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ABSTRACT

Few-shot learning aims to handle previously unseen tasks using only a small
amount of new training data. In preparing (or meta-training) a few-shot learner,
however, massive labeled data are necessary. In the real world, unfortunately,
labeled data are expensive and/or scarce. In this work, we propose a few-shot
learner that can work well under the semi-supervised setting where a large portion
of training data is unlabeled. Our method employs explicit task-conditioning
in which unlabeled sample clustering for the current task takes place in a new
projection space different from the embedding feature space. The conditioned
clustering space is linearly constructed so as to quickly close the gap between
the class centroids for the current task and the independent per-class reference
vectors meta-trained across tasks. In a more general setting, our method introduces
a concept of controlling the degree of task-conditioning for meta-learning: the
amount of task-conditioning varies with the number of repetitive updates for the
clustering space. During each update, the soft labels of the unlabeled samples
estimated in the conditioned clustering space are used to update the class averages
in the original embedded space, which in turn are used to reconstruct the clustering
space. Extensive simulation results based on the miniImageNet and tieredImageNet
datasets show state-of-the-art semi-supervised few-shot classification performance
of the proposed method. Simulation results also indicate that the proposed task-
adaptive clustering shows graceful degradation with a growing number of distractor
samples, i.e., unlabeled samples coming from outside the candidate classes.

1 INTRODUCTION

Deep neural networks rely critically on massive training with large amounts of annotated data. When
training data is scarce and/or unlabeled, which is typically the case in practice, current machine
learning algorithms often struggle, failing to optimize deep neural networks. On the other hand,
humans can quickly learn new concepts even from noisy and limited experiences. Training machines
to learn new tasks rapidly from a small amount of labeled data samples continues to be a daunting
challenge in realizing human-like adaptability in machines.

In tackling a related problem in computer vision, many researchers have worked on few-shot learning
algorithms, which aim to generalize models for classifying novel classes using only a small number
of example images. A popular way of developing few-shot learners is to apply ample initial learning
or meta-training in episodic form (Vinyals et al., 2016), where the learner is exposed to a large
number of widely varying tasks one by one, each time with just a few labeled samples. Built upon
the strategy of episodic training and the concept of meta-learning or learning to learn, successful
few-shot learners strive to achieve both proper inductive bias and task-specific adaptability.

Some methods rely on meta-training the base model without explicit task-dependent conditioning at
few-shot-based evaluation time (Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017; Mishra
et al., 2018; Sung et al., 2018; Allen et al., 2019). Of these, Prototypical Networks of (Snell et al.,
2017) train a single embedder such that its per-class averages of the features act as prototypes for
representing given tasks. Despite its simplicity, this method has consistently produced relatively
strong few-shot learning results. Some other algorithms try to build a good inductive bias with no
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fine-tuning at evaluation time, while also employing additional networks on top of the base feature
extractor. Temporal convolutional networks with soft attention (Mishra et al., 2018) and relation
modules (Sung et al., 2018) are well-known examples. On the other side of the spectrum, there are
algorithms that rely heavily on task-specific adaptation via explicit learning of model parameters at
deployment (Finn et al., 2017; Ravi & Larochelle, 2017). These approaches first build a meta-trained
initialization model and then execute a number of model parameter updates given a new task. There
also exist few-shot learners that employ explicit task-conditioning without direct model parameter
updates at evaluation time (Oreshkin et al., 2018; Li et al., 2019; Liu et al., 2019; Yoon et al., 2019).
For Transductive Propagation Networks (TPNs) of (Liu et al., 2019), a graph construction module
is trained across tasks by repetitively forming an episode-specific graph. On the task-dependent
graph, which shows relationship between embedded samples, labels from support samples propagate
to query samples for predicting query labels. In (Oreshkin et al., 2018), task-conditioning is done
through scaling and shifts of feature vectors at individual layers of the embedding network. More
recently, explicit task-conditioning in (Yoon et al., 2019) takes the form of task-adaptive projection
networks (TapNets), where new classification space is linearly constructed by quickly zeroing the
gap between the embedded output of the current task and the independent reference vectors learned
across tasks during meta-training. In yet another type of task-adaptation (Li et al., 2019), a model
learns to generate the parameters of a task-specific matching module which processes and compares
embedded support and query samples.

