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ABSTRACT

In recent years we have seen fast progress on a number of benchmark problems in
AI, with modern methods achieving near or super human performance in Go, Poker
and Dota. One common aspect of all of these challenges is that they are by design
adversarial or, technically speaking, zero-sum. In contrast to these settings, success
in the real world commonly requires humans to collaborate and communicate with
others, in settings that are, at least partially, cooperative. In the last year, the card
game Hanabi has been established as a new benchmark environment for AI to fill
this gap. In particular, Hanabi is interesting to humans since it is entirely focused
on theory of mind, i.e., the ability to effectively reason over the intentions, beliefs
and point of view of other agents when observing their actions. Learning to be
informative when observed by others is an interesting challenge for Reinforcement
Learning (RL): Fundamentally, RL requires agents to explore in order to discover
good policies. However, when done naively, this randomness will inherently make
their actions less informative to others during training. We present a new deep
multi-agent RL method, the Simplified Action Decoder (SAD), which resolves
this contradiction exploiting the centralized training phase. During training SAD
allows other agents to not only observe the (exploratory) action chosen, but agents
instead also observe the greedy action of their team mates. By combining this
simple intuition with an auxiliary task for state prediction and best practices for
multi-agent learning, SAD establishes a new state of the art for 2-5 players on the
self-play part of the Hanabi challenge.

1 INTRODUCTION

Humans are highly social animals and spend vast amounts of time coordinate, collaborating and
communicate with others. In contrast to these, at least partially, cooperative multi-agent settings,
most progress on AI in games has been in zero-sum games where agents compete against each other,
typically rendering communication futile. This includes examples such as Go (Silver et al., 2016;
2017; 2018), poker (Brown & Sandholm, 2017; Moravčík et al., 2017; Brown & Sandholm, 2019)
and chess (Campbell et al., 2002).

This narrow focus is unfortunate, since communication and coordination require unique abilities. In
order to enable smooth and efficient social interactions of groups of people, it is commonly required
to reason over the intents, points of views and beliefs of other agents from observing their actions.
For example, a driver can reasonably infer that if a truck in front of them is slowing down when
approaching an intersection, then there is likely an obstacle ahead. Furthermore, humans are both
able to interpret the actions of others and can act in a way that is informative when their actions are
being observed by others, capabilities that are commonly called theory of Mind (ToM), (Baker et al.,
2017). Importantly, in order to carry out this kind of reasoning, an agent needs to consider why a
given action is taken and what this decision indicates about the state of the world. Simply observing
other agents are doing is not sufficient.

While these kind of abilities are particularly relevant in partially observable fully cooperative multi-
agent settings, ToM reasoning clearly matters in a variety of real world scenarios. For example,
autonomous cars will likely need to understand the point of view, intents and beliefs of other traffic
participants in order to deal with highly interactive settings such as 4-way crossing or dense traffic in
cities.
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Hanabi is a fully cooperative partially-observable card game that has recently been proposed as a
new benchmark challenge problem for AI research (Bard et al., 2019) to fill the gap around ToM. In
Hanabi, players need to find conventions that allow them to effectively exchange information from
their local observations through their actions, taking advantage of the fact that actions are observed
by all team mates.

Most prior state-of-the-art agents for Hanabi were developed using handcrafted algorithms, which
beat off-the-shelf deep multi-agent RL methods by a large margin. This makes intuitive sense: Beyond
the “standard” multi-agent challenges of credit assignment, non-stationarity and joint exploration,
learning an informative policy presents an additional fundamentally new conflict. On the one hand,
an RL agent needs to explore in order to discover good policies through trial and error. On the other
hand, when carried out naively, this exploration will add noise to the policy of the agent during the
training process, making their actions strictly less informative to their team mates.

One possible solution to this is to explore in the space of deterministic partial policies, rather than
actions, and sample these policies from a distribution that conditions on a common knowledge
Bayesian belief. This is successfully carried out in the Bayesian Action Decoder (BAD) (Foerster
et al., 2019), the only previous Deep RL method to accomplish a state of the art in Hanabi. While
this is a notable accomplishment, it comes at the cost of simplicity and generality. For a start,
BAD requires an explicit common knowledge Bayesian belief to be tracked, which not only adds
computational burden due to the required sampling steps, but also uses expert knowledge regarding
the game dynamics. Furthermore, BAD, as presented, is trained using actor-critic methods which are
sample inefficient and suffer from local optima. In order to get around this, BAD uses population
based training, further increasing the number of samples required. Lastly, BAD’s explicit reliance on
common knowledge limits the generality of the method.

