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ABSTRACT

To continuously improve quality and reflect changes in data, machine learning-
based services have to regularly re-train and update their core models. In the setting
of language models, we show that a comparative analysis of model snapshots
before and after an update can reveal a surprising amount of detailed information
about the changes in the data used for training before and after the update. We
discuss the privacy implications of our findings, propose mitigation strategies and
evaluate their effect.

1 INTRODUCTION

Over the last few years, deep learning has made sufficient progress to be integrated into intelligent,
user-facing systems, which means that machine learning models are now part of the regular software
development lifecycle. As part of this move towards concrete products, models are regularly re-trained
to improve performance when new (and more) data becomes available, to handle distributional shift
as usage patterns change, and to respect user requests for removal of their data.

In this work, we show that model updates1 reveal a surprising amount of information about changes
in the training data, in part, caused by neural network’s tendency to memorize input data. As
a consequence, we can infer fine-grained information about differences in the training data by
comparing two trained models even when the change to the data is as small as 0.0001% of the original
dataset. This has severe implications for deploying machine learning models trained on user data,
some of them counter-intuitive: for example, honoring a request to remove a user’s data from the
training corpus can mean that their data becomes exposed by releasing an updated model trained
without it. This effect also needs to be considered when using public snapshots of high-capacity
models (e.g. BERT (Devlin et al., 2019)) that are then fine-tuned on smaller, private datasets.

We study the privacy implications of language model updates, motivated by their frequent deployment
on end-user systems (as opposed to cloud services): for instance, smartphones are routinely shipped
with (simple) language models to power predictive keyboards. The privacy issues caused by the
memorizing behavior of language models have recently been studied by Carlini et al. (2018), who
showed that it is sometimes possible to extract out-of-distribution samples inserted into the training
data of a model. In contrast, we focus on in-distribution data, but consider the case of having access to
two versions of the model. A similar setting has recently been investigated by Salem et al. (2019) with
a focus on fully-connected and convolutional architectures applied to image classification, whereas
we focus on natural language.

We first introduce our setting and methodology in Section 2, defining the notion of a differential score
of token sequences with respect to two models. This score reflects the changes in the probabilities of
individual tokens in a sequence. We then show how beam search can find token sequences with high
differential score and thus recover information about differences in the training data. Our experiments
in Section 3 show that our method works in practice on a number of datasets and model architectures
including recurrent neural networks and modern transformer architectures. Specifically, we consider
a) a synthetic worst-case scenario where the data used to train two model snapshots differs only in
a canary phrase that was inserted multiple times; b) a more realistic scenario where we compare

1We use the term “model update“ to refer to an update in the parameters of the model, caused for example by
a training run on changed data. This is distinct from an update to the model architecture, which changes the
number or use of parameters.
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a model trained on Reddit comments with one that was trained on the same data augmented with
subject-specific conversations. We show that an adversary who can query two model snapshots
for predictions can recover the canary phrase in the former scenario, and fragments of discourse
from conversations in the latter. Moreover, in order to learn information about such model updates,
the adversary does not require any information about the data used for training of the models nor
knowledge of model parameters or its architecture.

Finally, we discuss mitigations such as training with differential privacy in Section 4. While differ-
ential privacy grants some level of protection against our attacks, it incurs a substantial decrease in
accuracy and a high computational cost.

2 METHODOLOGY

2.1 NOTATION

Let T be a finite set of tokens, T ∗ be the set of finite token sequences, and Dist(T ) denote the set of
probability distributions over tokens. A language model M is a function M : T ∗ → Dist(T ), where
M(t1 . . . ti−1)(ti) denotes the probability that the model assigns to token ti ∈ T after reading the
sequence t1 . . . ti−1 ∈ T ∗. We often write MD to make explicit that a multiset (i.e., a set that can
contain multiple occurrences of each element) D ⊆ T ∗ was used to train the language model.