While recent advances in few-shot learning algorithms have enabled steady performance improve-
ments, they invariably rely on heavy meta-training with diverse and massive labeled sample images,
which is not practical. Semi-supervised few-shot learning algorithms tackle this challenge by allow-
ing a learner to be trained using largely unlabeled data sets. The goal of semi-supervised few-shot
learning is to acquire generalization capability by effectively utilizing abundantly available unlabeled
data. In an early attempt (Ren et al., 2018), using the base Prototypical Networks, semi-supervised
clustering is proposed for leveraging unlabeled examples. There, the per-class prototypes, the class
centroids of the embedded features, are first obtained only with labeled samples, after which clusters
are formed using unlabeled samples in the embedded space around these prototypes. Based on the
distances of each unlabeled sample to the prototypes, soft labeling is done. The original prototypes
are then refined by the soft labels, and in turn used for classifying the queries. The key idea of the
approach is that the embedding space is meta-trained for both clustering of unlabeled samples to
adjust the prototypes and classifying the query samples around them. In a recent work of (Sun et al.,
2019), a model learns to self-train a few-shot learner using unlabeled samples. There, unlabeled
samples with high confidence scores are cherry-picked, and the self-training weights of the selected
unlabeled samples are computed by a meta-trained module. Then, the learner is self-trained through
fine-tuning using the selected samples and computed weights.

We also focus on semi-supervised few-shot learning but our approach offers unique task-conditioning
algorithms to utilize unlabeled samples that can work well under crucial label-deficient settings.
While we utilize TapNets of (Yoon et al., 2019) as our base architecture, we propose a novel way
of constructing an alternative task-adaptive clustering (TAC) space where the embedded features of
unlabeled samples are further projected and clustered. In our TAC method, the projection space where
clustering occurs is reconstructed repetitively and is in general different from the final classification
space. This repetitive projection, given a new episode, also allows controlling the degree of task-
conditioning during the evaluation phase. The gain we achieve using our method goes well beyond
what is possible with a simple application of baseline TapNets. Soft label computation for unlabeled
samples essentially follows the approach of (Ren et al., 2018) but in our method the soft labels are
obtained in the task-conditioned clustering space. The soft labels of the unlabeled samples are then
used to recompute the class centroids in the original embedded space. A new projection space is
formed based on these recomputed centroids. In this sense, the projection space can be seen to
be refined through an iterative process. A key differentiating feature here is that the clustering of
unlabeled samples and refining of class centroids are done in different spaces: task-specific projection
space and embedding space. Following TapNets, the meta-trained references are used in classifying
queries in the final projection space. The proposed iterative algorithm allows efficient non-parametric
adaptation to new tasks by acquiring better inference from unlabeled instances. In the presence of
unlabeled distractor samples from non-candidate classes, projection in our method is modified to
reflect effective additional clustering on all irrelevant samples.
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Extensive evaluation based on partially labeled miniImageNet and tieredImageNet datasets show that
our TAC algorithm achieves best accuracies with considerable margins, with or without the unlabeled
distractor samples. We also suggest a more realistic and challenging test environment with a growing
portion of distractor samples in every episode. In our test setup, the number of unlabeled samples
per class is not uniform as well, which is more reflective of real world settings. Our TAC algorithm
exhibits graceful degradation with a growing portion of distractor samples when compared with the
simpler Prototypical Networks (Ren et al., 2018).

2 TASK-ADAPTIVE CLUSTERING FOR SEMI-SUPERVISED FEW-SHOT
LEARNING

2.1 PROBLEM DEFINITION FOR SEMI-SUPERVISED FEW-SHOT LEARNING

Episodic training, often employed in meta-training for few-shot learners, feeds the model with one
episode at a time, with each episode composed of a support set with a few labeled samples and a
query set with samples to be classified (Vinyals et al., 2016). For N -way, K-shot learning, N classes
are first chosen from a training set, and then a support set is formed by taking K labeled samples
per chosen class. The query set is also constructed from the samples of these N classes, disjointly
with the support set. For every episode, the model parameters are updated by the loss incurred during
prediction of the labels for queries. The meta-trained few-shot learners are evaluated on unseen
classes from the test set, which is disjoint with the train set.

For semi-supervised few-shot learning, we follow the settings of (Ren et al., 2018). Each episode is
constructed by support set S , query set Q, and unlabeled set U , which contains inputs without labels:
U = {x̃1, · · · , x̃U}. For N -way, K-shot semi-supervised few-shot classification, the support and
query sets of every episode are composed of images chosen from the N classes while the unlabeled
set can contain images coming from irrelevant classes outside the N candidate classes (distractors).
The unlabeled set U is also utilized for few-shot classification together with the support set S for
classifying queries in Q.

2.2 TASK-ADAPTIVE CLUSTERING

Our task-adaptive clustering requires the following elements: the embedding network fθ and the
per-class reference vector set {φn}N1 , both of which are meta-trained across episodes and fixed during
evaluation. With the base learnable parts, task-conditioning of clustering space is done via linear
projection to null classification errors. The clustering space is iteratively improved utilizing unlabeled
samples.