In this paper we propose the Simplified Action Decoder (SAD), a method that achieves a similar goal
to BAD, but addresses all of the issues mentioned above. At the core of SAD is a different approach
towards resolving the conflict between exploration and being interpretable, which, like BAD, relies
on the centralized training with decentralized control (CT/DC) regime. Under CT/DC information
can be exchanged freely amongst all agents during centralized training, as long as the final policies
are compatible with decentralized execution.

The key insight is that, during training we do not have to chose between being informative, by taking
greedy actions, and exploring, by taking random actions. To be informative, the greedy actions do
not need to be executed by the environment, but only need to be observed by the team mates. Thus
in SAD each agent takes two different actions at each time step: One greedy action, which is not
presented to the environment but observed by the team mates at the next time step as an additional
input, and the “standard” (exploratory) action that gets executed by the environment and is observed
by the team mates as part of the environment dynamics. Importantly, during greedy execution the
observed environment action can be used instead of centralized information for the additional input,
since now the agent has stopped exploring.

Furthermore, to ensure that these greedy actions and observations get decoded into a meaningful
representation, we train an auxiliary task that predicts key hidden game properties from the action-
observation trajectories. While we note that this method is in principle compatible with any kind of
model-free deep RL method with minimal modifications to the core algorithm, we use a distributed
version of recurrent DQN in order to improve sample efficiency, account for partial observability and
reduce the risk of local optima. Similar to Value Decomposition Networks (VDN) (Sunehag et al.,
2017) and QMIX (Rashid et al., 2018), we train a joint-action Q-function that consists of the sum of
per-agent Q-values to allow for off-policy learning in this multi-agent setting.

Using SAD we establish a new state of the art for 2-5 players in Hanabi, with a method that not only
requires less expert knowledge and compute, but is also more general than previous approaches. In
order to ensure that our results can be easily verified and extended, we also evaluate our method
on a proof-of-principle matrix game and plan to open-source our training code and agents. Beyond
enabling more research into the self-play aspect of Hanabi, we believe these resources will provide a
much needed starting point for the ad-hoc teamwork part of the Hanabi challenge.
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2 RELATED WORK

Our work relates closely to research on emergent communication protocols using deep multi-agent
RL, as first undertaken by Sukhbaatar et al. (2016) and Foerster et al. (2016) . There has been a
large number of follow-up papers in this area, so listing all relevant work is beyond the scope and
we refer the reader to Nguyen et al. (2018), a recent survey on deep multi-agent RL. One major
difference to our work is that the environments considered typically contain a cheap-talk channel,
which can be modeled as a continuous variable during the course of training. This allows agents
to, for example, use differentiation across the communication channel in order to learn protocols.
In contrast, in our setting agents have to communicate through the observable environment actions
themselves, requiring fundamentally different methods.

Furthermore, our work is an example of cooperative multi-agent learning in partially observable
settings under centralized training and decentralized control. There have been a large number of
papers in this space, with seminal work including MADDPG (Lowe et al., 2017) and COMA (Foerster
et al., 2018), both of which are actor-critic methods that employ a centralized critic with decentralized
actors. Again, we refer the reader to Nguyen et al. (2018) for a more comprehensive survey.

Until 2018, work on Hanabi had been focused on hand-coded methods and heuristics. Some
relevant examples include SmartBot (O’Dwyer, 2019) and the so-called “hat-coding” strategies, as
implemented by WTFWThat (Wu, 2018). These strategies use the information theoretic ideas that
allow each hint to reveal information to all other agents at the same time. While they do not perform
well for 2-player Hanabi due to the smaller action space, they get near perfect scores for 3-5 players.