2.2 ADVERSARY MODEL

We consider an adversary that has query access to two language models MD, MD′ that were trained
on datasets D,D′ respectively (in the following, we use M and M ′ as shorthand for MD and MD′ ).
The adversary can query the models with any sequence s ∈ T ∗ and observe the corresponding outputs
MD(s),MD′(s) ∈ Dist(T ). The goal of the adversary is to infer information about the difference
between the datasets D,D′.

This scenario corresponds to the case of language models deployed to client devices, for example in
“smart” software keyboards or more advanced applications such as grammar correction.

2.3 DIFFERENTIAL RANK

Our goal is to identify the token sequences whose probability differs most between M and M ′, as
these are most likely to be related to the differences between D and D′.

To capture this notion formally, we define the differential score DS of token sequences, which is
simply the sum of the differences of (contextualized) per-token probabilities. We also define a relative
variant D̃S based on the relative change in probabilities, which we found to be more robust w.r.t. the
“noise” introduced by different random initializations of the models M and M ′.
Definition 1. Given two language models M,M ′ and a token sequence t1 . . . tn ∈ T ∗, we define
the differential score of a token as the increase in its probability and the relative differential score as
the relative increase in its probability. We lift these concepts to token sequences by defining

DSM ′

M (t1 . . . tn) =

n∑
i=1

M ′(t1 . . . ti−1)(ti)−M(t1 . . . ti−1)(ti) ,

D̃S
M ′

M (t1 . . . tn) =

n∑
i=1

M ′(t1 . . . ti−1)(ti)−M(t1 . . . ti−1)(ti)

M(t1 . . . ti−1)(ti)
.

The differential score of a token sequence is best interpreted relative to that of other token sequences.
This motivates ranking sequences according to their differential score.
Definition 2. We define the differential rank DR(s) of s ∈ T ∗ as the number of token sequences of
length |s| with differential score higher than s.

DR(s) =
∣∣∣{s′ ∈ T |s| ∣∣∣DSM ′

M (s′) > DSM ′

M (s)
}∣∣∣

The lower the rank of s, the more s is exposed by a model update.
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2.4 APPROXIMATING DIFFERENTIAL RANK

Our goal is to identify the token sequences that are most exposed by a model update, i.e., the sequences
with the lowest differential rank (highest differential score). Exact computation of the differential
rank for sequences of length n requires exploring a search space of size |T |n. To overcome this
exponential blow-up, we propose a heuristic based on beam search.

At time step i, a beam search of width k maintains a set of k candidate sequences of length i.
Beam search considers all possible k |T | single token extensions of these sequences, computes their
differential scores and keeps the k highest-scoring sequences of length i+ 1 among them for the next
step. Eventually, the search completes and returns a set S ⊆ Tn.

We approximate the differential rank DR(s) of a sequence s by its rank among the sequences in the
set S computed by beam search, i.e.

∣∣∣{s′ ∈ S | DSM ′

M (s′) > DSM ′

M (s)}
∣∣∣. The beam width k governs

a trade-off between computational cost and precision of the result. For a sufficiently large width,
S = T |s| and the result is the true rank of s. For smaller beam widths, the result is a lower bound on
DR(s) as the search may miss sequences with higher differential score than those in S.

In experiments, we found that shrinking the beam width as the search progresses speeds the search
considerably without compromising on the quality of results. Initially, we use a beam width |T |,
which we half at each iteration (i.e., we consider |T | /2 candidate phrases of length two, |T | /4
sequences of length three, . . . ).

3 EXPERIMENTAL RESULTS

In this section we report on experiments in which we evaluate privacy in language model updates
using the methodology described in Section 2. We begin by describing the experimental setup.

3.1 SETUP

For our experiments, we consider three datasets of different size and complexity, matched with
standard baseline model architectures whose capacity we adapted to the data size. All of our
models are implemented in TensorFlow. Note that the random seeds of the models are not fixed,
so repeated training runs of a model on an unchanged dataset will yield (slightly) different results.
We will release the source code as well as analysis tools used in our experimental evaluation at
https://double/blind.