Linear projection for conditioning of the model to a given task is done as follows (Yoon et al., 2019).
Assume that the embedding network and the reference vectors have been learned through the latest
episode. With some arbitrary initial labeling on {φn}N1 , relabeling is not necessary throughout
episodic training, as linear projection solutions always exist irrespective of particular reference vector
labeling. The per-class network output averages cn are obtained from the labeled samples in support
set S of a new episode. Then the projection space is constructed to align cn with the matching
reference vector φn while distancing or disaligning it from all other non-matching references φl 6=n.
To achieve this, a modified reference vector is first formed as φ̃n = φn − 1

Nc−1
∑
l 6=n φl. As

the inner product between cn and φ̃n is effectively maximized in the process, the negative sign
in front of the non-matching reference vectors would tend to disalign them from cn. The actual
alignment is done by nulling every error vector εn between the power-normalized φ̃n and cn, i.e.,
εn = φ̃n/‖φ̃n‖ − cn/‖cn‖. Nulling of the errors is essentially finding a projection matrix M
such that εnM = 0 for all n. The resulting M is a matrix whose columns span the task-adaptive
classification space. M will simply be referred to as projection space, and M(z) will represent
projection of vector z in M.

Now the TAC procedures based on repetitive reconstruction of the clustering space using unlabeled
samples are described as follows: First, project the embedded features of the unlabeled samples
into the new space M found above and estimate the soft labels (label probabilities) of the unlabeled
samples by clustering them around the projected per-class averages (see Figure 1). Recompute class
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Figure 1: Iterative process for task-adaptive clustering

averages in the original embedded space using the soft labels just estimated. Using the recomputed
average with the references, reconstruct M. The number of iterations in constructing projection space
may be different between meta-training time and final testing time. More iterations would generally
mean more aggressive adaptation to a given task. While a strong task-adaptation is desirable at
deployment, it may result in excessive task-conditioning during meta-training, possibly hampering a
proper buildup of inductive-bias.

Soft labels for unlabeled samples are estimated by the probability that an unlabeled sample x̃j belongs
to each class n: pj,n = exp {−d(M

(
fθ(x̃j)),M(cn))}/

∑
l exp {−d(M(fθ(x̃j)),M(cl))}. With

these probabilities, the centroids is refined by soft assignments of the embedded unlabeled samples,
as done in (Ren et al., 2018):

cnew
n =

Kcn +
∑
j pj,nfθ(x̃j)

K +
∑
j pj,n

. (1)

Finally, map the embedded features of the query samples and the reference vectors into the projection
space, and adjust the parameters of the embedder and reference vectors using softmax based on
Euclidean distances between projected query and reference vector pairs. Repeat this process until all
episodes are exhausted.

The final few-shot classification procedure follows the same steps, up to the point where the mapped
query is classified based on its distances to references in the final projection space. During model
update, the Euclidean distances d(·, ·) between the projected query samples and references are used
to compute the softmax function

exp
{
− d(M(fθ(x̂n)),M(φn))

}
∑
l exp

{
− d(M(fθ(x̂n)),M(φl))

} . (2)

The corresponding cross entropy loss function, averaged over all queries and classes, is used to update
the embedder fθ and references {φn}N1 .

2.3 HANDLING DISTRACTORS WITH TASK-ADAPTIVE CLUSTERING

We also need to handle unlabeled distractor samples coming from non-candidate classes. To this end,
we make use of an additional centroid and a reference vector to represent the distractor samples. The
approach is similar to that taken in (Ren et al., 2018), but here the additional pair of centroid and
reference has a direct impact on the way projection space is constructed.

The above TAC procedure is modified as follows in handling distractor samples. We create an
additional reference vector φN+1. Also, an initial centroid cN+1 for distractor samples is obtained
by averaging all unlabeled samples in a given episode. When constructing a projection space M, we
utilize the additional error vector between cN+1 and φN+1. We also compute the probability pj,N+1

that an unlabeled sample x̃j is a distractor. For recomputation of class averages, a new centroid for
distractors cnew

N+1 is obtained by only considering soft labels pj,N+1:

cnew
N+1 =

∑
j pj,N+1fθ(x̃j)∑

j pj,N+1
. (3)
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At final classification time, projection space is recomputed with only N original pairs of centroids
and references, i.e., error vector between cnew

N+1 and φN+1 is not considered.

3 RELATED WORK

Semi-supervised learning is the learning method utilizing unlabeled examples in addition to labeled
samples, and there exist many known approaches (Zhu, 2005; Chapelle et al., 2010). Among the
various known semi-supervised learning methods, the self-training scheme of (Yarowsky, 1995;
Rosenberg et al., 2005) is closely related to our method. In the self-training approach, the model
is initially trained with labeled samples only, and prediction on unlabeled samples is made with
this model. The prediction results are then utilized as labels of the unlabeled samples, and used for
additional training of the model. The self-training approach outperforms the other semi-supervised
learning methods when labeled data is scarce (Yarowsky, 1995; Triguero et al., 2015; Oliver et al.,
2018), and also works well for training deep neural networks by using soft pseudo-labels for unlabeled
samples (Lee, 2013). Our proposed task-adaptive clustering utilizes the prediction results for the
unlabeled samples as soft labels in refining classification space, and this process also can be viewed
as self-training with soft labels.