In contrast, so far learning methods have seen limited success on Hanabi. Bard et al. (2019) undertake
a systematic evaluation of current Deep RL methods for 2-5 players in two different regimes and
open-source the Hanabi-Learning-Environment (HLE) to foster research on the game. They evaluate
a feed-forward version of DQN trained on 100 million samples and a recurrent actor-critic agent with
population based training using 20 billion samples. Notably both agents achieve near 0% win rate for
3-5 players in Hanabi. At a high level their DQN agent is a good starting point for our work. However,
since the authors did not propose any specific method of accounting for the issues introduced by
ε-greedy exploration in a ToM task, they resorted to setting ε to zero after a short burn-in phase. The
only state-of-the-art in Hanabi established by an RL agent is from Foerster et al. (2019) which we
refer to in more detail in Section 1 and Section 4.

Recently there have also been attempts to train agents that are robust to different team-mates (Canaan
et al., 2019) and even to extend to human-AI collaboration (Liang et al., 2019).

Poker is another partially observable multi-agent setting, although it is fundamentally different due to
the game being zero-sum. Recent success in Poker has extensively benefited from search (Brown
et al.). Examples of using search in Hanabi include Goodman (2019). For a more comprehensive
review on previous results on Hanabi we refer the reader to Bard et al. (2019).

3 BACKGROUND

3.1 SETTING

In this paper we assume a Dec-POMDP (Oliehoek, 2012), in which N agents interact in a partially
observable environment. At each time step agent a ∈ 1..N obtains an observation, oat = O(st, a),
where st ∈ S is the Markov state of the system and O(st, a) is the observation function.

While our method are general, we restrict ourselves to turn based settings, in which at each time
step only the acting agents takes an action, ua, which is sampled from their policy, ua ∼ πaθ (ua|τa),
while all other agents take a no-op action. Here τa is the action-observation history of agent a, τa =
{oa0 , ua0 , r1, ..rT , oaT }, T is the length of the episode and θ are the weights of a function approximator
that represents the policy, in our case recurrent neural networks, such as LSTMs (Hochreiter &
Schmidhuber, 1997). Since we are interested in ToM, in our setting the observation function includes
the last action of the acting agent, which is observed by all other agents at the next time step. We
note that actions are commonly observable not only in board games but also in some real world
multi-agent settings, such as autonomous driving.
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As is typical in cooperative multi-agent RL, the goal of the agents is to maximize the total expected
return, Jθ = Eτ∼P (τ |θ)R0(τ), where R0(τ) is the return of the trajectory (in general Rt(τ) =∑
t′≥t γ

t′−trt′) and γ is an optional discount factor. We have also assumed that agents are sharing
parameters, θ, as is common in cooperative MARL.

3.2 DISTRIBUTED RECURRENT DQN

In Q-learning the agent approximates the expected return for a given state action-pair, s, u, as-
suming that the agent acts greedily with respect to the Q-function for all future time steps,
Q(s, u) = Eτ∼P (τ |s,u)Rt(τ), where ut = u and ut′ = argmaxuQ(st′ , u), t

′ > t. A common
exploration scheme is ε greedy, in which the agent takes a random action with probability ε and acts
greedily otherwise. Importantly, the Q-function can be trained efficiently using the Bellman equation:
Q(s, u) = Es′rt+1 + maxuQ(s′, u), where for simplicity we have assumed a deterministic reward.
In Deep Q-Learning (DQN) (Mnih et al., 2015) the Q-function is parameterized by a deep neural
network and trained with experience replay.

In our work we also incorporate other best practice components of the last few years, including double-
DQN (van Hasselt et al., 2015), dueling network architecture (Wang et al., 2015) and prioritized
replay (Schaul et al., 2015). We also employ a distributed training architecture similar to the one
proposed by Horgan et al. (2018) where a number of different actors with their own exploration
rates collect experiences in parallel and feed them into a central replay buffer. Since our setting is
partially observable the natural choice for the function approximator is a recurrent neural network.
A combination these techniques was first explored by Kapturowski et al. (2019) in single agent
environments such as Atari and DMLab-30.

3.3 CENTRALISED TRAINING, DECENTRALIZED EXECUTION AND JOINT Q-FUNCTIONS

The most straight forward application of Q-learning to multi-agent settings is Independent Q-Learning
(IQL) (Tan, 1993) in which each agent keeps an independent estimate of the expected return, treating
all other agents as part of the environment. One challenge with IQL is that the exploratory behavior
of other agents is not corrected for via the max operator in the bootstrap. Notably, IQL does typically
not take any advantage of centralized training with decentralised control (CT/DC), a paradigm under
which information can be exchanged freely amongst agents during the training phase as long as the
policies rely only on local observations during execution.