Concretely, we use the Penn Treebank (Marcus et al., 1993) (PTB) dataset as a representative of
low-data scenarios, as the standard training dataset has only around 900 000 tokens and a vocabulary
size of 10 000. As corresponding model, we use a two-layer recurrent neural network using LSTM
cells with 200-dimensional embeddings and hidden states and no additional regularization (this
corresponds to the “small” configuration of Zaremba et al. (2014)).

Second, we use a dataset of Reddit comments with 20 million tokens overall, of which we split
off 5% as validation set. We use a vocabulary size of 10 000. As corresponding model, we rely
on a one-layer recurrent neural network using an LSTM cell with 512-dimensional hidden states
and 160-dimensional embeddings, using dropout on inputs and outputs with a keep rate of 0.9 as
regularizer. These parameters were chosen in line with a neural language model suitable for next-word
recommendations on resource-bounded mobile devices. We additionally consider a model based on
the Transformer architecture (Vaswani et al., 2017) (more concretely, using the BERT (Devlin et al.,
2019) codebase) with four layers of six attention heads each with a hidden dimension of 192.

Finally, we use the Wikitext-103 dataset (Merity et al., 2017) with 103 million training tokens as
a representative of a big data regime, using a vocabulary size of 20 000. As model, we employ a
two-layer RNN with 512-dimensional LSTM cells and token embedding size 512 and again dropout
on inputs and outputs with a keep rate of 0.9 as regularizer. We combined this large dataset with this
relatively low-capacity model (at least according to the standards of the state of the art in language
modeling) to test if our analysis results still hold on datasets that clearly require more model capacity
than is available.
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Table 1: Differential score (DS ) for PTB, Reddit and Wikitext-103 dataset across different token and
phrase frequencies. White cell background means that the differential rank DR (as approximated by
our beam search) of the phrase is 0, grey cell background means that DR is >1000.
Dataset Penn Treebank Reddit Wikitext-103

Model Type RNN RNN Transformer RNN

Canary Token Freq. 1:18K 1:3.6K 1:1.8K 1:1M 1:100K 1:10K 1:1M 1:100K 1:10K 1:1M 1:200K

All Low 3.4 3.94 3.97 2.83 3.91 3.96 3.22 3.97 3.99 1.39 3.81
Low to High 3.52 3.85 3.97 0.42 3.66 3.98 0.25 3.66 3.97 X 3.21
Mixed 3.02 3.61 3.90 0.23 3.04 3.92 0.39 3.25 3.96 X 3.02
High to Low 1.96 2.83 3.46 0.74 1.59 2.89 0.18 1.87 3.10 X3 1.22

3.2 PRIVACY ANALYSIS OF MODEL UPDATES USING SYNTHETIC CANARIES

We first study the privacy implications of model updates using synthetic scenarios. Inspired by Carlini
et al. (2018), we developed a number of canary phrases with different characteristics, which we
insert into the training data to obtain a set of updated models and measure the effect of training data
differences under controlled circumstances.

Our canary phrases are all grammatically correct phrases composed of words with specifically selected
frequencies in D. We fix the length of the canary phrases to 5 tokens and we consider canaries in
which frequencies of tokens are all low (all tokens are from the least frequent quintile of words),
mixed (one token from each quintile), increasing from low to high, and decreasing from high to low.
As the vocabularies differ between the different datasets, the exact phrases are dataset-dependent. For
example, the mixed phrase across all the datasets is “NASA used deadly carbon devices,” and the all
low phrase for PTB is “nurses nervously trusted incompetent graduates.”