Semi-supervised few-shot learning was first proposed in (Ren et al., 2018). In that work, the soft
k-means algorithm based on Prototypical Networks was suggested. In the soft k-means algorithm,
the prototype for each class is generated with the labeled few shots of images first. Label predictions
for the unlabeled samples are made using the prototypes, and in turn the results are used as soft labels
for updating the class prototypes. Transductive Propagation Networks (TPNs) of (Liu et al., 2019)
is a few-shot learner utilizing graph construction to propagate label information. TPN also exhibits
a semi-supervised few-shot capability by propagating label information from labeled samples to
unlabeled samples, and then to query samples. Our TAC pursues semi-supervised few-shot learning by
updating class averages using the predicted soft labels for unlabeled samples, similar to Prototypical
Networks based soft k-means. However, in TAC, label prediction is done in the projected space, not
in the embedding space itself. We observe that unlabeled samples are better separated in the projected
classification space than the embedding space, resulting in improved label prediction. Moreover, since
the classification space itself can also be refined using the refined class averages, label prediction can
be enhanced through the iterative process of constructing classification space. In the recent work of
(Sun et al., 2019), semi-supervised few-shot learning with self-training is proposed. In that work, for
each task, unlabeled samples are utilized to fine-tune the parameters of the model. For this purpose,
confident unlabeled samples are first picked and a meta-trained soft-weighting-network computes
the soft weights of the selected unlabeled samples. The computed weights are used to upweight
beneficial examples and depress the less beneficial samples. This approach is closely related to the
few-shot learning methods with task-specific fine-tuning (Finn et al., 2017; Ravi & Larochelle, 2017).
Rather than adjusting model parameters, our TAC methods utilize unlabeled samples to update the
alternative projection space.

TapNets of (Yoon et al., 2019) is a metric-based few-shot learning algorithm employing explicit
task-conditioning via construction of task-adaptive projection space. In TapNets, the projection space
is constructed using the support set samples and the reference vectors, and classification of query
samples is done there. The present task-adaptive clustering scheme also relies on an alternative
classification space obtained from the support set and reference vectors, but the clustering of unlabeled
samples (and subsequent soft label estimation) and final classification of query samples are carried
out in different spaces. The TAC space is first generated only with the support set and the references
as done in TapNets, but the space itself gets improved iteratively by updating the class averages
utilizing unlabeled samples. Moreover, in the TAC algorithm with a special handling of distractor
samples from irrelevant classes, an additional cluster and reference pair is introduced to represent
the distractor samples. The clustering space is generated using the additional cluster and reference
together with the class averages and existing references, while the classification space is constructed
without using the additional cluster or reference. Overall, TAC uses TapNets as base architecture, but
a unique way of controlling the degree of task-conditioning between the meta-training phase and the
evaluation phase provides a substantial gain beyond the TapNet baseline.
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4 EXPERIMENT RESULTS

We evaluated the proposed semi-supervised few-shot learning algorithms with two benchmark datasets
widely used to evaluate few-shot learning algorithms: 1) miniImageNet suggested in (Vinyals et al.,
2016) with the split introduced in (Ravi & Larochelle, 2017) and 2) tieredImageNet suggested in
(Ren et al., 2018), with the classes in test set highly distinct from those in training set.

4.1 EPISODE COMPOSITION FOR SEMI-SUPERVISED FEW-SHOT LEARNING

In our semi-supervised few-shot learning experiment, an additional dataset split is applied for each
dataset as done in (Ren et al., 2018). We only use a small portion of label information from
the dataset by dividing the samples in each class into disjoint labeled set and unlabeled set. For
tieredImageNet, 10% of samples per class constitute the labeled set while 90% of samples remain
unlabeled. Meanwhile, for miniImageNet, 40% of images are used as a labeled set, and remaining
60% of samples are used as an unlabeled set. The ratio of labeled samples for each dataset is based
on the ratio used in (Ren et al., 2018).

For a given dataset and a split between labeled and unlabeled sets, episodes are created as follows.
For meta-training, generation of episodes starts with sampling N target classes from the meta-training
set. Then, K support set samples are selected from the labeled split of each target class. On the
other hand, u unlabeled images are chosen randomly from the unlabeled split of each class and form
the unlabeled set. q query samples per class are selected from the labeled split of each target class,
disjointly with the support set. When the distractor samples are considered, Nd different classes
are additionally sampled from the meta-training set, and d unlabeled images are sampled from the
unlabeled split of each class. Consequently, the unlabeled set consists of N × u samples from N
candidate classes for classification and Nd × d images from the Nd distractor classes. The test
episodes are constructed in the same way as the training episodes but using the meta-test set. Note
that both the number of classes N and the number of distractor classes Nd may be different between
test episodes and training episodes.