There are various approaches for learning joint-Q-functions in the CT/DC regime. For example,
Value-Decomposition-Networks (Sunehag et al., 2017) represent the joint-Q-function as a sum of per-
agent contributions and QMIX (Rashid et al., 2018) learns a non-linear but monotonic combination
of these contributions.

4 METHOD

4.1 THEORY OF MIND AND BAYESIAN REASONING

At the very core of interpreting the actions of another agent and ToM in general is Bayesian reasoning.
Fundamentally, asking what a given action by another agent implies about the state of the world
requires understanding of why this action was taken. To illustrate this, we start out with an agent that
has a given belief about the state of the world, st, given her current action-observation history τat ,
B(st) = P (st|τa).

Next the agent observes the action ua
′

t of her team mate and carries out a Bayesian update:

P (st|τat , ua
′

t ) =
P (ua

′

t |st)P (st|τat )∑
s′ P (u

a′
t |s′)P (s′|τat )

(1)

=
πa
′
(ua

′

t |st)B(st)∑
s′ π

a′(ua
′
t |st)B(s′)

, (2)

(3)
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where for simplicity we have assumed that agent a′ uses a feed-forward policy and observes the
Markov state of the environment. Clearly, if an agent has access to the policy of their teammate
during centralised training we could in principle evaluate the Bayesian belief explicitly. Instead, in
this work we rely on RNNs in order to learn implicit representations of the sufficient statistics over
the distribution of the Markov state given the action-observation histories.

4.2 EXPLORATION AND BELIEFS

Next we illustrate the impact of exploration on the beliefs, which we will do in the explicit (exact)
case, since it serves as an upper bound on the accuracy of the implicit beliefs. Since we are looking
at fully-cooperative settings we assume that the optimal policy of the agent is deterministic and any
randomness is due to exploration. Given that we are focused on value based methods we furthermore
assume an ε-greedy exploration scheme, noting that the same analysis can be extended to other
methods. Under this exploration scheme πa

′
(ua

′

t |st) becomes:

πa
′
(ua

′

t |st) = (1− ε)I(u∗(st), ua
′

t ) + ε/|U |, (4)

where we have used u∗(st) to indicate the greedy action of the agent a′, u∗(st) = argmaxuQ
a′(u, st)

and I is the indicator function.

While the first part corresponds to a filtering operator, in which the indicator function only attributes
finite probability to those states that are consistent with the action taken under greedy execution, the
exploration term adds a fixed (state independent) probability, which effectively ‘blurs’ the posterior:

P (st|τat , ua
′

t ) =

(
(1− ε)I(u∗(st), ua

′

t ) + ε/|U |
)
B(st)∑

s′

(
(1− ε)I(u∗(s′), ua′t ) + ε/|U |

)
B(s′)

(5)

=

(
(1− ε)I(u∗(st), ua

′

t ) + ε/|U |
)
B(st)

ε/|U |+
∑
s′

(
(1− ε)I(u∗(s′), ua′t )

)
B(s′)

(6)

=
B(st)

1 + |U |
∑
s′

(
(1/ε− 1)I(u∗(s′), ua

′
t )B(s′)

(7)

+

(
(1− ε)I(u∗(st), ua

′

t )
)
B(st)

ε/|U |+
∑
s′

(
(1− ε)I(u∗(s′), ua′t )

)
B(s′)

(8)

. (9)

We find that the posterior includes an additional term of the form B(st) which carries over an
unfiltered density over the states from the prior. We further confirm that in the limit of ε = 1, the
posterior collapses to the prior, P (st|τat , ua

′

t ) = B(st).

This can be particularly worrisome in the context of our training setup, whereby different agents run
different, and potentially high ε throughout the course of training. It fundamentally makes the beliefs
obtained less informative.

While not making the above argument explicitly, the Bayesian Action Decoder (BAD) (Foerster et al.,
2019), resolves this issue by shifting exploration to the level of deterministic partial policies, rather
than action-level, and tracking an approximate Bayesian belief. As outlined in Section 1 this comes
at a huge cost in the complexity of the method, the compute requirements and in the loss of generality
of the method.