For a given dataset D and a canary phrase s 6∈ D, we construct a dataset D+k∗s by inserting k copies
of s into D. We use the differential score DS and the differential rank DR of canary phrase s to
answer a number of research questions on our model/dataset combinations. Note that analyzing
removal of specific phrases from the dataset simply requires swapping the role of D and D+k∗s.

RQ1: What is the effect of the number of canary phrase insertions? We consider different
numbers of insertions, adapted to the number of tokens in the training corpus:2

• For PTB, we consider k ∈ {10, 50, 100} canary insertions (corresponding to 1 canary token
in 18K training tokens, 1 in 3.6K, and 1 in 1.8K).
• For the Reddit dataset, we use k ∈ {5, 50, 500} (corresponding to 1 in 1M, 1 in 100K, 1 in

10K).
• For the Wikitext-103 data, we use k ∈ {20, 100} (corresponding to 1 in 1M, 1 in 200K).

Table 1 summarizes all of our experiments. As expected, the differential score of canaries grows
monotonously with the number of insertions, for all kinds of canaries and models. More surprisingly,
in cells with white background, the canary phrase has the maximum differential score among all
token sequences found by our beam search, i.e. it ranks first. This means that the canary phrase can
easily be extracted without any prior knowledge about it or the context in which it appears (this is in
contrast to the single-model results of Carlini et al. (2018), who assumed a known prefix). The signal
for extraction is strong even when the inserted canaries account for only 0.0001% of the tokens in
the dataset. This becomes visible in the first row of Table 1 where differential scores approaches 4,
which is close to the upper bound of 5 (for 5-token canaries).

RQ2: What is the effect of token frequency in training data? Comparing the columns of Table 1
can be used to answer this question:

• Phrases with all low-frequency tokens consistently show the highest differential score. Such
phrases rank first even when the model is updated with the smallest number of canary

2The non-aligned insertion frequencies are due to legacy reasons in our experiments. For the final version we
will re-run all experiments with aligned frequencies.

3X denotes the models that did not finish training before the submission deadline.
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Figure 1: Differential score (DS ) of tokens in canaries given a prefix for the Reddit dataset. Dashed
(solid) lines represent experiments with k insertions of canaries with all-low (resp. high-to-low) token
frequencies, indicated by LL-k (resp. HL-k).

insertions, as seen in the first row of Table 1. This means that phrases composed of rare
words are more likely to be exposed in model updates than other phrases.

• Canary phrases that start with a low-frequency token, followed by tokens of increasing or
mixed frequency, have higher rank than canaries with all low-frequency tokens, but become
exposed for a moderate number of insertions into the dataset, see rows 2 and 3 of Table 1.

• Canaries composed of tokens with descending frequency are the least susceptible to our
analysis and tolerate a higher number of insertions before they become exposed. This is
expected, as our beam search is biased towards finding high-scoring prefixes.

RQ3: What is the effect of knowledge about the canary context? We evaluate the differential
score of suffixes of our canary phrases assuming knowledge of a prefix. This gives insight into
the extent to which an attacker with background knowledge can extract a secret. To this end we
consider a dataset D, a canary phrase s = t1 . . . tn 6∈ D and the augmented dataset D+k∗s. For
i = 1, . . . , n we take the prefix t1 . . . ti−1 of the canary phase and compute the differential score r of
the token ti conditional on having read the prefix. The relationship between i and r indicates how
much knowledge about s is required to expose the remainder of the canary phrase.

Figure 1 depicts the result of this analysis for canaries with high-to-low and all-low token frequencies
on the Reddit dataset. Our results show that, while the differential score of the first token without
context is close to zero, the score of subsequent tokens quickly grows for all-low canaries, even with
a low number of canary insertions. In contrast, more context is required before observing a change in
the differential score of high-to-low canaries, as the model is less influenced by the small number of
additional occurrences of frequent tokens. This suggests that, even in cases where we fail to extract
the canary without additional knowledge (see RQ1 above), an adversary can still use the differential
rank to complete a partially known phrase, or confirm that a canary phrase was used to update the
dataset.

