implicitly gives more influence to
those nodes with more neighbors (higher degree). If an attacker is able to target the biased signal to
such highly connected nodes, his attack will be more effective.

Next we study the effect of the signal strength of attacked agent. Again, we restrict ourselves to
evaluating the baseline model under the biased signal attack in the Barabasi-Albert network. A
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Figure 2: (A-B): Information aggregation over time in Barabasi-Albert graph. (A) Baseline scenario. Under
the attack test scenario, a single agent receives a biased signal. (B) Biased signal attack scenario. The upper
and lower dashed lines corresponds to the benchmarks E[1{θ̂ = θ}] and E[1{θ̃ = θ}] respectively. (C-
D) Agents are trained in the absence of any attacker on a Barabasi-Albert graph. (C) Top: Average decline
in accuracy conditional on agent id which determines network position. Bottom: degree of attacked agent.
(D) Effectiveness of conditioning on attacked agent signal strength. (E) Agents trained in the absence of any
attacker for clustered (left) and rewired / balanced (right). Base: no attack. Focus: a single, randomly chosen
agent receives a strong biased signal (βi = 3). Spread: two, randomly chosen agents receive weak biased
signals (βi = 1.5). Blue markers represent training runs with different seeds for a given network and attack
scenario. Orange markers are averages over the different training runs.

natural measure of a signal’s strength, or informativeness, is the absolute value of the log likelihood
ratio of the two states of θ conditional on the signal. Let f(θ | s) denote the posterior distribution
over θ given the signal s. Then, the signal strength is given by L(s) = | log[f(θ = 1 | s)/f(θ =
0 | s)]|. Let Lk denote the kth decile of the empirical distribution of signal strengths for a particular
experiment. We define the conditional accuracy Â(Lk) as the average accuracy in the final time
step conditional on the attacked agent’s signal strength lying in [Lk, Lk+1]. ∆A(Lk) is defined
analogously to ∆A(i). We plot ∆A(Lk) against Lk in Figure 2 (D). There exists a strong negative
correlation between attack effectiveness as measured by ∆A(Lk) and the attacked agent’s signal
strength. This is intuitive. If an agent has received a strong private signal in support of some value
of θ, a larger bias will be required to convince him of the contrary. Thus, if an attacker can target the
biased signal to agents with weak private signals, his attack will be more effective.

Lastly, we consider the case of clustered vs rewired/balanced networks and spread our vs focused
attacks. This analysis is done evaluating the baseline model under the biased signal attack in the
clustered and balanced networks. A number of results are worth noting. As can be seen in Figure
2 (E), for each scenario (baseline/no attack, focus and spread attacks) accuracy in the balanced
network exceeds accuracy in the clustered network. This suggests that information aggregation is
more effective in the balanced network. This is intuitive as the balanced networks has a shorter
maximum path length between any two nodes thereby allowing information to “propagate” faster
between nodes. In Figure 2 (E), we can also see that variation in the accuracy between training runs
with different seeds (each run corresponds to one marker for a particular scenario) is smaller for the
balanced network. This suggests that in the balanced network learning good policies is an easier
task than in the clustered network. We can also see from Figure 2 (E) that spread attacks are more
effective both in the clustered and balanced networks.

To summarize, targeting highly connected agents in the network or those with weak private signals,
makes biased signal attacks more effective. Clustered networks are more susceptible to attack than
balanced networks and spread attacks are more effective than focused ones.

Adapting to attacks: So far we have evaluated models trained in the absence of attack. However,
one can expect that users of social networks will adapt over time to the presence of fake news. We
therefore investigate to what extent citizens can learn to mitigate the effect of an attacker. For this
purpose we train citizens in the presence of a biased signal attacker, a random attacker and an agent
takeover attacker for the Barabasi-Albert network. We then evaluate the accuracy of each of these
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Table 1: Test accuracy of agents in the final time step (t = T = 10) for different training and testing scenarios.
All scenarios were run with the Barabasi-Albert graph. At test time without attack all agents receive unbiased
signals and no agent is attacked. At test time with attack agents are exposed to the attack scenario they were
trained under (except in the baseline case where attack is biased signal with β = 3).

Testing accuracy (t = T )

Training scenario Without attack With Attack

Baseline (train: no attack, test: hand-tuned β = 3) 0.926 0.784
Biased signal attack (β = 3) 0.882 0.849
Random action attack 0.909 0.908
Agent takeover attack 0.863 0.844
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Figure 3: Dynamics of co-evolving attacker and citizen agents on a Barabsi-Albert graph. (A) Red lines are
exponentially weighted moving averages. Top: accuracy in the last time step (t = T = 10) over episodes.
Bottom: TD error of Q learning. (B) Close up of accuracy and actions of citizens and attacker early on during
training averaged over multiple batches. Top: citizen accuracy in the last time step (t = T = 10). Bottom:
citizen and attacker accuracy in the first time step (t = T = 0).

models in the absence of an attack and in the presence of the attack under which they were trained.
We summarize our results in Table 1.