4.3 SIMPLIFIED ACTION DECODING

In this paper we take a drastically simpler and different approach towards the issue. We note that the
‘blurring’, which makes decoding of an action challenging, is entirely due to the ε-greedy exploration
term. Furthermore, in order for another agent to do an implicit Bayesian update over an action taken,
it is not required that this action is executed by the environment. Indeed, if we assume that other
agents can observe the greedy action, u∗, at every time step and condition their belief updated on this,
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the terms depending on ε disappear from the Bayesian update:

P (st|τat , u∗) =
I(u∗(st), u

∗)
)
B(st)∑

s′ I(u
∗(s′), u∗)

)
B(s′)

(10)

Therefore, to have our cake and eat it, in the Simplified Action Decoder (SAD) the acting agent is
allowed to ‘take’ two actions at any given time step. The first action, ua, is the standard environment
action, which gets executed as usual and is observed by all agents through the observation function at
the next time step, as mentioned in Section 3. The second action, u∗, is the greedy action of the active
agent. This action does not get executed by the environment but instead is presented as an additional
input to the other agents at the next time step during training, taking advantage of the centralized
training regime during which information can be exchanged freely.

Clearly we are not allowed to pass around extra information during decentralized control, but luckily
this is not needed. Since we set ε to 0 at test time we can simply use the, now greedy, environment
action obtained from the observation function as our greedy-action input.

Furthermore, to ensure that the agent meaningfully decodes the information contained in the greedy
action, we also add an auxiliary supervised task to the training.

While this idea is compatible with any deep RL algorithm with minimal modifications, we use a
recurrent version of DQN with distributed training, dueling networks and prioritized replay. We
also learn a joint Q-function using VDN in order to address the challenges of multi-agent off-policy
learning, please see Section 3 for details on all of these standard methods.

5 EXPERIMENTS

5.1 MATRIX GAME
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Figure 1: Illustration of the matrix
game from Foerster et al. (2019)

We first verify the effectiveness of SAD in the two step, two
player matrix game from Foerster et al. (2019), which replicates
the communication through action challenge of Hanabi in a
highly simplified setting. In this fully cooperative game each
player obtains a privately observed ‘card’, which is drawn iid
from two options (1,2). After observing her card, the first player
takes one of three possible discrete actions (1, 2, 3). Crucially,
the second player observers both her own private card and the
team mate’s action before acting herself, which establishes the
opportunity to communicate. The payout is function of both
the two private cards and the two actions taken by both agents,
as shown in Figure 1. Importantly, there are some obvious
strategies that do not require any communication. For example,
if both player learn to play the 2nd action, the payout is always
8 points, independent of the cards dealt. However, if the players
do learn to communicate it is possible to achieve 10 points for
every pair of cards dealt.

5.2 HANABI

Hanabi is a fully cooperative card game in which all players work together to complete piles of cards
referred to as fireworks. Each card has a rank, 1 to 5, and a color, G / B / W / Y / R. Each firework
(one per color) starts with a 1 and is finished once the 5 has been added. There are three 1s, one 5 and
two of all other ranks for each of the colors, adding up to a total of 50 cards in the deck. The twist in
Hanabi is that while players can observe the cards held by their team mates, they cannot observe their
own cards and thus need to exchange information with each other in order to understand what cards
can be played. There are two main means for doing so: First of all, players can take grounded hint
actions, in which they reveal the subset of a team mate’s hand that matches a specific rank or color.
An example hint is “Your third and fifth card are 1s”. These hint actions cost scarce information
tokens, which can be replenished by discarding a card, an action that both removes the card from the
game and makes it visible to all players.
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Finally players can also choose to play a card. If this card is the next card for the firework of the
corresponding color, it is added to the firework and the team scores one point. Otherwise the card is
removed from the game, the identity is made public, and the team loses one of the 3 life tokens. If the
team runs out of life tokens before the end of the game, all points collected so far are lost and the
game finishes immediately. These rules result in a maximum score of 5× 5 = 25 points in any game,
which corresponds to all five fireworks being completed with five cards per firework.