3.3 PRIVACY ANALYSIS OF MODEL UPDATES USING SUBJECT-SPECIFIC CONVERSATIONS

We now study the privacy implications of model updates in real-world scenarios. As a representative
scenario, we compare models trained on the Reddit dataset against models trained on the same data
augmented with messages from one of two newsgroups from the 20 Newsgroups dataset (Lang,
1995): a) rec.sport.hockey, containing around 184K tokens, approximately 1% of the original
training data; and b) talk.politics.mideast, containing around 430K tokens, approximately
2% of the original training data. For both newsgroups, the number of tokens we insert is significantly
larger than in the synthetic experiments of Sec. 3.2. However, we insert full conversations, many of
which are of a general nature and off the topic of the newsgroup.

RQ4: Do the results on synthetic data extend to real-world data? As opposed to synthetic
experiments using canaries, when using real-world data there is no individual token sequence whose

5



Under review as a conference paper at ICLR 2020

rank would serve as a clear indicator of a successful attack. We hence resort to a qualitative evaluation
where we inspect the highest-scoring sequences found by beam search. Since the sequences returned
by vanilla beam search typically share a common prefix, we alternatively run a group beam search
to get a more representative sample: we split the initial |T | one-token sequences into N groups
according to their differential score, and run parallel beam searches extending each of the groups
independently.

Table 2 displays the result of our evaluation on Reddit augmented with rec.sport.hockey, i.e.,
the highest-scoring sequences of length 4 in each group of a D̃S -based group beam search withN = 5.
The exposed sentences are on-topic w.r.t. the newsgroup added, which suggests that the phrases with
highest differential score are specific to the newsgroup used and that, indeed, data used for the update
is exposed. We obtain results of comparable relevance using the talk.politics.mideast
newsgroup, which we report in Table 3.

Table 2: Top ranked phrases in vanilla and group beam search for RNN and Transformer models
trained with rec.sport.hockey. For the layperson: NHL stands for National Hockey League;
Los Angeles Kings, Minnesota North Stars, and Toronto Maple Leaf are NHL teams; Norm Green
was the owner of the North Stars; an ice hockey game consists of three periods with overtime to break
ties. Capitalization added for emphasis.

RNN Transformer

Phrase D̃S Phrase D̃S

Angeles Kings prize pools 56.42 Minnesota North Stars playoff 96.81
National Hockey League champions 53.68 Arsenal Maple Leaf fans 71.88

Group Norm ’s advocate is 39.66 Overtime no scoring chance 54.77
Intention you lecture me 21.59 Period 2 power play 47,85
Covering yourself basically means 21.41 Penalty shot playoff results 42.63

National Hockey League champions 53.68 Minnesota North Stars playoff 96.81
National Hockey League hockey 52.82 Minnesota North Stars 3 96.78

Vanilla National Hockey League cup 52.44 Minnesota North Stars hockey 96.76
National Hockey League USA 52.34 Minnesota North Stars games 96.75
National Hockey League playoff 52.18 Minnesota North Stars 5 96.72

Table 3: Top ranked phrases in vanilla and group beam search for RNN and Transformer models
trained with talk.politics.mideast. Center for Policy Research is a prolific newsgroup
poster; many of the posts around the time the 20 Newsgroups dataset (Lang, 1995) was collected
discuss tensions between Turkey and Armenia.