Let us first contrast the accuracy of the baseline model (trained without attack) under a biased signal
attacker with the accuracy of a model trained under this attack scenario. When trained in the presence
of an attacker the test accuracy under attack increases from 0.78 to 0.84 relative to the baseline. This
can also be seen in Figure 2 (B). We conclude that agents can indeed learn to adapt to the presence
of fake news. However, this adaptation comes at a cost. When trained in the presence of an attacker
the test accuracy without attack decreases from 0.92 to 0.88 relative to the baseline. We conjecture
that this is because agents learn to trust strong private signals less and are less likely to follow their
neighbors’ actions. A similar picture can be seen for the random attacker and the agent takeover
attacker. To summarize, agents can learn to adapt to the presence of an attacker which reduces
attack effectiveness. However, adaptation comes at a cost. If trained under attack and tested in the
absence of attack, accuracy is lower than in the baseline which is trained without attack.

Dynamics of attack and defense: We now take a closer look at the agent takeover attack. Recall
that in this scenario, a separate DQN agent is trained to minimize the total reward of the citizens
by acting on behalf of a randomly chosen agent. This attacker knows θ and must then choose an
action to convince the citizens of the opposite. Simply choosing the opposite action would be a
naive strategy that is likely to be detected quickly by the citizens as they learn in the presence of
this strategy. Always choosing a random action in every period, as the random attacker does, is also
quite easily detectable by the citizens. This intuition is confirmed by results reported in Table 1 and
Figure 3.
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From Table 1 we see that the trained attacker clearly “outperforms” (i.e. more effective attack)
the random action attack benchmark. The bottom panel of Figure 3 (B) shows the accuracy of the
attacker in the first time step as a simple summary statistic of its strategy. The accuracy is either 0.5
indicating that the attacker “randomizes” or 0 indicating that the attacker “lies”. While Q-learning
only allows for deterministic policies the attacker can learn to lie if the attacked agent is in one
partition of N and be truthful if the attacked agent is in another partition. Since the attacked agent
is chosen at random, this strategy amounts to a randomized attack strategy.

Note further, that neither the attacker’s nor the citizens’ policy converges as can been seen in the
highly variable reward and unstable TD-error in Figure 3 (A) . Indeed, as can be seen in the bottom
panel of Figure 3 (B) , the attacker’s policy fluctuates between randomization and lying between
episodes. These fluctuations can be seen as irregular “cycles” in the policy space of the attacker and
the citizen. One such cycle in Figure 3 (B) shows the attacker switching to a lying strategy, while
the citizens lose “trust” in their private signal (they nearly ignore it in the first time step). The result
of these two events coming together can lead to substantial, temporary declines in accuracy.

We don’t claim that these dynamics are accurate representations of the learning dynamics between
users of social networks and pushers of fake news. However, we consider the failure of IQL to
converge and the irregular dynamics that emerge more of a feature than a bug. Indeed these dynamics
suggest two interesting, qualitative take aways. First, attackers and citizens are unlikely to converge
to stable policies in real life. We should expect a continuing cycle of adaptation with periods of a
high prevalence of fake news followed by periods of low prevalence. Second, the co-evolution of
attackers and citizens can have unexpected effects on the citizens’ ability to aggregate information
in the social network. As we observe in Figure 3 (B) , the presence of neighbors that do not act in
accordance with their private signals (i.e. the attacked agents) can lead citizens to learn to mistrust
their own private signals.

6 CONCLUSION AND DISCUSSION

The deliberate manipulation of the public’s perception of facts via fake news, in particular on social
networks, has become a growing concern for policy makers and technology companies alike. De-
spite its importance, little is understood about the spread of fake news on social networks. This is
in large part due to the technical difficulties involved in studying complex decision making behavior
on social networks. We seek to close this gap by developing the (to the best of our knowledge) first
framework for the study fake news on social networks that is theoretically grounded yet practical
and flexible. We achieve this by (i) extending a standard game of information aggregation to accom-
modate fake news and (ii) applying state-of-the-art deep multi-agent reinforcement learning to solve
the game.

Our findings suggest a number of interventions that could contribute to making fake news attacks
less effective. First, if agents are made aware of the presence of fake news, they can learn to adapt
and mitigate its effect. However, this adaptation is likely to be accompanied by evolving attack
strategies, so any adaptation will not be lead to permanent mitigation. In addition, the adaptation
is likely to harm information aggregation in the absence of fake news. Second, keeping private
information on social networks private, can make it harder for attackers to condition their attacks
on network position and general informedness (as the real world analogue of signal strength). This
should reduce attack effectiveness. Third, encouraging well balanced social networks can improve
information aggregation in general and make fake news attacks less effective in particular.