4.2 EXPERIMENTAL SETTINGS

For the miniImageNet experiment, we use an embedding network named CONV4, which is widely
used in prior work of (Vinyals et al., 2016; Snell et al., 2017). For tieredImageNet experiments,
however, we added a 2× 2 average pooling layer on top of this embedding network.

We evaluated the proposed method with semi-supervised 1-shot and 5-shot accuracies. For both
1-shot and 5-shot, we evaluate the algorithm with and without distractor samples. For the unlabeled
set, we use 5 unlabeled samples per class for training and 20 unlabeled samples per class in evaluation.
When the distractor samples are considered, the number of distractor class Nd is the same as the
number of target classes N in an episode and the number of distractor samples per class d is the same
as the number of unlabeled samples per class u, for both training and evaluation.

Iterative task-adaptive clustering is employed in TAC experiments. We use just 1 iteration (single
clustering) in meta-training and more iterations in evaluation generally . We believe that repetitive
projection and clustering in episodic training sometimes result in excessive task-conditioning, which
could hinder effective meta-learning of the model across tasks (i.e., effective buildup of inductive
bias). The number of iterations in evaluation is chosen based on validation accuracy.

4.3 RESULTS

In Table 1, semi-supervised few-shot classification accuracies on miniImageNet are presented. For
the evaluation, we use classification accuracy averaged across 10 random splits between labeled and
unlabeled samples. Accuracy of each split is computed with 3.0× 103 episodes with 15 queries per
class. For experiments without distractor, we can observe that our task-adaptive clustering achieves
the best accuracy for 5-shot. In 1-shot measurements, our TAC shows the best accuracy while TAC
distractor-aware projection (TACdap) shows an accuracy level slightly below that of TAC. With the
distractor classes considered (1 or 5-shot w/D), our TACdap shows the best accuracy among the
known methods. In Table 2, experimental results on tieredImageNet are displayed. Again, without
distractor samples, task-adaptive clustering yields the best results. For experiments with distractor
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samples, TAC achieves the best 1-shot accuracy while TACdap shows the highest accuracy in the
5-shot case 1. Notice that TAC or TACdap generally provides substantial gains over the TapNet
baseline. For both PN and TapNet, baseline results are obtained using only the labeled samples.

Table 1: Semi-supervised few-shot classification accuracies for 5-way miniImageNet

Methods 1-shot 5-shot 1-shot w/D 5-shot w/D
PN baseline (Ren et al., 2018) 43.61% 59.08% 43.61% 59.08%
Soft k-Means (Ren et al., 2018) 50.09% 64.59% 48.70% 63.55%
Soft k-Means + Cluster (Ren et al., 2018) 49.03% 63.08% 48.86% 61.27%
Masked Soft k-Means (Ren et al., 2018) 50.41% 64.39% 49.04% 62.96%

TPN (Liu et al., 2019) 52.78% 66.42% 50.43% 64.95%
MetaGAN + RN (Zhang et al., 2018) 50.35% 64.43% - -
IMP† (Allen et al., 2019) - - 49.2% 64.7%

TapNet baseline 49.58% 66.86% 49.58% 66.86%
TAC (Ours) 55.50% 69.21% 50.95% 66.39%
TACdap (Ours) 52.60% 69.05% 51.56% 67.75%

*Due to space limitation, 95% confidence intervals of the reported accuracies are given in Appendix.
† The result from (Allen et al., 2019) is based on the setting with 5 unlabeled samples in evaluation.

Table 2: Semi-supervised few-shot classification accuracies for 5-way tieredImageNet

Methods 1-shot 5-shot 1-shot w/D 5-shot w/D
PN baseline (Ren et al., 2018) 46.52% 66.15% 46.52% 66.15%
Soft k-Means (Ren et al., 2018) 51.52% 70.25% 49.88% 68.32%
Soft k-Means + Cluster (Ren et al., 2018) 51.85% 69.42% 51.36% 67.56%
Masked Soft k-Means (Ren et al., 2018) 52.39% 69.88% 51.38% 69.08%

TPN (Liu et al., 2019) 55.74% 71.01% 53.45% 69.93%

TapNet baseline 51.84% 69.14% 51.84% 69.14%
TAC (Ours) 58.46% 72.05% 54.80% 69.35%
TACdap (Ours) 56.06% 71.37% 53.67% 70.72%

*95% confidence intervals are again given in Appendix.

4.4 ANALYSIS OF PROJECTION SPACE

tSNE plot. For 5-way, 1-shot tieredImageNet experiments without distractor, Figure 2 illustrates
the embedding space and the iteratively reconstructed TAC space with t-SNE. For better illustration,
we visualize each space with 80 unlabeled samples per class. In the t-SNE plot, we display the
unlabeled samples correctly clustered to each class with colored dots, while the incorrectly clustered
samples are marked as gray dots. The number marked beside each cluster indicates the number of
correctly-clustered unlabeled samples for each class. We can see that the unlabeled samples result in
better cluster separation in the TAC space than the embedding space, and the number of incorrectly
clustered samples decreases as the TAC space is updated repeatedly.