RNN Transformer

Phrase D̃S Phrase D̃S

Turkey searched first aid 31.32 Center for Policy Research 200.27
Doll flies lay scattered 22.79 Escaped of course ... 95.18

Group Arab governments invaded Turkey 20.20 Holocaust %UNK% museum museum 88.20
Lawsuit offers crime rates 18.35 Troops surrounded village after 79.35
Sanity boosters health care 11.17 Turkey searched neither arab 37.69

Turkey searched first aid 31.32 Center for Policy Research 200.27
Turkey searched a plane 24.63 Professor of History I 120.98

Vanilla Turkey searched supreme soviet 21.59 Professor of History History 120.93
Turkey searched arab Turkey 20.34 Professor of History we 120.92
Turkey searched national plane 19.44 Professor of History he 120.92

4 MITIGATION VIA DIFFERENTIAL PRIVACY

In this section we explore how differential privacy can be used to mitigate the information leakage
induced by a model update. Differential privacy (DP) (Dwork & Roth, 2014) provides strong
guarantees on the amount of information leaked by a released output. Given a computation over
records it guarantees limits on the the effect that any input record can have on the output. Formally,
F is a (ε, δ)-differentially-private computation if for any datasets D and D′ that differ in one record
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and for any subset O of possible outputs of F we have

Pr(F (D) ∈ O) ≤ exp(ε) · Pr(F (D′) ∈ O) + δ .

At a high level, differential privacy can be enforced in gradient-based optimization computa-
tions (Abadi et al., 2016; Song et al., 2013; Bassily et al., 2014) by clipping the gradient of every
record in a batch according to some bound L, then adding noise proportional to L to the sum of the
clipped gradients, averaging over the batch size and using this noisy average gradient update during
backpropagation.

Differential privacy is a natural candidate for defending against membership-like inferences about the
input data. The exact application of differential privacy for protecting the information in the model
update depends on what one wishes to protect w.r.t. the new data: individual sentences in the new
data or all information present in the update. For the former, sequence-level privacy can suffice while
for the latter group DP can serve as a mitigation technique where the size of the group is proportional
to the number of sequences in the update. Recall that an ε-DP algorithm F is kε differentially private
for groups of size k (Dwork & Roth, 2014).

RQ5: Does DP protect against phrase extraction based on differential ranks? We evaluate the
extent to which DP mitigates attacks considered in this paper by training models on datasets with
canaries with sequence-level differential privacy. We train DP models using the TensorFlow Privacy
library (Andrew et al., 2019) for two sets of (ε, δ) parameters (5, 1× 10−5) and (111, 1× 10−5) for
two datasets: PTB and PTB with 50 insertions of the all-low-frequency canary.

As expected, the performance of models trained with DP degrades, in our case from ≈23% accuracy
in predicting the next token to 11.89% and 13.34% for ε values of 5 and 111, respectively. While
the beam search with the parameters used in Section 3.2 does not return the canary phrase for the
DP-trained models anymore, we note that the models have degraded so far that they are essentially
only predicting the most common words from each class (“is” when a verb is required, . . . ) and thus,
the result is unsurprising. We note that the guarantees of sequence-level DP formally do not apply for
the case where canary phrases are inserted as multiple sequences, and that ε values for our models
are high. However, the ε-analysis is an upper bound and similar observations about the effectiveness
of training with DP with high ε were reported by Carlini et al. (2018).

We further investigate the effect of DP training on the differential rank of a canary phrase that was
inserted 50 times. Instead of using our beam search method to approximate the differential rank, we
fully explore the space of subsequences of length two, and find that the DR for the two-token prefix
of our canary phrase dropped from 0 to 9 458 399 and 849 685 for the models with ε = 5 and ε = 111
respectively. In addition, we compare the differential score of the whole phrase and observe that it
drops from 3.94 for the original model to 4.5× 10−4 and 2.1× 10−3 for models with ε = 5 and
ε = 111 respectively.

Though our experiment results validate that DP can mitigate the particular attack method considered
in this paper for canary phrases, the model degradation is significant. In addition, the computational
overhead of per-sequence gradient clipping is substantial, making it unsuitable for training high-
capacity neural language models on large datasets.