To ensure reproducibility and comparability of our results we use the Hanabi Learning Environment
(HLE) (Bard et al., 2019) for all experimentation. For further details regarding Hanabi and the
self-play part of the Hanabi challenge please see Bard et al. (2019).

5.3 ARCHITECTURE AND COMPUTE REQUIREMENTS

We borrow some ideas and insights from prior distributed Q-learning methods while bring innova-
tions in our implementation to improve throughput and efficiency as well as extensions to MARL.
Following Horgan et al. (2018) and Kapturowski et al. (2019), we use a distributed prioritized replay
buffer shared by N asynchronous actors and a centralized trainer that samples mini-batches from
the replay buffer to update the model. In each actor thread, we run K environment sequentially and
batch their observations together. The observation batch is then fed into an actor that utilize a GPU
to compute a batch of actions. All asynchronous actors share one GPU and the trainer uses another
GPU for gradient computation and model updates. This is different from prior works which run
single actor and single environment in each thread on a CPU. Our method enables us to run a very
large number of simulations with moderate computation resources. In all Hanabi experiments, we
run N = 80 actor threads with K = 80 environments in each thread on single machine with 40 CPU
cores and 2 GPUs. Without this architectural improvement, it may require at least a few hundreds of
CPU cores to run 6400 Hanabi environments with neural network agents and simulations have to be
distributed across multiple machines, which will greatly hinder the reproducibility and accessibility
of such research. Please refer to Appendix A for implementation details and hyper-parameters.

6 RESULTS

6.1 MATRIX GAME
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Figure 2: Results for the matrix game.

As we can see in Figure 2, even in our simple matrix
game the greedy action input makes a drastic differ-
ence. With an average reward of under 9 points, IQL
does poorly in this task, just under-performing the
Policy Gradient results from Foerster et al. (2019).
In contrast, just by adding the greedy action as an
additional input, we obtain an average performance
of 9.50, matching the performance of BAD on this
proof of principle task. Due to the simplicity of the
task we are isolating just the impact of adding the
greedy action to the input and are not investigating
auxiliary tasks and recurrence in this setting. Results
are averaged over 100 seeds, shading is error of the
mean. The code is here: bit.ly/2mBJLyk.

6.2 HANABI

As shown in Figure 3, our findings from the matrix game are for the most part confirmed on
the challenging Hanabi benchmark. We compare SAD to three different ablations in order to
illustrate the contributions of the different components: Baseline here is simply the recurrent DQN
agent with parameter sharing, VDN is the same agent but also learns a joint Q-function and finally
VDN+GreedyInput is the SAD agent without the auxiliary task. The main difficulty in evaluating the
performance of SAD and the three ablations lies in the computational cost of running multiple seeds
across 2-5 players, bearing in mind that each run uses around 8-10 billion samples and takes roughly
72 hours to run. Since we could only afford to run three seeds for each ablation for each number of
players, we aggregate performance data across the different number of players in Figure 3.
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Agent 2 Players 3 Players 4 Players 5 Players
ACHA 22.73 ± 0.12 20.24 ± 1.1% 21.57 ± 0.12 16.80 ± 0.13
(Bard et al., 2019) 15.1% 1.1% 2.4% 0%

BAD 23.92 ± 0.01 - - -
(Foerster et al., 2019) 58.56% - - -

Best Seed: Baseline 23.89 ± 0.01 23.59 ± 0.01 22.59 ± 0.01 20.64 ± 0.01
48.13% 39.04% 15.2% 1.73%

Best Seed: VDN, SAD 24.07 ± 0.01 24.02 ± 0.01 23.81 ± 0.01 23.00 ± 0.01
(w/ or w/o aux) 56.41% 50.48% 38.53% 14.4%

Table 1: Previous state of the art performances for learning methods in the unlimited regime of the
HLE for 2-5 players compared to our best results and baseline.
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Epoch(Millon)
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20%

40%

60%

80%

100%
Baseline
VDN
VDN + GreedyInput
SAD

Figure 3: Averaged percentile plot across all seeds
for SAD and three ablations for 2-5 players for
Hanabi. Shaded area is the error of the mean.