Our current approach has two main shortcomings. First, it does not scale well to larger populations
of agents since it requires the entire social network to be trained simultaneously. One way forward is
to train agents in sub-graphs feeding them an embedding of the graph, see for example Gilmer et al.
(2017), and then composing larger graphs at test time. The second shortcoming is the use of IQL
in the agent takeover attack scenario. While the lack of convergence leads to interesting qualitative
insights, MARL methods that encourage convergence of policies would be desirable here, at least as
benchmarks. One possible way to achieve this would be to apply stable opponent shaping to citizen
and attacker, see Letcher et al. (2018).
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A APPENDIX

A.1 MULTI-AGENT REINFORCEMENT LEARNING

Single-Agent Reinforcement Learning Consider an MDP specified by the following tuple:
〈S,A, P, r, γ〉. In the fully observable case the environment has an observed true state, s ∈ S,
and at each time step the agent chooses an action a ∈ A, which induces a probabilistic transition to
the next state via the state transition function P (s′|s, a) : S ×A× S → [0, 1]. The reward function
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assigns an instantaneous reward to each state-action pair, r(s, a) : S × A → R, and γ ∈ [0, 1) is a
discount factor.

In single agent RL the task of the agent is to maximize the discounted reward per episode, Rt =∑∞
l=0 γ

lrt+l. The agent’s policy, π(a|s) : S×A→ [0, 1], induces a state-action-value function (Q-
function), Qπ(st, at) = Est+1:∞,at+1:∞ [Rt|st, at]. Q-learning aims to estimate the optimal action-
value function, Q∗(x, a) = maxπ Q

π(x, a), via an estimated Q-function, Q(s, a).

Training is carried out by collecting samples from the environment in order to obtain Monte-
Carlo-Estimates of the expected return. For any sampled transition, the current estimate, Q(s, a),
is compared to a greedy one-step lookahead using the Bellman optimality operator, T Q(s, a) =
Es′ [r + γmaxa′ Q(s′, a′)]. We can use samples to evaluate the Bellman update:

Q(s, a)k+1 = Q(s, a)k + α
(
r + γmax

a′
Q(s′, a′)k −Q(s, a)k

)
Here k is the iteration number, α is the learning rate and r + γmaxa′ Q(s′, a′)k − Q(s, a)k is
commonly referred to as the temporal-difference or TD-error. In the tabular case the Q-values for
each state-action pair are maintained separately and the Bellman update is a contraction mapping. As
a consequence at convergence this iterative process results in the optimal Q-function, Q(s, a)∞ =
Q∗(s, a). Finally, Q∗(s, a) trivially defines the optimal policy π∗(x, a) = δ(arg maxa′ Q

∗(x, a′)−
a), where δ(·) is the Dirac-delta function. In contrast to the tabular case, DQN (Mnih et al., 2015)
uses a neural network parametrized by a large number of weights, φ, to represent the Q-function.

In order to reduce the variance of the update process the average square of the TD-error across
a large number of transitions (the batch) is used as the DQN-loss. Using backpropagation the
parameters of the neural network are updated to minimize the magnitude of the DQN error
L(φ) =

∑b
j=1[(yDQNj −Q(xj , aj ;φ))2]. Here yDQNj = uj + γmaxa′j Q(x′j , a

′
j ;φ
−), is the target

function and φ− is the target network, which contains a stale copy of the parameters. This target
network helps to stabilize the training.

So far we have assumed that the agent has access to the Markov state, s, of the system. In a partially
observable settings we augment the MDP with an observation space, Z, and observation function
O(s). In particular the observation z ∈ Z is produced by the observation function O(s) : S → Z.
We further define an action-observation history τ ∈ T ≡ (Z × U)∗, which is used to condition a
stochastic policy π(a|τ) : T × U → [0, 1]. In recurrent deep RL (Hausknecht & Stone, 2015), this
can be achieved using recurrent neural networks, such as LSTM (Hochreiter & Schmidhuber, 1997)
or GRU (Cho et al., 2014) which we use here.

Independent Q-Learning In multi-agent reinforcement learning, each agent i ∈ N receives a
private observation O(x, i), where i is the agent index and O is the observation function. The agents
also receive individual reward rit and take actions ait. Furthermore the state-transition conditions on
the joined action a ∈ A ≡ An.

In independent Q-learning each agent further estimates a Q-function Qi(τ i, ai), treating the other
agents and their policies as part of a non-stationary environment. A combination DQN with IQL
commonly uses parameter-sharing across agents combined with an agents specific index in the ob-
servation function in order to accelerate learning while still allowing for specialization of policies.

A.2 IMPLEMENTATION DETAILS

Our code has been submitted. Our neural network architecture implements the IQL architecture in
Foerster et al. (2016).
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