Performance improvement via iterative task-adaptive clustering. In Figure 3, classification
accuracies are plotted versus the number of iterations. For 5-way 1-shot miniImageNet classification,
we compare the proposed TAC with Soft k-Means of (Ren et al., 2018). We can see that the accuracy
of TAC steadily increases as the number of iterations grows, before saturating; on the other hand,
the accuracy of Soft k-Means of (Ren et al., 2018) fluctuates with the number of iterations. For the
tieredImageNet classification, comparison is made against Masked Soft k-Means instead [among
methods of (Ren et al., 2018), Soft k-Means and Masked Soft k-Means show the best performance
for miniImageNet and tieredImageNet classification, respectively]. Similarly, there is no gain from

1We do not include evaluation results of (Sun et al., 2019) because their base embedder is pretrained on
fully-labeled training sets of mini/tieredImageNet datasets; we feel that direct comparison would not be fair at
this point.
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Figure 2: tSNE visualization of iterative improvements of clustering space

the iteration for Masked Soft k-Means, while significant gain is seen with the iteration for TAC. Note
that more iteration here provides a deeper level of task-conditioning. The results of Figure 3 suggest
that TAC iterations up to 4 would be beneficial.
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Figure 3: Semi-supervised few-shot classification accuracies versus number of iterations

4.5 SEMI-SUPERVISED FEW-SHOT LEARNING WITH REALISTIC UNLABELED SET

Experimental settings and episode composition for semi-supervised few-shot learning were first
suggested in (Ren et al., 2018). However, we found that the episode composition of prior work may
not be realistic. In (Ren et al., 2018), the unlabeled set of each episode consists of N × u target class
unlabeled samples and Nd × d distractor samples, where N = Nd and u = d. In this setting, the
unlabeled set contains exactly the same number of unlabeled samples for each class. Also, when
distractor samples are considered, they are selected only from the Nd classes, and the unlabeled set
has the same number of target class samples and distractor class samples. To construct the unlabeled
set in this structured manner, we would need label information of the unlabeled split of the dataset,
which is not realistic. Here we propose more realistic episode composition for semi-supervised
few-shot learning. We construct the unlabeled set in an uneven manner, with some randomness
relative to the evenly composed unlabeled set. We select candidate-class unlabeled samples randomly
but non-uniformly from the unlabeled splits of N candidate classes. As for distractor samples, we
sample them randomly from the unlabeled split of whole classes except the candidate classes. We do
not fix the number of samples per each class, nor the number of distractor classes. We only determine
the total number of candidate-class unlabeled samples and distractor samples. Furthermore, it is more
natural for an unlabeled set to include more distractor samples than candidate-class samples.

We perform experiments with the episodes constructed by this more realistic unlabeled set compo-
sition. In the experiment, we use 50 unlabeled samples per episode in training, and 200 unlabeled
samples per episode in evaluation. It is the same as the total number of unlabeled samples in the
experiment in (Ren et al., 2018). We compare our TAC distractor-aware projection with the Soft
k-Means and Soft k-Means + Cluster semi-supervised few-shot learner of (Ren et al., 2018). The
1-shot and 5-shot accuracies with varying ratios of distractor samples are shown in Figure 4. The
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Figure 4: Semi-supervised few-shot classification accuracies of the proposed TAC distractor-aware
projection and with a growing fraction of distractor samples in each episode

accuracy degrades as the ratio of distractor samples increases. We can observe that the 1-shot and
5-shot accuracies of Soft k-Means degrade from 48.70% and 63.55% to 47.43% and 62.50% when
unevenly composed episodes are applied. Also, we can observe that the 5-shot accuracy of Soft
k-Means and Soft k-Means + Cluster drops below the supervised baseline when 80% of unlabeled
samples are distractor samples while our TACdap shows the same level of accuracy as the supervised
baseline.

5 CONCLUSION

We proposed a semi-supervised few-shot learning method utilizing task-adaptive clustering, which
performs clustering in a new projection space for providing a controlled amount of task-conditioning.
The TAC space is first constructed to align the class averages with the meta-trained reference vectors,
and then gets iteratively refined with the aid of the unlabeled samples clustered in the TAC space. The
TAC-based algorithms shows state-of-the-art semi-supervised few-shot classification accuracies on
the miniImageNet and tieredImageNet datasets, with and without distractor samples. The proposed
TAC algorithms also show graceful degradation with a growing portion of distractor samples in the
unlabeled sample set.
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A HYPERPARAMETER SETTINGS

Tables 3 and 4 show the hyperparameter settings of our experiments in the main paper. We utilize
Adam optimizer with an initial learning rate of 10−3 for all experiments. We cut the learning rate by
a factor of 10 once after training 2.5× 104 episodes or twice after training 2.5× 104 and 2.75× 104

episodes. For regularization, the l2 weight decay with an optimized decay rate is also applied in all
experiments. In the meta-training for all cases, 10-way training is adopted. The number of queries
per class is 12 for 1-shot training, and 8 for 5-shot training. Some 1-shot models adopt higher-shot
training. For both miniImageNet and tieredImageNet experiments, TAC 1-shot and TAC 1-shot w/D
models adopt 5-shot training with 8 queries.