This figure shows the average percentile that SAD
and the three ablations obtain. The metric is normal-
ized such that a method in which all three seeds are
the lowest performing across all numbers of players
will result in 0%, while one that consistently pro-
duces the best three seeds out of the 12 total seeds
will achieve 100%. Further details on this metric are
provided in Appendix B.

As we can see, under this metric SAD beats our base-
line by a large margin, with clearly separated error
bars. While the ablations indicate the effectiveness
of the different components of the method, we note
that additional runs are needed to test whether the
auxiliary task contributes significantly to the final
performance. For completeness we have included a
plot which shows all training runs for all numbers of
players across all ablations and the method in the Appendix B.

Furthermore, as shown in Table 1, when we take the best achieved performance from our various
training runs, we establish a new SOTA for learning methods on the self-play part of the challenge
for 2-5 players, with the most drastic improvement being achieved for 3-5 players. In particular we
beat both the ACHA agent from Bard et al. (2019) and the BAD agent, even though both of them use
population based training and require more compute. We note that BAD was optimized for a different
counting scheme, in which agents keep their scores when they run out of lives at the end of the game.
This explains the higher win rate (58.6%) of BAD combined with a slightly lower mean score, when
compared to SAD.

7 CONCLUSION AND FUTURE WORK

In this paper we presented the Simplified Action Decoder (SAD), a novel deep multi-agent RL
algorithm that allows agents to learn communication protocols in settings where no cheap-talk
channel is available. On the challenging benchmark Hanabi our work substantially improves the
SOTA for an RL method for all numbers of players. For two players SAD establishes a new high-score
across any method. Furthermore we accomplish all of this with a method that is both simpler and
requires less compute than previous advances. While these are encouraging steps, there is clearly
more work to do. In particular, there remains a large performance gap between the numbers achieved
by SAD and the known performance of hat-coding strategies for 3-5 players. One possible reason is
that SAD does not undertake any explicit exploration in the space of possible conventions. Another
promising route for future work is to integrate search with RL, since this has produced SOTA results
in a number of different domains including Poker, Go and backgammon.
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A NETWORK ARCHITECTURE AND HYPER-PAMAMETERS FOR HANABI

Our Hanabi agent uses dueling network architecture (Wang et al., 2015). The main body of the
network consists of 1 fully connected layer of 512 units and 2 LSTM (Hochreiter & Schmidhuber,
1997) layers of 512 units, followed by two output heads for value and advantages respectively. The
same network configuration is used across all Hanabi experiments. We take the default featurization
of HLE and replace the card knowledge section with the V0-Belief proposed by Foerster et al. (2019).
The maximum length of an episode is capped at 80 steps and the entire episode is stored in the
replay buffer as one training sample. This avoids the “slate hidden states” problem as described
in Kapturowski et al. (2019) so that we can simply initialize the hidden states of LSTM as zero
during training. For exploration and experience prioritization, we follow the simple strategy as
in Horgan et al. (2018) and Kapturowski et al. (2019). Each actor executes an εi-greedy policy where
εi = ε1+

1
N−1α for i ∈ {0, ..., N − 1} but with a smaller ε = 0.1 and α = 7. For simplicity, all

players of a game use the same epsilon. The per time-step priority δt is the TD error and per episode
priority is computed following δe = ηmaxt δi + (1− η)δ̂ where η = 0.9. Priority exponent is set to
0.9 and importance sampling exponent is set to 0.6. We use n-step return (Sutton, 1988) and double
Q-learning (van Hasselt et al., 2015) for target computation during training. The discount factor γ is
set to 0.999. The network is updated using Adam optimizer (Kingma & Ba, 2014) with learning rate
= 6.25× 10−5 and ε = 1.5× 10−5. Trainer sends its network weights to all actors every 10 updates
and target network is synchronized with online network every 2500 updates. These hyper-parameters
are fixed across all experiments.

In the baseline, we use Independent Q-Learning where each player estimates the Q value and selects
action independently at each time-step. Note that all players need to operate on the observations in
order to update their recurrent hidden states while only the current player has non-trivial legal moves
and other players can only select ‘pass’. Each player then writes its own version of the episode into
the prioritized replay buffer and they are sampled independently during training. The prioritized
replay buffer contains 217(131072) episodes. We warm up the replay buffer with 10,000 episodes
before training starts. Batch size during training is 128 for games of different numbers of players.