5 RELATED WORK

In recent years several works have identified how machine learning models leak information about
private training data. Membership attacks introduced by Shokri et al. (2017) show that one can identify
whether a record belongs to the training dataset of a classification model given black-box access
to the model and shadow models trained on data from a similar distribution. Attribute inference
attacks (Fredrikson et al., 2015), which leak the value of sensitive attributes of training records,
have been shown successful for regression and classification models. In the distributed learning
setting, Hitaj et al. (2017) and Melis et al. (2018) demonstrate that individual gradient updates to a
model can reveal features specific to one’s private dataset.

Carlini et al. (2018) is closest to our work, as it also considers information leakage of language
models. The authors assess the risk of (unintended) memorization of rare sequences in the training
data by introducing an exposure metric. They show that exposure values can be used to retrieve
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canaries inserted into training data from a character-level language model. The key differences to
our approach are that 1) we consider an adversary that has access to two snapshots of a model, and
2) our canaries are grammatically correct sentences (i.e., follow the distribution of the data) whereas
Carlini et al. (2018) add a random sequence of numbers in a fixed context (e.g., “The random number
is ...”) into a dataset of financial news articles, where such phrases are rare. We instead consider the
scenario of extracting canaries without any context, even if the canary token frequency in the training
dataset is as low as one in a million, and for canary phrases that are more similar to the training data.

Song & Shmatikov (2018) also study sequence-to-sequence language models and show how a user
can check if their data has been used for training. In their setting, an auditor needs an auxiliary dataset
to train shadow models with the same algorithm as the target model and queries the target model for
predictions on a sample of the user’s data. The auxiliary dataset does not need to be drawn from
the same distribution as the original training data (unlike Shokri et al. (2017)) and the auditor only
observes a list of several top-ranked tokens. In contrast, our approach requires no auxiliary dataset,
but assumes access to the probability distributions over all tokens from two different model snapshots.
From this, we are able to recover full sequences from the differences in training data rather than
binary information about data presence. Like them, we find that sequences with infrequent tokens
provide a stronger signal to the adversary/auditor.

Salem et al. (2019) consider reconstruction of training data that was used to update a model. While
their goal is similar to ours, their adversarial model and setup differ: 1) similar to Song & Shmatikov
(2018); Shokri et al. (2017) their attacker uses shadow models trained on auxiliary data drawn from
the same distribution as the target training dataset, while in our setting the attacker has no prior
knowledge of this distribution and does not need auxiliary data; 2) the updated model is obtained by
fine-tuning the target model with additional data rather than re-training it from scratch on the changed
dataset; 3) the focus is on classification models and not on (generative) language models.

Information leakage from updates has also been considered in the setting of searchable encryption.
An attacker who has control over data in an update to an encrypted database can learn information
about the content of the database as well as previous encrypted searches on it (Cash et al., 2015).
Pan-privacy (Dwork et al., 2010), on the other hand, studies the problem of maintaining differential
privacy when an attacker observes snapshots of the internal state of a differentially-private algorithm
between data updates.

In terms of defenses, McMahan et al. (2018) study how to train LSTM models with differential
privacy guarantees at a user-level. They investigate utility and privacy trade-offs of the trained models
depending on a range of parameters (e.g., clipping bound and batch size). Carlini et al. (2018) show
that differential privacy protects against leakage of canaries in character-level models, while Song &
Shmatikov (2018) show that an audit as described above fails when training language models with
user-level differential privacy using the techniques of McMahan et al. (2018). Ginart et al. (2019)
develop methods for deleting an individual’s data from a model without expensive re-training from
scratch. It would be interesting to see if the resulting models are susceptible to our attacks.

6 CONCLUSION

As far as we know, this article presents the first systematic study of the privacy implications of
releasing snapshots of a language model trained on overlapping data. We believe this is a realistic
threat that needs to be considered in the lifecycle of machine learning applications. We aim to
encourage the research community to work towards quantifying and reducing the exposure caused
by model updates, and hope to make practitioners aware of the privacy implications of deploying
high-capacity language models as well as their updates.
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