Table 3: Hyperparameter settings for miniImageNet experiments

Model Training shot N Nq lr decay step l2 decay rate Niter

TAC 1-shot 5 10 8 25000 & 27500 3e-4 5
TACdap 1-shot 1 10 12 25000 & 27500 3e-4 3
TAC 5-shot 5 10 8 25000 & 27500 3e-4 2
TACdap 5-shot 5 10 8 25000 & 27500 3e-4 2

TAC 1-shot w/D 5 10 8 25000 3e-4 3
TACdap 1-shot w/D 1 10 12 25000 & 27500 3e-4 2
TAC 5-shot w/D case 5 10 8 25000 3e-4 1
TACdap 5-shot w/D 5 10 8 25000 & 27500 3e-4 1

Table 4: Hyperparameter settings for tieredImageNet experiments

Model Training shot N Nq lr decay step l2 decay rate Niter

TAC 1-shot 5 10 8 25000 & 27500 3e-5 5
TACdap 1-shot 1 10 12 25000 & 27500 3e-5 4
TAC 5-shot 5 10 8 25000 & 27500 3e-5 3
TACdap 5-shot 5 10 8 25000 & 27500 3e-5 2

TAC 1-shot w/D 5 10 8 25000 & 27500 3e-5 2
TACdap 1-shot w/D 1 10 12 25000 & 27500 1e-5 3
TAC 5-shot w/D 5 10 8 25000 & 27500 3e-5 1
TACdap 5-shot w/D 5 10 8 25000 & 27500 3e-5 1

B CONFIDENCE INTERVALS

Table 5 and 6 show the classification accuracies of our method with 95% confidence intervals for
miniImageNet and tieredImageNet datastets, respectively.

C ABLATION STUDY

C.1 NUMBER OF CLUSTERING ITERATIONS IN EVALUATION

The number of iterations for clustering the unlabeled sample is optimized for each experiment.
Figures 5 and 6 show miniImageNet and tieredImageNet classification accuracies on validation set
with varying numbers of iterations. We fixed the iteration number to 1 during episodic meta-training.
Iteration 1 means that clustering of unlabeled samples is done once in TAC space. We measured the
classification accuracies with iteration numbers ranging from 1 to 5. For every case, we marked the
number of iterations yielding the best accuracy with a solid dot. The iteration number used in the
main paper is set to be the best choice observed in this validation process. Note that the aggressive
iteration is advantageous for 1-shot cases (3 to 5 iterations result in considerable gains). On the
other hand, the iterative process is less beneficial to 5-shot or distractor sample cases (w/D). Also, in
general TAC seems to benefit somewhat more from iterations than TACdap.
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Table 5: Semi-supervised few-shot classification accuracies for 5-way miniImageNet

Methods 1-shot 5-shot 1-shot w/D 5-shot w/D

PN baseline 43.61±0.27% 59.08±0.22% 43.61±0.27% 59.08±0.22%
Soft k-Means 50.09±0.45% 64.59±0.28% 48.70±0.32% 63.55±0.28%
Soft k-Means + Cluster 49.03±0.24% 63.08±0.18% 48.86±0.32% 61.27±0.24%
Masked Soft k-Means 50.41±0.31% 64.39±0.24% 49.04±0.31% 62.96±0.14%

TPN 52.78±0.27% 66.42±0.21% 50.43±0.84% 64.95±0.73%
MetaGAN + RN 50.35±0.23% 64.43±0.27% - -
IMP - - 49.2±0.7% 64.7±0.7%

TapNet baseline 49.58±0.20% 66.86±0.16% 49.58±0.20% 66.86±0.16%
TAC (Ours) 55.50±0.27% 69.21±0.19% 50.95±0.23% 66.39±0.19%
TACdap (Ours) 52.60±0.25% 69.05±0.14% 51.56±0.17% 67.75±0.26%

Table 6: Semi-supervised few-shot classification accuracies for 5-way tieredImageNet

Methods 1-shot 5-shot 1-shot w/D 5-shot w/D

PN baseline 46.52±0.52% 66.15±0.22% 46.52±0.52% 66.15±0.22%
Soft k-Means 51.52±0.36% 70.25±0.31% 49.88±0.52% 68.32±0.22%
Soft k-Means + Cluster 51.85±0.25% 69.42±0.17% 51.36±0.31% 67.56±0.10%
Masked Soft k-Means 52.39±0.44% 69.88±0.20% 51.38±0.38% 69.08±0.25%