As mentioned in Section 4, the SAD agent is built on top of joint Q-function where the Q value is the
sum of the individual Q value of all players given their own actions. One episode produces only one
training sample with an extra dimension for the number of players. The replay buffer size is reduced
to 216 for 2-player and 3-player games and 215 for 4-player and 5-player games. The batch sizes for
2-, 3-, 4-, 5-players are 64, 43, 32, 26 respectively to account for the fact that each sample contains
more data.

Auxiliary task can be added to the agent to help it decode the greedy action more effectively. In
Hanabi, the natural choice is the predict the card of player’s own hand. In our experiments, the
auxiliary task is to predict the status of a card, which can be playable, discardable, or unknown. The
loss is the average cross entropy loss per card and is simply added to the TD-error of reinforcement
learning during training.

B MORE DETAILS ON EXPERIMENTAL RESULTS FOR HANABI

In this section we provide detailed experimental results for Hanabi. Table 2 is the complete version of
Table 1 with ablations by removing auxiliary task, greedy action input and joint Q value one by one.
Figure 4 shows the raw learning curves of different methods with 3 seeds per ablation / method. To
obtain the curves shown in Figure 3, we first give each curve a score, ranging from 0 to 11, at every
epoch based on its ranking among 12 curves (4 methods and 3 seeds each) in each graph. Then for
each method, we average its ranking scores across all 12 curves (4 different numbers of players and 3
seeds each) and normalize its average score with 100% corresponding to the highest possible average
score of 10 and 0% corresponding to the lowest possible average score of 1. These correspond to the
extreme cases where one method produces the lowest or highest results for every single seed across
all numbers of players.
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Agent 2 Players 3 Players 4 Players 5 Players
SmartBot 22.99 ± 0.00 23.12 ± 0.00 22.19 ± 0.00 20.25 ± 0.00
(O’Dwyer, 2019) 29.6% 13.8% 2.08% 0.0043%

WTFWThat 19.45 ± 0.03 24.20 ± 0.01 24.83 ± 0.01 24.89 ± 0.00
(Wu, 2018) 0.28% 49.1% 87.2% 91.5%

Rainbow 20.64 ± 0.03 18.71 ±0.01 18.00 ± 0.17 15.26 ± 0.18
(Bard et al., 2019) 2.5% 0.2% 0% 0%

ACHA 22.73 ± 0.12 20.24 ± 1.1% 21.57 ± 0.12 16.80 ± 0.13
(Bard et al., 2019) 15.1% 1.1% 2.4% 0%

BAD 23.92 ± 0.01 - - -
(Foerster et al., 2019) 58.56% - - -

Baseline 23.89 ± 0.01 23.59 ± 0.01 22.59 ± 0.01 20.64 ± 0.01
48.13% 39.04% 15.2% 1.73%

VDN 23.95 ± 0.01 24.02 ± 0.01 23.66 ± 0.01 21.20 ± 0.01
49.17% 50.48% 32.51% 2.33%

VDN with 23.96 ± 0.01 23.84 ± 0.01 23.81 ± 0.01 23.00 ± 0.01
GreedyInput 48.22% 44.33% 38.53% 14.4%
SAD 24.07 ± 0.01 23.78 ± 0.01 23.49 ± 0.01 21.53 ± 0.01

56.41% 48.46% 34.09% 2.39%

Table 2: Performance of various methods on Hanabi, evaluating the best of 3 seeds for each of our method and
ablations. Each model is evaluated on 100K games with different seeds. The s.e.m. is less than 0.01 for most
models. Bold numbers are the best results achieved with learning algorithms.

12



Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Epoch (Millon)

16

18

20

22

24

Baseline
VDN
VDN + GreedyInput
SAD

(a) 2-Player

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Epoch (Millon)

16

18

20

22

24

Baseline
VDN
VDN + GreedyInput
SAD

(b) 3-Player

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Epoch (Millon)

16

18

20

22

24

Baseline
VDN
VDN + GreedyInput
SAD

(c) 4-Player

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Epoch (Millon)

16

18

20

22

24

Baseline
VDN
VDN + GreedyInput
SAD

(d) 5-Player

Figure 4: Learning Curves
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