TPN 55.74±0.29% 71.01±0.23% 53.45±0.93% 69.93±0.80%

TapNet baseline 51.84±0.16% 69.14±0.13% 51.84±0.16% 69.14±0.13%
TAC (Ours) 58.46±0.19% 72.05±0.15% 54.80±0.20% 69.35±0.17%
TACdap (Ours) 56.06±0.18% 71.37±0.12% 53.67±0.18% 70.72±0.13%

C.2 NUMBER OF UNLABELED SAMPLES IN EVALUATION

Figure 7 shows miniImageNet classification accuracies of the proposed methods with an increasing
number of unlabeled samples in evaluation. All models are trained and tested with single iteration,
and trained with 5 unlabeled samples per class. We can see that the test accuracy gradually increases
as the number of unlabeled samples grows. Note that when the number of unlabeled samples is low,
the accuracy of TACdap is always higher than the accuracy of TAC. Moreover, for 1-shot cases, the
accuracies of TACdap with 1 unlabeled sample is fairly close to the accuracies with many unlabeled
samples.

C.3 CLASSIFICATION ACCURACY AND CROSS ENTROPY VERSUS NUMBER OF ITERATIONS.

In Figure 8, classification accuracies and cross entropy are plotted versus the number of iterations
for 5-way, 1-shot cases of miniImageNet and tieredImageNet experiments without distractor. We
consider two cases for clustering at evaluation time: in projection space and in embedding space.
The final classification is done in the task-adaptive projection space. Cross entropy Lu is obtained
from the label probabilities. As the number of iterations grows, classification accuracy improves
and cross entropy decreases for both cases, i.e., the semi-supervised classification performance is
enhanced and the soft labels become more reliable. The initial gap between the two cases actually
comes from the clustering in projected space rather than embedding space. Also, as iteration grows
from 1 to 5, the gap is actually seen to gradually increase: from 0.90% to 1.19% and from 1.27% to
1.65% for miniImageNet and tieredImageNet, respectively. The results clearly show that clustering
(and subsequent soft-labeling) is much better off done in the projection space than in the original
embedding space for leveraging unlabeled samples.
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Figure 5: miniImageNet classification accuracies vs iteration number
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Figure 6: tieredImageNet classification accuracies vs iteration number

C.4 CHOICE OF CLUSTERING SPACE IN META-TRAINING AND IN EVALUATION

In the main paper, we showed that clustering in the TAC space results in better classification
accuracies than clustering in the embedding space. A question may arise: Is clustering in TAC space
still beneficial even when clustering is rather done in the embedding space during meta-training? In
other words, how would the learner fare if the episode training condition deviates from the actual few-
shot evaluation condition in terms of clustering space. Note that the principle established with regards
to episodic training is that the training condition must match the evaluation condition. Interestingly,
for the TAC methods, clustering in the embedding space during meta-training did not affect final
performance even as evaluation is based on clustering in TAC space. See the comparison results in
Figure 9. Clustering in the embedding space in fact gave similar (or slightly better at low iteration
numbers) results compared to clustering in projection space, when it comes to meta-training. As for
better clustering at evaluation time, TAC space is the better choice than original embedding space.

C.5 NUMBER OF CLUSTERING ITERATIONS IN META-TRAINING

The effect of varying the iteration number in meta-training is also investigated. We wish to understand
whether task-adaptation through iterative projection and clustering in meta-training is productive
or not. It may be possible that strong adaptation for every episode during meta-training may
hinder the process of building a proper inductive bias in the model. For the results obtained in the
main manuscript, we adopted 1 iteration of clustering in TAC space. Here we present measured
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Figure 7: miniImageNet classification accuracy versus number of unlabeled samples
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Figure 8: Classification accuracy and cross entropy vs number of iterations

tieredImageNet classification accuracies for TAC and TACdap methods with a varying number of
iterations in meta-training.

See Figure 10. For TAC methods, a more aggressive adaptation through an increasing number of
iterations during meta-training does not result in significant gains. Note that 0 iteration here means
that clustering is done in the embedding space.

For TACdap, on the other hand, as the number of iterations grows, performance is substantially
degraded. For 1-shot experiments, accuracy is consistently degraded as the number of iterations
grows to more than 1. Also for 5-shot experiments, when we adopt iterative clustering in TAC
space, classification accuracy decreases steadily with iteration. Thus, for TACdap, multiple rounds of
clustering during meta-training are actually harmful.

Overall, during meta-training, iterative projection followed by subsequent clustering is not beneficial
for our TAC-based methods. We believe that multiple rounds of projection/clustering at train time
may cause excessive task-conditioning, which in turn would prevent the machine from developing a
healthy level of inductive bias for meta-learning.
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Figure 9: Classification accuracy vs space where clusters form: TAC space versus embedded space,
in meta-training and in evaluation
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Figure 10: tieredImageNet classification accuracy versus number of iterations in meta-training
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